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ABSTRACT 

 

In this study we look at the SALT-II model of Type IA supernova analysis, which determines the distance 

moduli based on the known absolute standard candle magnitude of the Type IA supernovae. We take a 

look at the determination of the shape and color parameter coefficients, α and β respectively, in the SALT-

II model with the intrinsic error that is determined from the data. Using the SNANA software package 

provided for the analysis of Type IA supernovae, we use a standard Monte Carlo simulation to generate 

data with known parameters to use as a tool for analyzing the trends in the model based on certain 

assumptions about the intrinsic error. In order to find the best standard candle model, we try to minimize 

the residuals on the Hubble diagram by calculating the correct shape and color parameter coefficients. 

We can estimate the magnitude of the intrinsic errors required to obtain results with χ
2
/degree of 

freedom = 1. We can use the simulation to estimate the amount of color smearing as indicated by the 

data for our model. We find that the color smearing model works as a general estimate of the color 

smearing, and that we are able to use the RMS distribution in the variables as one method of estimating 

the correct intrinsic errors needed by the data to obtain the correct results for α and β. We then apply the 

resultant intrinsic error matrix to the real data and show our results. 

 

INTRODUCTION 

In an effort to expand upon the already vast Sloan 

Digital Sky Survey (SDSS) –which imaged more than 8000 square 

degrees of the sky from 2000 to 2005 using the 2.5 meter 

telescope (Gunn et al. 2006) at the Apache Point Observatory 

(APO) in New Mexico– the SDSS-II Supernova Survey (Frieman 

et al. 2008) was undertaken to detect and measure the light 

curves for Type IA supernovae (SNe) to study supernova (SN) 

properties and to use them to measure the expansion of the 

universe. The CCD camera (Gunn et al. 1998) of the SDSS 

telescope obtains images in five optical passbands of ugriz 

(Fukugita et al. 1996), which are then processed by the PHOTO 

photometric reduction pipeline (Lupton et al. 2001; Ivezi´c et al. 

2004). Previously taken co-added images (Sako et. al 2008) are 

subtracted from the new images in order to correctly identify 

Type IA supernovae.  

Type IA supernovae, colossal explosions of white dwarf 

stars, are just one subcategory of SNe. These white dwarves are 

believed to explode by undergoing a thermonuclear reaction 

caused by accumulating mass from a binary companion star and 

exceeding the Chandrasekhar limit, causing an explosion that is 

more luminous than a galaxy. These supernovae are studied 

because they have a narrow range of absolute magnitudes that 

are well known. In addition, they have distinctive spectra due to 

the conditions under which the dwarf star becomes a 

supernova without the presence of Hydrogen, producing 

heavier elements such as Sulfur and Silicon. Since the absolute 

magnitude of an SN IA is known, the apparent magnitudes in 

this and other surveys are used to determine the distances to 

the SNe. The supernovae received rapid spectroscopic follow-

up by supplementary telescopes in order to determine redshift 

and to make sure data was restricted to high-quality SN 

candidates for analyses. An additional benefit of SDSS-II was to 

complement other surveys of this type by providing data 

between the low and high redshift ranges, where Type IA SNe 

had not been observed before. 

Over the course of three fall seasons (September 1 – 

November 30) in 2005, 2006, and 2007, the SDSS-II SN Survey 

(Frieman et al. 2008) did repeat imaging of a 300 square degree 

equatorial stripe, 2.5 degrees wide, in the Southern Galactic 

hemisphere, designated as SDSS stripe 82 (Kessler et. al 2009a). 

The survey discovered and obtained data on approximately 500 

Type IA SNe in the 0.05-0.40 redshift range for the use of 

studying the accelerating cosmic expansion as well as to 

improve the statistical scatter about the Hubble fit diagram, 

which plots the distance of cosmological objects as a function of 

redshift.  

