Nuclear-Powered GPS Spacecraft Design Study

PDF Version Also Available for Download.

Description

This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude ... continued below

Creation Information

Raab, Bernard May 1977.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude version is also considered.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: FSEC-ESD-217-77/108;ERDA-NRA-3063-10
  • Grant Number: AT(49-15)-3063
  • DOI: 10.2172/1080186 | External Link
  • Office of Scientific & Technical Information Report Number: 1080186
  • Archival Resource Key: ark:/67531/metadc829969

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1977

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 20, 2016, 12:42 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Raab, Bernard. Nuclear-Powered GPS Spacecraft Design Study, report, May 1977; United States. (digital.library.unt.edu/ark:/67531/metadc829969/: accessed January 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.