New insights into microbial responses to oil spills from the Deepwater Horizon incident

PDF Version Also Available for Download.

Description

On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in ... continued below

Creation Information

Mason, O.U. & Hazen, T.C. June 15, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

Source

  • Journal Name: SIMS News; Journal Volume: 16; Journal Issue: 3; Related Information: Journal Publication Date: 2011

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-5048E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1050984
  • Archival Resource Key: ark:/67531/metadc829535

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 15, 2011

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 16, 2016, 3:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mason, O.U. & Hazen, T.C. New insights into microbial responses to oil spills from the Deepwater Horizon incident, article, June 15, 2011; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc829535/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.