In order to measure the light curve of each SN from 

the survey, we chose to apply the Spectral Adaptive Light Curve 

Template Fitting (SALT-II) (Guy et al. 2007) model in this 

research as presented in the Supernova Analysis (SNANA) 

(Kessler et. al 2009b) software package for the SDSS. This fitting 

method uses a two-parameter model of light curve shape (x1) 

and excess color (c) in order to compare it to a well measured 

SN with known parameters. The SALT-II fitter uses the following 

base equation for the absolute magnitude (Mb) of the SNe: 

 �� � �� �  ��	
 �  �
� �  �� 

 

The equation shows the correlation between the 

absolute standard candle magnitude (Mb) to be proportional to 

the apparent magnitude that we measure in the B band mb, the 

distance modulus ��	
, the shape of the light curve (x1), and the 

excess color offset in the light curve (c). The parameters x1 and 
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c do not have any particular physical significance in the model; 

they account for anything that may change the shape or color 

of the SN light curves. The model for the absolute standard 

candle magnitude depends linearly on these shape (x1) and 

color (c) parameters. The coefficients are α for the shape 

parameter (x1) and β for the color parameter (c). Our purpose in 

this research is to observe trends in the results from altering 

the intrinsic error model and to try and calculate the correct α 

and β coefficients for use in determining the absolute 

magnitude (Mb) and the distance moduli (μ(z)).  

Before applying the model to the real data, we test it 

with a Monte Carlo simulation of SN light curves, provided in 

the SNANA package. The program SALT2mu is what we use to 

calculate the α and β parameter coefficients. Since we generate 

the Monte Carlo simulation with known values of α and β, we 

are able to test the program on how well it is able to calculate 

the shape (α) and excess color (β) coefficients. Thus, we can say 

with certainty that the correct values in the simulation are 

distributed about α = 0.11 and β  = 2.60. We use this method to 

determine trends in altering specific parameters in the program 

SALT2mu as well as to improve the calculations on the α and β 

parameter for this type of analysis. We do this in order to find 

the best standard candle model by minimizing the residuals in 

the Hubble diagram. 

 

SALT2mu ANALYSIS 

We use the program SALT2mu, provided with the 

SNANA software package, in order to calculate the α and β 

coefficient values in both simulation and SDSS data. We adjust 

the intrinsic error to obtain χ
2
 per degree of freedom equal to 1 

(χ
2
/DOF = 1) for good statistical results. χ

2 
is determined by the 

following equation in the SALT2mu program: 

 

�� � � ���� �  ���	�
 �  ��	�
  �  �
�� �  ����� �
��

���
 

 

The value of ��  is equal to the measurement error in the 

numerator for the i
th

 supernova for all N supernovae, plus an 

intrinsic error that we do not fully understand. The intrinsic 

error is the additional error that we find in the real data, but 

not in the simulation, so we must add it using a covariance error 

matrix for the total error (���
 in mb, x1, and c:  

 

��� �  ��� � ����� �  ����� � 2���� � 2���� � 2����� 

 

This total error is divided into parameters where ��� �
 ��� !�". �  ����$%. and the program makes use of altering: 

 

 Σ� � &����$%. '  ()*+,)-,� .++/+ 0/+ �� 

 Σ� � &����$%. '  ()*+,)-,� .++/+ 0/+ 
� 

 Σ� � &����$%. '  ()*+,)-,� .++/+ 0/+ � 

 

Since we do not understand the source(s) of the intrinsic error, 

we want to know what happens to resultant values of α and β if 

we place the error completely in one intrinsic error. This paper 

examines the dependence on the assumed cosmological 

parameters and how the intrinsic error matrix has an effect on 

the outcome, including a possible solution using the color 

smearing model in SNANA.   

Before we can attempt to test varying the intrinsic 

error matrix, we must restrict the equation so that the results 

do not vary based on assumptions about the cosmology. The 

SALT2mu program is written so that it can calculate the 

distance moduli for Type IA SNe by separating the 

determination of the shape and color parameter coefficients, α 

and β, from the determination of the cosmological parameters. 

