Legal Stuff

• DISCLAIMER
 This work of authorship and those incorporated herein were prepared by Contractor as accounts of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, use made, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or Contractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency or Contractor thereof.

• COPYRIGHT NOTICE
 This document has been authored by a contractor/subcontractor of the U.S. Government under contract DE-AC05-00OR-22800. Accordingly, the U.S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U. S. Government purposes.
Personal Dose Equivalent Conversion Coefficients for Photons, Electrons, and Positrons

K.G. Veinot

Y-12 National Security Complex
System of Radiation Protection

Physical Quantities
- Fluence, Kerma, Absorbed Dose

Operational Quantities
- Ambient Dose Equivalent
- Personal Dose Equivalent

Protection Quantities
- Effective Dose Equivalent
- Equivalent Dose
- Effective Dose

Calculated using $Q(L)-L$ and simple phantom. Validated by measurements and calculation.

Calculated using w_R, w_T and anthropomorphic phantoms.

Compared by measurement and calculations.

Instrument Response

Conservative Approximation
Personal Dose Equivalent

- Monitoring for individuals
- Defined in the body – multi-valued quantity
- Usually the trunk = 30 cm X 30 cm X 15 cm
- ICRU Slab

ICRU Slab

Unidirectional field

Dosimeter
Use of $H_p(d)$

- Dosimeter calibrations
- Compliance with protection quantities (e.g. skin dose, lens of eye dose, effective (“whole body” dose))
- $H_p(0.07)$ used for skin
- $H_p(3)$ used for lens of eye
- $H_p(10)$ used for effective dose
Calculations

- MCNPX 2.6.0
- ICRU slab phantom (30 cm X 30 cm X 15 cm)
- Parallel broad beam
- Air and vacuum for photons
- Kerma and absorbed dose for photons
- Air kerma for photons
- Vacuum for electrons, positrons
- Fits for photons and electrons
- Tally errors <3%
Protection Quantities

- ICRP-103
- Male and female phantoms
- AP geometry
- ICRP developing advanced LOE model
- Skin voxels large
- DOCAL working group
ICRP-103 Protection Quantity Calculations

- Radionuclide Intake & External Exposure
 - Male phantom
 - Absorbed doses, D^M_T
 - Female phantom
 - Absorbed doses, D^F_T
 - Equivalent doses, H^M_T
 - Equivalent doses, H^F_T
 - Sex-averaged equivalent doses, H_T
 - Effective dose, E
 - Reference Person
 - Reference Female

w_R and w_T represent weighting factors.
Fits to DCFs

- Marquardt-Levenberg algorithm

\[f(x) = \frac{a}{1 + (b + cx)^2} + \frac{d}{1 + (f + gx)^2} + \frac{h}{1 + (j + kx)^2} + \frac{l}{1 + \exp(m + nx)} + \frac{o}{1 + \exp(p + qx)} \]

- \(f(x) = \) logarithmic (base 10) value of the conversion coefficient and \(x \) equals \(\log_{10}(E) \) with \(E \) having energy units of MeV
Photon $H_p(0.07)$
Photon $H_p(3)$

Conversion Coefficient (pSv cm2)

Photon Energy (MeV)

- □ Hp(3) (Vacuum)
- Vacuum Fit
- ● Hp(3) Kim and Kim 1999
- ✗ Eye Lens ICRP-103/ICRP-110 Avg. (AP)
Photon $H_p(10)$

![Graph showing Photon $H_p(10)$](image-url)

- Hp(10) (Vacuum)
- Vacuum Fit
- Effective Dose (AP)
- H*(10) Pelliccioni 2000
- Hp(10) Kim and Kim 1999

Conversion Coefficient (pSv cm$^{-2}$) vs. Photon Energy (MeV)
Photon Air Kerma, K_a
Photon DCF Fit Values

- Reported in RPD

<table>
<thead>
<tr>
<th></th>
<th>Vacuum</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$H_p(0.07)$</td>
<td>$H_p(3)$</td>
</tr>
<tr>
<td>a</td>
<td>7.57E+00</td>
<td>3.50E+00</td>
</tr>
<tr>
<td>b</td>
<td>-5.02E+00</td>
<td>2.48E+00</td>
</tr>
<tr>
<td>c</td>
<td>-1.75E+00</td>
<td>1.25E+00</td>
</tr>
<tr>
<td>d</td>
<td>-3.80E+00</td>
<td>4.53E-01</td>
</tr>
<tr>
<td>f</td>
<td>1.08E+00</td>
<td>-3.66E-01</td>
</tr>
<tr>
<td>g</td>
<td>8.82E-01</td>
<td>1.97E+00</td>
</tr>
<tr>
<td>h</td>
<td>-1.93E+01</td>
<td>-1.69E+00</td>
</tr>
<tr>
<td>j</td>
<td>6.25E+00</td>
<td>2.87E+01</td>
</tr>
<tr>
<td>k</td>
<td>1.92E+00</td>
<td>1.29E+01</td>
</tr>
<tr>
<td>l</td>
<td>9.26E-01</td>
<td>-3.28E+00</td>
</tr>
<tr>
<td>m</td>
<td>2.76E+00</td>
<td>2.77E+00</td>
</tr>
<tr>
<td>n</td>
<td>6.07E+00</td>
<td>2.77E+00</td>
</tr>
<tr>
<td>o</td>
<td>3.10E+00</td>
<td>7.82E-01</td>
</tr>
<tr>
<td>p</td>
<td>-2.94E-01</td>
<td>3.42E+00</td>
</tr>
<tr>
<td>q</td>
<td>2.34E+00</td>
<td>-1.62E+00</td>
</tr>
<tr>
<td>SSR</td>
<td>0.0038</td>
<td>0.0058</td>
</tr>
</tbody>
</table>
Electron $H_p(0.07)$

