Adaptation of a cubic smoothing spline algortihm for multi-channel data stitching at the National Ignition Facility

PDF Version Also Available for Download.

Description

Some diagnostics at the National Ignition Facility (NIF), including the Gamma Reaction History (GRH) diagnostic, require multiple channels of data to achieve the required dynamic range. These channels need to be stitched together into a single time series, and they may have non-uniform and redundant time samples. We chose to apply the popular cubic smoothing spline technique to our stitching problem because we needed a general non-parametric method. We adapted one of the algorithms in the literature, by Hutchinson and deHoog, to our needs. The modified algorithm and the resulting code perform a cubic smoothing spline fit to multiple data ... continued below

Physical Description

PDF-file: 10 pages; size: 1.2 Mbytes

Creation Information

Brown, C; Adcock, A; Azevedo, S; Liebman, J & Bond, E December 28, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Some diagnostics at the National Ignition Facility (NIF), including the Gamma Reaction History (GRH) diagnostic, require multiple channels of data to achieve the required dynamic range. These channels need to be stitched together into a single time series, and they may have non-uniform and redundant time samples. We chose to apply the popular cubic smoothing spline technique to our stitching problem because we needed a general non-parametric method. We adapted one of the algorithms in the literature, by Hutchinson and deHoog, to our needs. The modified algorithm and the resulting code perform a cubic smoothing spline fit to multiple data channels with redundant time samples and missing data points. The data channels can have different, time-varying, zero-mean white noise characteristics. The method we employ automatically determines an optimal smoothing level by minimizing the Generalized Cross Validation (GCV) score. In order to automatically validate the smoothing level selection, the Weighted Sum-Squared Residual (WSSR) and zero-mean tests are performed on the residuals. Further, confidence intervals, both analytical and Monte Carlo, are also calculated. In this paper, we describe the derivation of our cubic smoothing spline algorithm. We outline the algorithm and test it with simulated and experimental data.

Physical Description

PDF-file: 10 pages; size: 1.2 Mbytes

Source

  • Presented at: SPIE Photonics West, San Francisco, CA, United States, Jan 22 - Jan 27, 2011

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-CONF-464982
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 1018820
  • Archival Resource Key: ark:/67531/metadc829500

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 28, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 6, 2016, 6:46 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Brown, C; Adcock, A; Azevedo, S; Liebman, J & Bond, E. Adaptation of a cubic smoothing spline algortihm for multi-channel data stitching at the National Ignition Facility, article, December 28, 2010; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc829500/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.