We do not want the cosmology to have an effect on the 

determination of the α and β coefficients since we want to 

observe effects only due to the error. In order to do this, we 

split the data into multiple equally ranged redshift bins for z = 

0.02-0.42. By splitting the data into multiple bins, we create 

new Mb variables in the equation for each bin, thus minimizing 

the effect of the distance modulus (μ(z)), which is a function of 

the cosmological parameters.  

 In order to test the number of redshift bins that we 

would need, we use a standard SNANA Monte Carlo simulation 

with the SALT2mu program and use three different assumptions 

for the cosmological parameters. The parameters are: 

 Ω2 ≡ Percent of Universe Made Up of Dark Energy 

 Ω3 ≡ Curvature of the Universe 

w ≡ Pressure/Density Parameter at z=0 

First we assume the standard observed cosmological 

parameters where Ω2 = 0.7, Ω3 = 0.0, and w = -1.0. These are 

the parameters we use in all other runs of the program with the 

standard simulation. The other two assumed cosmologies are 

Ωλ = 0.0, Ω3 = 0.7, w = -1.0 and Ωλ = 0.7, Ω3 = 0.0, w = 0.0. By 

increasing the number of bins from 1 to 19, we observe in 

Figures 1 and 2 that the values of α and β begin to converge 

after approximately 4 bins.  

 

 
Figure 1 – Plot of α vs. number of redshift bins with error bars 

for three different assumed cosmologies.  
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Figure 2 – Plot of β  vs. number of redshift bins with error bars 

for three different assumed cosmologies.  

 

The plots demonstrate that both α and β begin to 

converge after a low number of bins even for a simulation of 

5000 SNe and that the results for the two parameters can be 

found independently of the cosmology parameters entered into 

the program. In theory, this could be performed for any size 

data with increasing bins, so long as it stays within the limits of 

the program of at least 5 entries per bin. However, this would 

become impractical as it would greatly increase computation 

time without producing significantly better results. The plots 

show that 4 bins are enough for further tests.  

 

INTRINSIC ERROR MATRIX 

Since we have determined that the α and β parameters 

can be found independent of the cosmology parameters with 

the use of multiple bins, we want to examine the trends caused 

by the intrinsic error matrix in the SALT2mu program. 

Assuming, in turn, that the intrinsic error for mb, x1, or c is 

increased from 0 in order to see how the results of the α and β 

coefficients are affected, we see that when Σ1 is increased, α 

and β both decrease. When the intrinsic error in Σ2 is increased, 

α increases and β decreases, and when the intrinsic error in Σ3 is 

increased, α decreases and β increases. Increasing any 

individual intrinsic error also decreases the χ
2
/DOF. However, 

the various assumptions for the intrinsic error are not 

compatible, as the results depend on the intrinsic error matrix.  

Next, we want to find the intrinsic errors that would be 

needed if the errors were completely in mb, x1, or c. The 

method we used to come up with these results was to adjust 

the values of Σ1 Σ2 and Σ3 independently in the program until we 

obtained a χ
2
/DOF = 1 as shown in Tables 1, 2 and 3. The 

exception is the first row of each table which lists the results of 

setting all three intrinsic errors to 0. Table 1 lists the results for 

the α and β value calculations for the standard SNANA Monte 

Carlo simulation. It can be inferred from these results, that 

some sort of intrinsic error is needed, since setting the error 

matrix to 0 gives us a very high χ
2
 value and therefore a χ

2
/DOF 

that is much higher than 1.  

 

 

TABLE 1     Standard SNANA Simulation 

Intrinsic Error �� � Δ� � Δ� 

Σ1=Σ2=Σ3=0 17468 0.1510 0.00126 2.016 0.0103 

Σ1=0.1275 4319 0.1008 0.00186 1.910 0.0177 

Σ2=0.8792 4318 0.2069 0.00377 1.812 0.0257 

Σ3=0.05927 4318 0.0950 0.00209 2.424 0.0223 

 

Table 1 – (4324 entries of 5000) The above table lists the values 

of α and β for the χ
2
/DOF = 1 output with errors, with the 

exception of the first row, where all three intrinsic errors are set 

to 0. 

