Forces and Stored Energy in Thin Cosine (n0) Accelerator Magnets

PDF Version Also Available for Download.

Description

We wish to compute Lorentz forces, equilibrium stress and stored energy in thin multipole magnets (Fig.1), that are proportional to cos(n{theta}) and whose strength varies purely as a Fourier sinusoidal series of the longitudinal coordinate z (say proportional to cos (2m-1){pi}z/L where L denotes the half-period and m = 1,2,3...). We shall demonstrate that in cases where the current is situated on such a surface of discontinuity at r = R (i.e. J = f({theta},z)), by computing the Lorentz force and solving the state of equilibrium on that surface, a closed form solution can be obtained for single function magnets ... continued below

Creation Information

Caspi, S. March 18, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We wish to compute Lorentz forces, equilibrium stress and stored energy in thin multipole magnets (Fig.1), that are proportional to cos(n{theta}) and whose strength varies purely as a Fourier sinusoidal series of the longitudinal coordinate z (say proportional to cos (2m-1){pi}z/L where L denotes the half-period and m = 1,2,3...). We shall demonstrate that in cases where the current is situated on such a surface of discontinuity at r = R (i.e. J = f({theta},z)), by computing the Lorentz force and solving the state of equilibrium on that surface, a closed form solution can be obtained for single function magnets as well as for any combination of interacting nested multi function magnets. The results that have been obtained, indicate that the total axial force on the end of a single multipole magnet n is independent (orthogonal) to any other multipole magnet i as long as n {ne} i. The same is true for the stored energy, the total energy of a nested set of multipole magnets is equal to the some of the energy of the individual magnets (of the same period length 2L). Finally we demonstrate our results on a nested set of magnets a dipole (n = 1) and a quadmpole (n=2) that have an identical single periodicity {omega}{sub 1}. We show that in the limiting 2D case (period 2L tends to infinity), the force reduces to the commonly known 2D case.

Subjects

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBL-38500
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/1004211 | External Link
  • Office of Scientific & Technical Information Report Number: 1004211
  • Archival Resource Key: ark:/67531/metadc829965

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 18, 1996

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 15, 2016, 8:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Caspi, S. Forces and Stored Energy in Thin Cosine (n0) Accelerator Magnets, report, March 18, 1996; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc829965/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.