SLAC-PUB-13549

GLAST (FERMI) Data-Processing Pipeline

Daniel L. Flath,! Tony S. Johnson, Massimiliano Turri, and
Karen A. Heidenreich

SLAC National Accelerator Laboratory, Menlo Park, CA, U.S.A.

Abstract. The Data Processing Pipeline (“Pipeline”) has been developed for
the Gamma-Ray Large Area Space Telescope (GLAST) which launched June
11, 2008. It generically processes graphs of dependent tasks, maintaining a
full record of its state, history and data products. The Pipeline is used to
automatically process the data down-linked from the satellite and to deliver
science products to the GLAST collaboration and the Science Support Center
and has been in continuous use since launch with great success. The pipeline
handles up to 2000 concurrent jobs and in reconstructing science data produces
approximately 750 GB of data products using 1/2 CPU-year of processing time
per day.

1. Introduction

GLAST, now called Fermi, is a high-energy gamma-ray observatory launched
in June of 2008. In order to provide prompt processing of science data, a
distributed computing facility is required (Dubois 2009). The Fermi Data-
Processing Pipeline provides a generic means by which users can define ar-
bitrarily complex processing work-flows (‘Tasks’), manage and monitor these
processing tasks and easily interface with the Fermi Data Catalog.

The Pipeline software must be capable of processing downlinked Level-0
(raw) instrument data into Level-1 (reconstructed) science products and deliv-
ering these to the Fermi Science Support Center within 24 hours of Level-0
receipt. The Level-0 data arrive in eight daily downlinks and the software is
officially required to handle 2x this nominal load in the event that a delivery
interruption occurs. The system must be capable of recursively splitting a set
of events into parallel streams of processing. A very low failure rate and high
throughput are required to push thousands of jobs through the system prior to
receiving the next downlink.

2. Architecture and Technologies

The Pipeline processing facility uses a three-tiered architecture as shown in
Figure 1.

1For the LAT Collaboration. SLAC is operated by Stanford University for the US Department
of Energy.

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

Back-End Comeaen | Web | HTTH e
Components 1 _~Application —-L4ED blowse
2 g oo —

Tomcat Server =

AN

Stored
Procedure:

Connection Line-mode

Client

SNL

—

RMI

JConsole Monitor

Job Control Service

Thread

i |
Batch 3] Apache/James IPOP3 Front-End

Farms— Email Middle-Ware User Interfaces

Figure 1.: Data-processing pipeline architecture.

2.1. Back-End Components

Oracle Database We run a pair of Sun Niagara-class, 64-thread servers in
a primary/secondary redundant configuration. All processing state, past and
present, is stored in database tables. We make extensive use of Oracle tech-
nologies. The highly-configurable Oracle scheduler is used to run periodic jobs
tabulating various measures of system throughput, including resource usage of
the Oracle Server itself. These quantities are then made available to users via
trending plots in the web front-end. We use stored procedures in both Java and
PL/SQL (Oracle’s proprietary language) to perform query-intensive tasks. For
example, the rules-engine which evaluates dependencies upon process comple-
tion and determines which among the dependent processes should be executed
or skipped is run entirely within the database.

Job Control Service and Batch Farms We currently perform processing
on two farms; the Platform-LSF? cluster at SLAC and the BQS? cluster at Lyon,
France. Each cluster-specific tool set is wrapped to provide a uniform interface
(SubmitJob, GetJobStatus, KillJob, etc.). Applications known as a Job Con-
trol Services publish the uniform interface though Remote Method Invocation
(RMI*) and handle requests from the Pipeline Server.

Email Messaging FEmail is used to provide asynchronous, persistent messag-
ing from batch-jobs to the pipeline server. Email is sent at the beginning of each

http://www.platform.com /Products/platform-lsf
3http://cc.in2p3.fr/rubrique351.html

4http://java.sun.com /javase/technologies/core/basic/rmi/index.jsp

batch job to inform the pipeline server that the job has started, which node ac-
cepted the job, and any other pertinent information. Another email is sent when
the job finishes to transmit the return-code, resource-usage, elapsed wall-clock
time, any variables the process wanted to pass to it’s dependents, and system
commands the process wants executed by the server (e.g.: create four streams of
the “Reconstruction” sub-task.) Because the system sends tens of thousands of
email messages per day, we maintain a dedicated email server running the free
Apache JAMES?® software.