 

We were not necessarily expecting to obtain the 

correct results for α and β with these assumptions for the 

intrinsic errors. What we might hope to see here is a 

distribution of results around the correct values of α = 0.11 and 

β = 2.60. However, we never quite get a value above 2.60 for β 

in the simulation. Although it would seem intuitive to simply 

increase Σ3 in order to check that we are able to get a value of 

2.60 for β due to the general trends, this does not attain the 

result that we seek since the values of α and β both converge 

towards an asymptote when the values of Σ are increased 

infinitely.  

Since this result relies on using the intrinsic errors in 

the diagonal of the error matrix only, another test of the 

program is to see if the correct values for α and β can be 

recovered by setting the correlation coefficients for the off-

diagonal values between mb and x1, mb and c, and x1 and c to 

be some arbitrary value (since we do not know the correlation). 

Then we can alter the non-diagonal intrinsic errors in the error 

matrix to see if we can find a value which can recover 2.60 for β 

for any values, and 0.11 for α and 2.60 for β at the same time. 

The results show that it is possible. One example that we find is 

when Σ1 = 0.1325 Σ2 = 0.0 Σ3 = 0.07 and with the mb and c 

correlation coefficient equal to 0.9, the results we obtain are α 

= 0.109 and β = 2.60. However, this does not produce a χ
2
/DOF 

= 1. Instead the value is closer to 2. 

Another way to verify that the correct values of α and 

β can be recovered from the data can be done by using an 

additional simulation in SALT2mu. The program is written with 

an internal simulation that can generate new values for the 

parameters mb, x1, and c from the Monte Carlo simulation that 

it then uses in the calculations. The results of the internal 

simulation are listed in Table 2 for the same SNANA Monte 

Carlo simulated data as before. These results verify that we can 

recover the correct α and β values with statistical accuracy. 

 

TABLE 2     SALT2mu Internal Simulation with Stand. Simulation 

Intrinsic Error �� � Δ� � Δ� 

Σ1=Σ2=Σ3=0 4210 0.1090 0.00096 2.620 0.0107 

Σ1=0.1275 4293 0.1084 0.00187 2.593 0.0228 

Σ2=0.8792 4268 0.1091 0.00157 2.630 0.0192 

Σ3=0.05927 4152 0.1119 0.00216 2.626 0.0270 

 



4 

Table 2 – (4325 entries of 5000) This table lists the values of α 

and β for the χ
2
/DOF = 1 output with new generated values for 

mb, x1, and c by the program’s internal simulation.  

 

Finally we run the program for the real supernova data 

from SDSS-II without the internal simulation. The results are 

listed in Table 3. The results we obtain for α and β here are 

actually much higher in general than the ones we get from the 

Monte Carlo simulation. Thus, we can conclude that the values 

we are entering for the simulation and in the calculation are too 

low. 

 

TABLE 3     SDSS-II 2005, 2006, 2007 Data 

Intrinsic Error �� --- � Δ� � Δ� 

Σ1=Σ2=Σ3=0 1316 0.1857 0.00619 2.826 0.0477 

Σ1=0.146 344 0.1400 0.00970 2.655 0.0779 

Σ2=0.72 345 0.2922 0.01975 2.362 0.1157 

Σ3=0.05 344 0.1223 0.01100 3.227 0.1020 

 

Table 3 – (350 SNe) This tables shows the results for α and β by 

running the program on the real SDSS-II SN data.  

