Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

PDF Version Also Available for Download.

Description

This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify ... continued below

Physical Description

54 p.

Creation Information

Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL) et al. June 1, 2011.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 166 times , with 13 in the last month . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the experienced user-base and the experimental validation base was decaying away quickly.

Physical Description

54 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2011-4145
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/1020516 | External Link
  • Office of Scientific & Technical Information Report Number: 1020516
  • Archival Resource Key: ark:/67531/metadc829284

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 1, 2016, 10:28 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 13
Total Uses: 166

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL) et al. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety., report, June 1, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc829284/: accessed August 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.