Introduction

Historical component failures
 20 years ago – Modules ; Today - Inverters

Historical degradation rates (R_d)
 Most modules degrade at 0.5%/year & are improving

Connection Degradation rate uncertainty & risk
 Higher uncertainty leading to higher risk
Growth of PV Industry

Reliability required to sustain exponential growth of industry

Sources:
- International: PV News, April 2009
- USA: http://www.eia.doe.gov/emeu/international/contents.html

Photo credit: Steve Wilcox, NREL PIX 15548

Alamosa Plant in Colorado
Reliability & Durability

- **Reliability**: Ability to perform designed task without failure \(\rightarrow\) discrete, disruptive events

- **Durability**: Ability to perform task without significant deterioration \(\rightarrow\) continuous, gradual decline

![Graph showing degradation fit and inverter replacement]

- Inverter Efficiency (%)
- DC Power (W)

<table>
<thead>
<tr>
<th>Date</th>
<th>DC Power</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(R_d=(-0.14\pm0.16)\%/\text{year}\)

Extreme example of inverter failure

Both important for cost of electricity
PV for Utility Scale Application (PVUSA)

The plant was originally constructed by the Atlantic Richfield oil company (ARCO) in 1983. Provided electricity, research opportunity, data & experience through the 1980s and 1990s. Plant was dismantled in the late 1990s.

Location: Carrisa Plains
Size: 5.2 MW
Data: 1988

Panels showed the highest maintenance

“CARRISA PLAINS PV POWER PLANT PERFORMANCE”, Wenger et al., PG&E, PVSC 1990.

Inverters seem to dominate O&M cost now.

Module stability has improved over the last 20 years → the next component requiring improvement is the inverter.

![Pie chart showing the percentage of system failures]

<table>
<thead>
<tr>
<th>Category</th>
<th>No. Events (%)</th>
<th>Cost (%)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter</td>
<td>37</td>
<td>59</td>
<td>25% from 1 lightning storm</td>
</tr>
<tr>
<td>DAS</td>
<td>7</td>
<td>14</td>
<td>90% from 1 lightning storm</td>
</tr>
<tr>
<td>AC Disconnect</td>
<td>21</td>
<td>12</td>
<td>50% due to dirt accumulation</td>
</tr>
<tr>
<td>Module/J Box</td>
<td>12</td>
<td>3</td>
<td>60% due to failed blocking diode</td>
</tr>
<tr>
<td>PV Array</td>
<td>15</td>
<td>6</td>
<td>45% from 1 lightning storm</td>
</tr>
<tr>
<td>System</td>
<td>8</td>
<td>6</td>
<td>All utility meter</td>
</tr>
</tbody>
</table>

Unscheduled maintenance costs for PV system operation

Inverters seem to dominate O&M cost now
Maximum Warranties - Inverters

Inverters suffer from early failures in the field due to temperature-related issues, mismatch between PV voltage and inverter window.

Qualification and performance standards for inverters and BOS are not well-defined.

Inverters are improving but still have wide distribution.

Source: Photon International, April 2010
Module maximum warranties typically greater than inverters

PV modules show smaller distribution
Degradation Rate (R_d)- Discrete Points

1. Translation to reference conditions (IEC60891)
2. Time series to determine degradation rate

Quarterly taken I-V curves for degradation
Degradation Rate - Discrete Points

1. Translation to reference conditions (IEC60891)
2. Time series to determine degradation rate

\[FF = \frac{P_{\text{max}}}{I_{sc} \cdot V_{oc}} = \frac{I_{\text{max}} \cdot V_{\text{max}}}{I_{sc} \cdot V_{oc}} \]

Quarterly taken I-V curves for degradation
Degradation Rate - Discrete Points

Degradation is due to decline in I_{sc}, (V_{oc} & FF are stable) \rightarrow clues to failure mechanism

Problem: 1. Labor-intensive, has to be clear sky
 2. Large arrays \rightarrow portable I-V tracer may not be available
 3. Typically not available

I-V curves provide clues to underlying failure mechanism
Degradation Rate - Continuous Data

1. Translation to reference conditions (use a multiple regression approach)
2. Time series to determine degradation rate

PVUSA – multiple regression

\[P = E \cdot (a_1 + a_2 \cdot E + a_3 \cdot T_{ambient} + a_4 \cdot ws) \]

Seasonality leads to required observation times of 3-5 years \(\rightarrow\) long time in today's market

Long time required for accurate \(R_d\)
Most modules degrade by ca. 0.5 %/year
Performance Energy Rating Testbed = PERT

More than 40 Modules, > 10 manufacturers, Monitoring time: 2 yrs-16 yrs

Appears that CdTe, CIGS & poly-Si improved
Historical degradation rates are analyzed in a similar way.

Similar tendency found as with the PERT modules.

While the Si technologies remain stable, thin-films seem to have improved.

c-Si and Poly-Si show an uptick in R_d → could be from new manufactures pushing into market*

Appears that CdTe, CIGS & poly-Si improved
Degradation Rate Uncertainty

Traditionally: need 3-5 years to determine R_d^*.

Modeling: (i) Classical Decomposition
(ii) ARIMA**

Accurate Determination of R_d takes time

Modeling can shorten required time

Consequences of R_d Uncertainty

2 examples from NREL:
Different observation lengths, seasonality etc. \rightarrow Leads to different uncertainties

R_d (Module 1) = (0.8 ±0.2) %/year
R_d (Module 2) = (0.8 ±1.0) %/year

Same R_d but very different uncertainty
R\textsubscript{D} Uncertainty Impact on Warranty

Manufacturer Warranty often twofold: 90% after 10 years, 80% after 25 years

Probability to invoke warranty:

1.0 %/year uncertainty = 46%
0.2 %/year uncertainty = 4%

Higher R\textsubscript{D} uncertainty significantly increases warranty risk
Thank You!