 

ESTIMATING INTRINSIC ERRORS 

Although we observe a scatter in the Hubble diagram, 

we are not sure what causes the scatter, or what the form of 

the intrinsic error matrix should be. However, we are able to 

calculate the intrinsic errors in the context of the SNANA color 

smearing (CS) model. The scatter in the distance modulus (�(z)) 

is defined (Kessler et al. 2009c) as the RMS of the difference 

between the fitted and the generated distance modulus. In the 

same way, we can use this definition to estimate possible 

intrinsic error to each shape, color, and light magnitude by 

taking the difference in each simulated and generated variable 

for the Monte Carlo simulation to find the total error. One step 

we take in order to determine the correct values for the 

intrinsic errors is by applying the correct “color smearing” that 

we observe in the data to the simulations and estimate the 

correct intrinsic error values from the RMS of the data. The 

“color smearing” introduces an independent magnitude 

fluctuation in each passband (ugriz) with the fluctuation being 

the same for all epochs. (Kessler et al. 2009c) Since we are using 

a 0.10 color in the simulations as default, we use a range of 

values around the default to test it. The results are shown in 

Figure 3, A-F. 

 

 
 

Figure 3A-3F – The above plots all show ∆z for different data, 

where ∆z = photometrically fit redshift – spectroscopically fit 

redshift (photoz – specz). Figure 3A shows the plot for ∆z for 

the real data, and Figures 3B-3F show the plots for ∆z for Monte 

Carlo simulations with color smearing 0.00, 0.05, 0.10, 0.15, and 

0.20. 

 

These plots show the RMS values for ∆z = 

photometrically fit redshift minus spectroscopically fit redshift, 

which we assume to be very close to or the true value of the 

redshift (z). The RMS values in the distribution and the plots 

demonstrate that color smearing = 0.10 is the closest to the real 

data. Although the distribution in the simulation is somewhat 

different from the real data, especially seen in the tail to the 

right of the zero, since the color smearing in the simulation is an 

ad hoc model designed to match the real data, we do not 

expect them to match exactly.  

Therefore, we look at the results for the simulation 

with color smearing = 0.10 output of the ∆ values for light 

magnitude (mb), color (c), and shape (x1) where ∆ signifies that 

the distribution is the difference between the reconstructed 

value (from the light curve fit) and the true (simulated) value. 

These results are shown in Figure 4, A-C.  

These plots indicate that according to the 

photometrically fit data from the SNANA software package, the 

RMS values show that the total error for mb (Σ1) should be 

0.1020, error for c (Σ2) should be 0.4490, and error for x1 (Σ3) 

should be 0.09086. 
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Figures 4A-4C – The above plots are all for the Monte Carlo 

simulated supernovae with color smearing = 0.10. Figure 4A 

shows the plot for ∆mb with RMS = 0.1020. Figure 4B shows the 

plot for ∆x1 with RMS = 0.4490. Figure 4C shows the plot for ∆c 

with RMS = 0.09086. 

 

 The above plots demonstrate that this method is 

useful in estimating the total errors based on this ad hoc model. 

This, however, introduces a dependence on a model whose 

validity is uncertain. However, it allows us to use the plots in 

Figures 4A-4C to determine the intrinsic error matrix by finding 

the values for the intrinsic error that must be added to the 

measured error, as can be determined from the SALT2mu 

program, to the total error determined from the simulations. 

Table 4 lists the values for the error matrices for the total error, 

measurement error, and our final result for the intrinsic error 

that must be added using the equation for ���. Similar 

calculations can be used to estimate the off-diagonal part of the 

error matrix. Based on these calculations we use the following 

correlations: 

 mb and x1 = -0.3 

 mb and c = 0.65 

 x1 and c = -0.1 

 

TABLE 4     Errors for Type IA Supernovae 

Error for Parameter: mb x1 c 

Measured Error 0.0506 0.4890 0.0384 

Total Error (CS Model) 0.1020 0.4490 0.0909 

Total Error (SALT2mu) 0.1022 0.4821 0.0878 

Intrinsic Error Needed 0.07 0.10 0.08 

 

Table 4 – List of the values for measurement, total, and intrinsic 

errors for the parameters of apparent light intensity (mb), shape 

(x1) and color (c). Total error is listed as measured by the plots 

from the color smearing model, as well as the values used 

directly by the SALT2mu program.  

