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Abstract 

A number of studies have shown that for isostructural series of the lanthanides (elements 

La through Lu) a plot of equivalent metal-ligand bond lengths versus atomic number differs 

significantly from linearity and can be better fit as a quadratic equation. However, for hydrogen 

type wave functions it is the inverse of the average distance of the electron from the nucleus (an 

estimate of size) that varies linearly with effective nuclear charge.  This generates an apparent 

quadratic dependence of radius with atomic number.  Plotting the inverse of lanthanide ion radii 

(the observed distance minus the ligand size) as a function of effective nuclear charge gives very 

good linear fits for a variety of lanthanide complexes and materials.  Parameters obtained from 

this fit are in excellent agreement with the calculated Slater shielding constant, k. 
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1. Introduction 

The lanthanide contraction, the change in ion size with atomic number, was one of the 

first structural features of the lanthanides and papers referring to it date back to at least 1926 [1].    

Because early diffraction studies were time-consuming the entire lanthanide series (here defined 

as La through Lu, excepting the radioactive Pm) was typically not examined and the decrease in 

ionic radius was usually shown using representative members of the series [2] and the 

contraction was assumed to be linear with atomic number [3].  Modern advances in structure 

analysis have yielded a number of whole or near-whole series of structures for isostructural 

compounds [4-8], generating much more data for a plot of the lanthanide contraction and 

showing that the contraction is significantly curved, a feature that we and others in the field have 

generally accepted.   

The early x-ray and neutron diffraction characterization of the series [Ln(H2O)9][CF3SO3]3 

was especially significant [6, 9], because of its relevance to the solution chemistry of the 

lanthanide aqua ions. This series is isostructural and the cations have C3h crystallographic site 

symmetry. Thus each vertex and each cap H2O is equivalent within its class. In an ionic model 

the capping ligands have more ligand-ligand repulsion and so have longer Ln-O distances. This 

result is mirrored in modern calculations [10]. The authors of the [Ln(H2O)9][CF3SO3]3  papers 

struggled to explain both the curvature in the Ln-O distances across the series as well as the 

different curvature seen for the two different water molecules [6]. Subsequently, Quadrelli 

examined this and the isostructural series [Ln(H2O)9][EtOSO3]3 [8], and found both to be more 

closely fit by a quadratic expression [11].   
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More recently, Ibers et al. determined the structure of a series of compounds with the general 

formula RbLnSe2 [4].  The lanthanide ions lie in octahedral coordination environments, and each 

coordinating selenium atom is identical.  The Ln-Se internuclear distances of the complexes were 

found to be more closely fit by a quadratic expression, as were the Ln-Te distances in the series 

CsLnZnTe3 [5].  

We earlier presented an explanation of the apparent quadratic nature of the contraction based 

on the nuclear shielding of the f orbitals [12] and Slater’s model for atomic shielding [13-15]. 

That paper described a structural series for a multidentate ligand.  Here we expand upon that 

model and show its effective explanation of Ln3+ ionic radii for a number of published series of 

isostructural complexes. 

 

2. Modeling and plotting ionic radius from crystal-structure data 

For hydrogen atom wave functions, it is not the average distance of the electron from the 

nucleus, <r>, that varies linearly with effective nuclear charge but rather the average inverse, 

<1/r>.  This suggests that 1/r(x), the inverse of the lanthanide ionic radius (where x is the number 

of f electrons in the lanthanide ion of interest, treated as a continuous variable), can be 

represented by a linear equation: bxa
xr


)(

1
   (1).  

As will be shown, this is mathematically equivalent to the Slater shielding formula. 

 Here the intercept 
0

1

r
a      (2) 

is the inverse of the ionic radius of lanthanum and the slope 



This is an electronic version of an article published in Comptes Rendus Chimie. 2010, 13, 849-852. 
Comptes Rendus Chime is available online at: http://dx.doi.org/doi:10.1016/j.crci.2010.03.034 

4 

 

x

xr
b














)(

1

     (3) 

is the incremental change in the inverse of the ionic radius from one lanthanide to the next.  

Thus, the internuclear distance between the lanthanide and the coordinating atom of the ligand, 

d(Ln-L), is given by 

  )(

1
L)-Ln( Lr

bxa
d 


    (4) 

where r(L) is the radius of the coordinating ion on the ligand. 

Eq. (4) can be expanded through a Maclaurin series [16] to give an equation of the form 

f(x) = f(0) + f′(0) x + f″(0) x2/2 +….  (5) 

which, if terminated at the third term, gives the polynomial described by Quadrelli 

d(Ln-L) = A0 - A1x + A2x
2   (6) 

where 

A0 = 1/a + r(L) 

A1 = b/a2 

A2 = b2/a3 

Equations 1-6 suggest that a plot of 1/r(x) as a function of the number of f electrons will be 

linear.  The ionic packing model, with derived ionic radii, was pioneered by Goldschmidt [17] 

and Pauling [18], culminating in tabulations such as the widely used values of Shannon [19].    