2.2. Middle-ware

Pipeline Server The Ring-Master of this three-ring circus, the Server main-
tains two pools of Java threads, a work pool and an admin pool.

The work pool is used to manage processes. When a batch-process be-
comes available to run on one of the farms, a thread is allocated to perform
the submission using the appropriate Job Control Service. Email status reports
from the batch jobs are also handled by these threads which make updates to
the database tables that record processing state. Users may also define Jython
‘scriptlets’ which are run in these threads. These Jython scriptlets are provided
APIs to both the Pipeline Server and the Fermi Data Catalog. The Pipeline
Server API allows querying of other processes, creation of sub-streams, get-
ting/setting variables, etc. The Data Catalog APT allows registration of output
datasets and querying for input datasets.

The admin thread pool runs tasks which find work and delegate it to the
worker pool. These include gathering status messages from the mail server and
querying the database for processes which are ready to run.

A subset of the pipeline API is also made available via Java Management
Extensions (JMX5) providing a call interface to the various user-interface appli-
cations.

Web Applications A cluster of Apache Tomcat servers host pages written
in JSP. These pages provide a graphical user-interface across platforms and
available world-wide. The applications read data for display directly from Oracle
using SQL queries. Where interaction with the Pipeline Server is required, Java
Tag Libraries are used to make JMX requests. Tag libraries also provide more
complex functionality such as plotting’.

2.3. Front-End User Interfaces

User interfaces are provided through the Internet using the web-applications
discussed above as well as through command-line interfaces. In each case JMX
is used to communicate user-requests to the pipeline server. CAS® user au-
thentication, linked to the laboratory’s user database, coupled with a tiered

Shttp://james.apache.org/
Shttp://java.sun.com/javase/technologies/core/mntr-mgmt /javamanagement /
"http://aidatld.freehep.org/

8http://www.ja-sig.org/products/cas/

user-privilege model allows fine control over the operations any user is allowed
to perform.

3. Performance and Reliability

The pipeline software shepherds thousands of jobs per day with a daily average
throughput of about 1/2 CPU-year of processing. The peak usage to date has
been 45,000 jobs in a single day and 30 CPU-years of processing in a single
month. Remarkably, the Level-1 Data Processing task experiences a overall job-
failure-rate of only 0.13%. This rate is effectively reduced to 0.03% (or ~ 1
failure requiring operator intervention per week) by automatically re-running
failed jobs to reduce the contribution of transient failures such as I/O errors.

The reliability of the system is due in no small part to heavy stress testing of
simulated data for several months prior to launch which fleshed out performance
bottlenecks and suggested tuning of code and related database table-structure
and queries.

4. Portability

Other than the tight coupling to Oracle Database, the Fermi Data-Processing
Pipeline uses only open-source third-party components. The system may be
easily extended to other batch-processing systems by implementing a simple
Java Interface. Condor is an obvious (free and light-weight) candidate, as are
the so called “Grid-tools.”

Acknowledgments. The Fermi LAT Collaboration acknowledges gener-
ous ongoing support from a number of agencies and institutes that have sup-
ported both the development and the operation of the LAT as well as scientific
data analysis. These include the National Aeronautics and Space Administra-
tion and the Department of Energy in the United States, the Commissariat &
I’Energie Atomique and the Centre National de la Recherche Scientifique / Insti-
tut National de Physique Nucléaire et de Physique des Particules in France, the
Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy,
the Ministry of Education, Culture, Sports, Science and Technology (MEXT),
High Energy Accelerator Research Organization (KEK) and Japan Aerospace
Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the
Swedish Research Council and the Swedish National Space Board in Sweden.

Additional support for science analysis during the operations phase from
the following agencies is also gratefully acknowledged: the Istituto Nazionale di
Astrofisica in Italy and the K.A. Wallenberg Foundation in Sweden for providing
a grant in support of a Royal Swedish Academy of Sciences Research fellowship
for JC.

References

Dubois, R. 2009, in ASP Conf. Ser. 411, ADASS XVIII, ed. D.A. Bohlender, D. Durand
& P. Dowler (San Francisco: ASP), 189