 

 Table 5 lists the final results of running the SALT2mu 

program with the newly determined intrinsic errors and the 

measurement errors in SALT2mu for both the standard Monte 

Carlo simulation as well as the real data. In both instances, the 

χ
2
/DOF is close to but lower than 1. The fact that the χ

2
/DOF is 

close to 1 is a significant success for the color smearing model 

since the amount of color smearing was determined 

independently of the Hubble diagram (using the photo-z fits). 

We were able to determine a way to estimate the intrinsic 

errors (listed in Table 4) in order to acquire fairly close results 

for α and β in the simulation, where we know the correct result. 

Therefore, we can see from these values that the use of this 

model works as one method for estimating the intrinsic error 

for the shape and color parameter coefficients, α and β, for use 

in determining the distance moduli (μ(z)).  

  

TABLE 5     Final Results for α and β 

 
��/567  � Δ� � Δ� 

SNANA Sim. 3716/4318 0.0919 0.00236 2.562 0.0274 

SDSS-II Data 219/344 0.1140 0.01377 3.394 0.1385 

 

Table 5 – This table lists the final results of α and β with errors 

for the SNANA simulation as well as the real SDSS-II SN Survey 

data taken in fall seasons of 2005, 2006, and 2007. 

 

CONCLUSIONS 

The results of this project show that dividing the data 

into multiple redshift bins of at least 4, makes it possible to 

separate the determination of the α and β parameters from the 

determination of the cosmology. Using an extreme amount of 

bins, however, is unnecessary since it ultimately increases 

computation time without much statistical benefit. Using this 

method, we find that an intrinsic error is needed in order to 

determine the correct shape and color parameter coefficients, 

α and β respectively. When no intrinsic error is present, the 

χ
2
/DOF estimation is much too high and does not yield 

statistically accurate results. Therefore, both α and β depend on 

the intrinsic errors in the SALT-II model, and cannot be 

determined from measurement error alone.  

Since the 3x3 error matrix that we use in the program 

is symmetric, we were working with 6 unknown variables: the 

three intrinsic errors (Σ) and the correlation coefficients 

between mb, x1, and c with values listed previously in the paper. 

By applying the color smearing model to the Monte Carlo 

simulation with the photoz reconstruction, we determine that 

the simulation needs a color smearing = 0.10 to match the data. 

We can use the non-photoz simulation to then determine the 

distribution of the ∆ values for each variable mb, x1, and c and 

use their RMS values as the total error. We then can apply this 

total error in the program SALT2mu to add in the required 

intrinsic error to the measurement error to match our 

calculated total error. The results of this method yield values for 

the intrinsic error matrix with Σ1 = 0.07 Σ2 = 0.10 Σ3 = 0.08 with a 

final χ
2
/DOF = 3716/4318 for the values of α and β.  

With the known correlations between mb and x1, mb 

and c, and x1 and c, the results can be applied to the 3 year 

SDSS-II SN Survey data. Our final results, as listed in Table 5, 

yield values of α = 0.0919 and β = 2.562 for the Monte Carlo 

simulation with the correct values being α = 0.11 and β= 2.60. 
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For the SDSS-II data, our results are α = 0.1140 and β = 3.394. As 

the tables indicate, these results show that our simulation is 

roughly consistent with data, and this serves as one general 

method for determining the shape and color parameter 

coefficients. However, looking at the final values by running the 

program with our estimated intrinsic error values implies that 

we are entering a value that is too low for the color parameter 

coefficient β. 
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APPENDIX: MATHEMATICAL EXERCISES TO IMRPROVE SALT2mu 

 

TEST 1 – Elementary χ
2
 Minimization (Ignoring Errors in X)  

vs. Fitting with Errors in X and Y 

 

The most elementary method used for estimating the 

slope of a set of correlated data points, and the method used in 

our data analysis assumes error only in one variable. Our 

method (chisq1) minimizes a χ
2
 in order to find the correct 

slope of the data using the method given in Press, et. al. (1988). 

