Comparing the use of 4.6 um lasers versus 10.6 um lasers for mitigating damage site growth on fused silica surfaces

PDF Version Also Available for Download.

Description

The advantage of using mid-infrared (IR) 4.6 {micro}m lasers, versus far-infrared 10.6 {micro}m lasers, for mitigating damage growth on fused silica is investigated. In contrast to fused silica's high absorption at 10.6 {micro}m, silica absorption at 4.6 {micro}m is two orders of magnitude less. The much reduced absorption at 4.6 {micro}m enables deep heat penetration into fused silica when it is heated using the mid-IR laser, which in turn leads to more effective mitigation of damage sites with deep cracks. The advantage of using mid-IR versus far-IR laser for damage growth mitigation under non-evaporative condition is quantified by defining a ... continued below

Physical Description

PDF-file: 9 pages; size: 1.3 Mbytes

Creation Information

Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G et al. October 21, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The advantage of using mid-infrared (IR) 4.6 {micro}m lasers, versus far-infrared 10.6 {micro}m lasers, for mitigating damage growth on fused silica is investigated. In contrast to fused silica's high absorption at 10.6 {micro}m, silica absorption at 4.6 {micro}m is two orders of magnitude less. The much reduced absorption at 4.6 {micro}m enables deep heat penetration into fused silica when it is heated using the mid-IR laser, which in turn leads to more effective mitigation of damage sites with deep cracks. The advantage of using mid-IR versus far-IR laser for damage growth mitigation under non-evaporative condition is quantified by defining a figure of merit (FOM) that relates the crack healing depth to laser power required. Based on our FOM, we show that for damage cracks up to at least 500 {micro}m in depth, mitigation using a 4.6 {micro}m mid-IR laser is more efficient than mitigation using a 10.6 {micro}m far-IR laser.

Physical Description

PDF-file: 9 pages; size: 1.3 Mbytes

Source

  • Presented at: SPIE Laser Damage Conference, Boulder, CO, United States, Sep 26 - Sep 29, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-PROC-461691
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 1018773
  • Archival Resource Key: ark:/67531/metadc829756

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 21, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 22, 2016, 10:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G et al. Comparing the use of 4.6 um lasers versus 10.6 um lasers for mitigating damage site growth on fused silica surfaces, article, October 21, 2010; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc829756/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.