[Graph showing the distribution of $H_p(0.07)$ with energy (MeV) on the x-axis and $H_p(0.07)$ (pSv cm$^{-2}$) on the y-axis.]

- Hp(0.07) (Electron)
- Ferrari and Pelliccioni (1994) $H^*(0.07)$
- Chartier et.al. (1996)
- ICRP-103/ICRP-110 Skin (Avg.)
- Fit
Electron $H_p(3)$

Energy (MeV)

$H_p(3)$ (Electron)
Ferrari and Pelliccioni (1994) $H^*(3)$
Chartier et.al. (1996)
ICRP-103/ICRP-110 Eye
Behrens (2009)
Fit
Electron $H_p(10)$

Chartier et al. (1996)

ICRP-103/ICRP-110 E

Fit

Energy (MeV)

$H_p(10)$ (Electron)

Ferrari and Pelliccioni (1994) $H^*(10)$

Chartier et al. (1996)

ICRP-103/ICRP-110 E

Fit
Electron DCF Fit Values

- Submitting to RPD

<table>
<thead>
<tr>
<th></th>
<th>$H_p(0.07)$</th>
<th>$H_p(3)$</th>
<th>$H_p(10)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.00000</td>
<td>-9.17202</td>
<td>1.06130</td>
</tr>
<tr>
<td>b</td>
<td>0.00000</td>
<td>1.07748</td>
<td>4.26778</td>
</tr>
<tr>
<td>c</td>
<td>0.00000</td>
<td>0.00298</td>
<td>-12.60500</td>
</tr>
<tr>
<td>d</td>
<td>2.28538</td>
<td>0.35681</td>
<td>-1.44847</td>
</tr>
<tr>
<td>f</td>
<td>5.47047</td>
<td>0.87056</td>
<td>1.38694</td>
</tr>
<tr>
<td>g</td>
<td>5.26064</td>
<td>-5.66019</td>
<td>-2.72475</td>
</tr>
<tr>
<td>h</td>
<td>2.99892</td>
<td>1.21225</td>
<td>5.40744</td>
</tr>
<tr>
<td>j</td>
<td>17.70670</td>
<td>-1.74448</td>
<td>1.92784</td>
</tr>
<tr>
<td>k</td>
<td>15.06170</td>
<td>-14.00330</td>
<td>-4.97399</td>
</tr>
<tr>
<td>l</td>
<td>2.41815</td>
<td>0.15603</td>
<td>-4.79346</td>
</tr>
<tr>
<td>m</td>
<td>-54.56750</td>
<td>7.05332</td>
<td>3.62313</td>
</tr>
<tr>
<td>n</td>
<td>-47.82990</td>
<td>-27.97430</td>
<td>-25.28860</td>
</tr>
<tr>
<td>o</td>
<td>-2.85755</td>
<td>6.54168</td>
<td>7.29895</td>
</tr>
<tr>
<td>p</td>
<td>11.37260</td>
<td>-3.33105</td>
<td>5.57345</td>
</tr>
<tr>
<td>q</td>
<td>11.84780</td>
<td>-23.36220</td>
<td>-12.14040</td>
</tr>
<tr>
<td>SSR</td>
<td>0.00968</td>
<td>0.00076</td>
<td>0.00006</td>
</tr>
</tbody>
</table>

Min E (MeV): 0.06, 0.7, 2
Max E (MeV): 1000, 1000, 1000
Positron DCFs

- Some differences in stopping powers of electrons and positrons
- MCNPX does not currently account for these
- Positron DCFs are approximations only
Positron $H_p(0.07)$

Energy (MeV)

Log scale for $H_p(0.07)$ (pSv cm2)

ICRP-103 Skin
Positron $H_p(3)$

![Graph showing the relationship between Energy (MeV) and $H_p(3)$ (pSv cm2) for different energy levels.]
Positron $H_p(10)$

![Graph showing positron $H_p(10)$ as a function of energy (MeV) with data points from various sources including Pelliccioni 2000 (FLUKA) and ICRP 103 E.]
Special Considerations for $H_p(3)$

- Improved eye model
- New cataract risk factors
- In operational settings – eyewear (glasses, safety glasses, contact lenses)
- 0.2 cm polycarbonate lenses
Effect of Glasses on $H_p(3)$
Conclusions

- DCFs calculated
- \(H_p(d) = H^*(d) \) Phantom unimportant?
- Photons – track secondary electrons
- Photons – \(H_p(d) \) conservative until CPE lost
- Electrons - \(H_p(d) \) conservative for most energies
- Positrons – Generally conservative
- Fits to DCFs allow easy conversion for spectra or other energies