We take a look at methods of better estimating the slope (s) 

through a simulation of data points distributed about a straight 

line y=sx, and by minimizing the chisq1
 
value between the data 

points and the estimated straight line. We use the pseudo-

random number generator embedded in the C compiler to 

generate 10,000 data points with true slope value s = 2.5 using 

a Gaussian distribution for the errors in x and y as shown in 

Figure 5. Generally, the data we work with is analyzed by the 

equation: 

  �� � �� �  ��	
 �  �
� �  �� 

 

However, in order to explore this mathematical model 

and a different method of maximum likelihood estimation, we 

use the simplified y=sx for only two variables y and x. To relate 

it back to the original, it could be looked at as Mb = αx1 where 

we are looking to find α with parameters Mb and x1.  

 

 
Figure 5 – The simulated data set of 10,000 points used in the 

exercise to compare the two fitting methods, plotted as x vs. y 

with a Gaussian distribution in the errors for x and y. 

 

We then calculate the chisq1
 

for the data set by 

incrementing the slope at an assigned value of 0.05 from 0.00 

to 5.00 and finding the corresponding slope with the smallest 

chisq1
 
= ∑ �9:;"<:
=

>?=@">A=
��  for i being each simulated data point. We 

can compare the estimated slope value found by minimizing 

this chisq1 output, to the new chisq2 (χ’
2
)

 
method. 

The new method for estimating the slope proposed by 

Scott Dodelson (private communication) was added to the same 

program under the name chisq2 and applied to the same data 

set. The expression for chisq2 is obtained by integrating 

analytically over all possible x and y, the likelihood (P(x,y)) of 

getting each x and y value with error �<  and �9: 

 B�
 !�" , D !�"|-
 � 
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So that the solution is: 
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Where: 

P(a,b) ≡ Incomplete gamma function 
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The program uses the simulated data to calculate both 

chisq1 and chisq2 for increasing slopes from 0.00 to 5.00 as 

before, but now prints out the standard and new methods side 

by side. The program can also be used to calculate the chisq1
 

and chisq2 values by running through possible slope values ‘s’ 

at much smaller intervals (0.0001), as was done in some of the 

results below, in order to more precisely estimate the value of 

‘s’. The results from the new chisq2
 
estimator are found for the 

correct values of the interval xmin=-2.5 to xmax=2.5 as well as 

the slightly wrong intervals of xmin=-2.0 to xmax=2.0 and 

xmin=-3.0 to xmax=3.0. Since the original estimator does not 

use these values, the outcome of the standard method is the 

same in each following situation but is used as a comparison. 

 

RESULTS 

Upon first running the two estimators with xmin=-2.5 

xmax=2.5 for the new method (below), the results seem to 

indicate that both the standard method and the new chisq2
 
are 

able to correctly estimate the value of the slope at 2.5 (Figure 6) 

As mentioned previously, the program was then run with slope 

values of smaller interval 0.0001 in order to better estimate the 

value of the slope (s) and to look at the error as shown by both 

straight line fits (Figure 7). The standard chisq1 minimization 

estimated the slope to be 2.4920 for all values of xmin and 

xmax, since it does not use these values in the calculations. The 

new chisq2
 
method estimated the slope to be 2.5160. We can 

see that the standard method is off from the true value by 

0.0080, while the new method is off by 0.0160. However, the 

plot of the chisq1
 
data below would indicate that the error for 

the new method is actually less than that of the standard 

estimator. Figure 6 shows the results of the χ
2
 estimation when 

the range in x is -2.5<x<2.5. Both curves are compatible with 
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the correct value for s=2.5. Figure 7 shows the regions around 

the minimum more precisely, indicating that the increase in χ
2
 

at the correct slope is less than 1 for chisq1 and only slightly 

larger than 1 for chisq2.  