The relevant Ln-L internuclear distances are shown in Table I.  By subtracting the known ionic 

radii of the ligating atoms from the Ln-L internuclear distances in simple structures, the ionic 

radii of the Ln ions can be determined for a series of experimentally determined distances.  
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A least-squares fit of the crystallographic data to obtain the parameters a, b, and r(L) of Eq. (4) 

for each ligand was performed by minimizing: 





n
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calc
i

obs
i xdxd

1

2))()((   (7) 

where di(x)obs is the observed internuclear distance and di(x)calc is the corresponding predicted 

values d(Ln-L) for the ith crystallographic data point.  In order to account for differences in 

lanthanide ionic radius that were due to the different coordination environments, Eq. (8) [20] was 

used to normalize the values of both a and b for coordination number 6 and 9 
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where irCN(q) and irCN(p) are the ionic radii of the lanthanide ions having coordination number 

(CN) q and p, respectively.  Values for the radius of the vertex water oxygen atoms of 

[Ln(H2O)9][CF3SO3]3 and [Ln(H2O)9][EtOSO3]3, the selenium atoms of Rb[Ln]Se2, and 

equatorial tellurium atoms of Cs[Ln]ZnTe3 were fixed according to literature values [19] in order 

to decrease the number of parameters to be refined.  With the refined values of r(L) (see 

supporting information), the inverse of the ionic radius is graphed as a function of the number of 

f electrons for the four chosen series. 

The series RbLnSe2 (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Ho, Er, Lu) [4] crystallizes with 

lanthanide ion site symmetry D3d;  the lanthanide ions are nearly octahedral and each 

coordinating selenium atom is identical.  A coordination number of 3 for the selenium atoms was 

used to fix the ionic radii of the selenium atoms to previously published values [19] for the 

purposes of the data refinement.  A plot of 1/r(x) as a function of the number of f electrons is 

shown in Fig. 1.   
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The series CsLnZnTe3 (Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb) [5] 

crystallizes in the layered KZrCuS3 structure type in the orthorhombic space group Cmcm.  The 

structure is composed of LnTe6 octahedra, with axial and equatorial tellurium atoms in the unit 

cell.  The equatorial atom ionic radii were fixed to the 3-coordinate literature value [19], and the 

axial tellurium ionic radii, due to their different coordination environment, were refined. Fig. 2 

shows our results for these complexes.   

In the lanthanum nonaaqua triflate and ethyl sulfate salts ([Ln(H2O)9][CF3SO3]3, Ln = La, 

Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Lu and[Ln(H2O)9][EtOSO3]3, Ln = La, Ce, Pr, Nd, Sm, Eu, 

Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) [6, 8] the cations are also tricapped-trigonal prismatic in 

geometry. The vertex ionic radii were fixed to a literature value for water [21] and the capping 

radii were refined, constrained to a single value  (the values for Tm, Yb, and Lu are anomalous, 

which we attribute to steric crowding, and were omitted).  The linear plots are shown in Fig. 3 

and 4.   

 

4. Calculating the screening constant for 4f electrons 

Using Slater’s revised model [14], the ionic radius of a complexed lanthanide ion can be 

written in the form 

  
)1(

)(
*
0

*
00

kxZ

Zr
xr


   (10) 

where r(x) is the ionic radius of the lanthanide, Z0
* is the effective nuclear charge of lanthanum, 

r0 is the ionic radius of lanthanum, x is the number of f electrons and k is the atomic screening 

constant [12].  Therefore 



This is an electronic version of an article published in Comptes Rendus Chimie. 2010, 13, 849-852. 
Comptes Rendus Chime is available online at: http://dx.doi.org/doi:10.1016/j.crci.2010.03.034 

7 

 

  
*
00

*
0 )1(

)(

1

Zr

kxZ

xr


    (11) 

and, after taking the first derivative of 1/r(x) with respect to x, 
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we can combine Eq. (12) with Eq. (3) to get  

*
001 Zbrk     (13) 

Substituting equation (2) gives: 

*
01 Z

a

b
k      (14) 

that is, the apparent curvature of the ionic radii can be used to calculate the Slater screening 

constant. Calculating the screening constant using our refined values for a, b and an extrapolated 

value for the effective nuclear charge of lanthanum, Z*
0 in Eq. (14) [14] results in a value for k of 

0.74, in good agreement with the previously reported value of 0.69 obtained from the ionization 

energies of the lanthanides [22].   

 

5. Conclusions 

The lanthanide contraction is a topic of considerable history and practical as well as 

theoretical significance.  The increasing number of structures and the more complete sets of data 

for the entire series of lanthanides in a given structural type show that the change of lanthanide to 

ligand bond distance does not change linearly with atomic number. The apparent curvature of the 

ionic radii with atomic number is because it is 1/r that varies linearly with charge. This simple 

model gives good fits to the data and a useful value of the Slater screening constant.  
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