Seismic Loading for FAST: May 2011 - August 2011

PDF Version Also Available for Download.

Description

As more wind farms are constructed in seismically active regions, earthquake loading increases in prominence for design and analysis of wind turbines. Early investigation of seismic load tended to simplify the rotor and nacelle as a lumped mass on top of the turbine tower. This simplification allowed the use of techniques developed for conventional civil structures, such as buildings, to be easily applied to wind turbines. However, interest is shifting to more detailed models that consider loads for turbine components other than the tower. These improved models offer three key capabilities in consideration of base shaking for turbines: 1) The ... continued below

Physical Description

28 p.

Creation Information

Asareh, M. A. & Prowell, I. August 1, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

As more wind farms are constructed in seismically active regions, earthquake loading increases in prominence for design and analysis of wind turbines. Early investigation of seismic load tended to simplify the rotor and nacelle as a lumped mass on top of the turbine tower. This simplification allowed the use of techniques developed for conventional civil structures, such as buildings, to be easily applied to wind turbines. However, interest is shifting to more detailed models that consider loads for turbine components other than the tower. These improved models offer three key capabilities in consideration of base shaking for turbines: 1) The inclusion of aerodynamics and turbine control; 2) The ability to consider component loads other than just tower loads; and 3) An improved representation of turbine response in higher modes by reducing modeling simplifications. Both experimental and numerical investigations have shown that, especially for large modern turbines, it is important to consider interaction between earthquake input, aerodynamics, and operational loads. These investigations further show that consideration of higher mode activity may be necessary in the analysis of the seismic response of turbines. Since the FAST code is already capable of considering these factors, modifications were developed that allow simulation of base shaking. This approach allows consideration of this additional load source within a framework, the FAST code that is already familiar to many researchers and practitioners.

Physical Description

28 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NREL/SR-5000-53872
  • Grant Number: AC36-08GO28308
  • DOI: 10.2172/1050131 | External Link
  • Office of Scientific & Technical Information Report Number: 1050131
  • Archival Resource Key: ark:/67531/metadc830035

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • April 4, 2017, 3:51 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Asareh, M. A. & Prowell, I. Seismic Loading for FAST: May 2011 - August 2011, report, August 1, 2012; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc830035/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.