 

 
Figures 6 & 7 – Figure 6 is a plot of slope (s) vs. the χ

2
 results for 

chisq1 and chisq2 methods for xmin = -2.5 and xmax = 2.5. 

Figure 7 shows the same results with a smaller range to see the 

results more accurately with chisq1 on the y1 axis and chisq2 on 

the y2 axis.  

 We test the method in the same manner, but change 

the xmin and xmax values to test the results for situations when 

the correct distribution in the x values in unknown. We use the 

values of xmin = -2.0, xmax = 2.0, and xmin = -3.0, xmax = 3.0. 

Figure 8 shows the results when the range in x is decreased to 

less than the correct distributed range (-2.0 to 2.0). The results 

for chisq1, do not change since these values do not play a role 

in the equations for that method. However, figure 9 indicates 

that the chisq2 is now off by 0.3059 on the positive end, and 

the result is therefore clearly biased. 

 

 

 
Figures 8 & 9 – Figure 8 is a plot of slope (s) vs. the χ

2
 results for 

chisq1 and chisq2 methods for xmin = -2.0 and xmax = 2.0. 

Figure 9 shows the same results with a smaller range to see the 

results more accurately with chisq1 on the y1 axis and chisq2 on 

the y2 axis.  

 

 In the final test, with xmin = -3.0 and xmax = 3.0, the 

results are shown in Figures 10 and 11. As these two figures 

indicate, just as when the estimated range is decreased, when 

the estimated range for x is increased, the results are off by a 

larger number, and in this case by 0.5413. 
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Figures 10 & 11 – Figure 10 is a plot of slope (s) vs. the χ

2
 results 

for chisq1 and chisq2 methods for xmin = -3.0 and xmax = 3.0. 

Figure 11 shows the same results with a smaller range to see 

the results more accurately with chisq1 on the y1 axis and 

chisq2 on the y2 axis.  

 

 These results would seem to indicate that when the 

assumed values of xmin and xmax are below the correct values, 

the estimated slope (s) by the chisq2
 
method is also below the 

true value of 2.5, while in the other case, when xmin and xmax 

are above the correct values, the slope is also estimated by the 

program to be above the true value. 

 The overall results seem to show that when the new 

chisq2 estimator is given the correct values of xmin and xmax, it 

is able to calculate the correct value of the slope (s) with 

minimal error, very close to the results shown from the 

standard chisq1 minimization. However, when the values of 

xmin and xmax are unknown and are off from the real values, 

the new method’s slope (s) estimate is not as reliable as the 

standard method. Thus, if the statistical range of a given set of 

data is known, the correlation is found with better error, than 

with the initial method. 

 

TEST 2 – CALCULATING TWO PARAMETERS SIMULTANEOUSLY 

 

 The final thing we wanted see is if we would be able to 

calculate several parameters simultaneously in regards to the 

slope equation, namely a parameter and the error associated 

with y. Therefore, for this exercise (chisq3) we changed the 

program and the initial error values in x and y to �<  = 0.0 and  �9 = 0.75. The likelihood equation for this scenario becomes: 

 

[�
, D
 �  \ 1
√2^�9

.
;�9:;"<:
=

�>?=
�

���
 

 

When you take the log of both sides of this equation, the 

following equation can be used by incrementing both slope (s) 

and the error (�9
 to determine the minimum χ
2
:  

 

 

 

�2 ln [ � � a)�9� � �D� � -
�
�
�9� �  � 

 

RESULTS 

 

 The two plots in Figures 12 and 13 show from different 

views that the results of the chisq3 estimation was able to 

correctly determine both the slope of the data set s=2.5 and the 

correct �9 = 0.75. 

 

Figures 12 & 13 – Figure 12 shows a 3 dimensional plot of s and 

σy against the χ
2
 calculations for the chisq3 method and shows 

that the minimum is at a value of s = 2.5. Figure 13 is the same 

plot, but with a small range to indicate that the minimum is also 

at σy = 0.75. 

 




