
LLNL-PROC-540391

Asynchronous Checkpoint Migration with
MRNet in the Scalable Checkpoint /
Restart Library

K. Mohror, A. Moody, B. R. de Supinski

March 21, 2012

Workshop on Fault-Tolerance for HPC at Extreme Scale
(FTXS 2012)
Boston, MA, United States
June 25, 2012 through June 28, 2012



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Asynchronous Checkpoint Migration with MRNet
in the Scalable Checkpoint / Restart Library

Kathryn Mohror, Adam Moody, and Bronis R. de Supinski
Lawrence Livermore National Laboratory

{kathryn, moody20, bronis}@llnl.gov

Abstract—Applications running on today’s supercomputers
tolerate failures by periodically saving their state in checkpoint
files on stable storage, such as a parallel file system. Although
this approach is simple, the overhead of writing the checkpoints
can be prohibitive, especially for large-scale jobs. In this paper,
we present initial results of an enhancement to our Scalable
Checkpoint / Restart Library (SCR). We employ MRNet, a
tree-based overlay network library, to transfer checkpoints
from the compute nodes to the parallel file system asyn-
chronously. This enhancement increases application efficiency
by removing the need for an application to block while check-
points are transferred to the parallel file system. We show that
the integration of SCR with MRNet can reduce the time spent
in I/O operations by as much as 15×. However, our experiments
exposed new scalability issues with our initial implementation.
We discuss the sources of the scalability problems and our
plans to address them.

I. INTRODUCTION

As the scales of supercomputing systems grow, the sys-
tems become less reliable, because increased component
counts increase overall fault rates. Applications that run on
high performance computing (HPC) systems can experience
mean times between failures on the order of hours or days
because of hard [1] and soft errors [2]. Experts predict
that exascale systems could fail as frequently as every 3-
26 minutes [3], [4].

A common approach to mitigating the consequences of
failures is checkpointing. Applications periodically save their
state to checkpoint files on reliable storage, usually a parallel
file system. When a failure occurs, an application can restart
from its previously saved state by reading in a checkpoint
file. Although checkpointing is a simple approach to tolerat-
ing failures, writing checkpoint files to a parallel file system
is expensive at large scales, e.g., a single checkpoint can
take on the order of tens of minutes [5], [6].

We developed the Scalable Checkpoint / Restart Library
(SCR) to lower checkpointing overhead [7], [8]. SCR in-
creases system efficiency by as much as 35%. Multi-level
checkpointing systems [9], [10], such as SCR, use multiple
types of checkpoints that have different levels of resiliency
and cost. The highest checkpoint level writes to the parallel
file system, which is slow but reliable; it can withstand a
failure of an entire machine. SCR also employs faster but
less resilient checkpoint levels that utilize in-system storage,

such as RAM, Flash, or disk on the compute nodes, and
applies cross-node redundancy schemes.

SCR is designed for globally-coordinated checkpoints that
are written as a file per MPI process. These checkpoints are
globally coordinated and bounded by a barrier in the SCR
library at checkpoint termination, so the entire application
blocks whenever a checkpoint is transferred to the parallel
file system. In this work, we explore an enhancement to SCR
that uses MRNet, a tree-based overlay network library [11],
to transfer checkpoints from the compute nodes to the par-
allel file system asynchronously. This mechanism supports
lower overhead recovery from more catastrophic failures.

The benefits of this enhancement are multifold. First,
application and system efficiencies increase because the ap-
plication can continue computing while the checkpoints are
stored to the parallel file system in the background. Second,
the effective load on the parallel file system decreases. SCR
can throttle the rate of the asynchronous transfer to the
parallel file system. Additionally, using MRNet alleviates
contention for the parallel file system by reducing the
number of concurrent writers from N to M , where M � N .
Both of these factors mean that other concurrent users of the
parallel file systems could see better overall performance
due to reduced contention for parallel file system resources.
Third, the MRNet infrastructure can provide additional stor-
age locations for caching checkpoints. These levels lower
restart overheads because access to the parallel file system
is avoided for a wider range of failures.

In this paper, we focus on the first of these benefits:
how asynchronous transfer of checkpoints can benefit ap-
plications by lowering the overhead of checkpointing to the
parallel file system. We defer exploration of the other two
benefits for future work.

The rest of this paper is structured as follows. In Sec-
tion II, we present related research. In Section III, we give
background information on SCR and MRNet. Section IV
details our MRNet-based SCR implementation. Then, in
Section V, we describe our experimental setup, and give
results from our experiments.



II. RELATED WORK

Several researchers have worked to lower checkpoint write
overhead by caching them on compute node storage as is
done by SCR. Diskless checkpointing reduces overhead by
caching checkpoints in memory or other node local storage
and using mirroring and parity methods for redundancy [12],
[13]. Bautista-Gomez and colleagues reduce overheads by
caching checkpoints on SSDs on compute nodes [14], while
Dong et al. investigate the use of PCRAM [15].

Other researchers have investigated the asynchronous
transfer of checkpoints to the parallel file system. Plank
and Li compress checkpoints and write them asynchronously
to lower overheads [16]. Ouyang et al. both aggregate
checkpoint files from multiple writes and drain them asyn-
chronously to stable storage [17]. They also explore throt-
tling the write rate to reduce contention on the parallel file
system. In FTI, Bautista-Gomez et al. utilize GPUs and
dedicated FTI-MPI processes on compute nodes to hide the
overhead of Reed-Solomon encoding of checkpoints [18].
Additionally, they transfer checkpoints asynchronously to
the PFS in a manner similar to the Open MPI staging
option [19], which uses a daemon process on the compute
nodes to manage moving the data. Although not designed
specifically for checkpoint/restart, data staging frameworks
such as DataStager [20] and IOFSL [21] provide transparent
mechanisms for asynchronous movement of data.

Our work is most similar to that of Rajachandrasekar
et al. who use a data staging framework to move check-
point data to the parallel file system through a hierarchical
network [22]. They also noted the benefit of reducing the
number of concurrent writers to the parallel file system.
Our approach differs from this work in that we employ a
generic, publically available hierarchical infrastructure for
moving data, and that we combine the benefits of a multi-
level checkpointing library with those of asynchronous data
transfer.

III. BACKGROUND

This section provides a discussion of the basic design of
SCR as well as an overview of MRNet, upon which we build
our SCR extension.

A. SCR

The Scalable Checkpoint/Restart (SCR) library uses stor-
age distributed on a system’s compute nodes to attain high
checkpoint and restart I/O bandwidth for MPI applications.
We based the design of SCR on two key observations.
First, only the most recent checkpoint is needed to recover
from a failure. Upon completion of the next checkpoint,
the previous checkpoint can be discarded. Second, a failure
typically only affects a small portion of the system, with the
rest of the system still functioning normally. For instance, on

the clusters on which we currently use SCR, 85% of failures
disable at most one compute node [7].

Based on these observations, we designed SCR to cache
only the most recent checkpoints in compute node storage
and to apply a redundancy scheme to those cached check-
points, e.g., copy them to partner nodes. Also, SCR peri-
odically copies (flushes) a cached checkpoint to the parallel
file system in order to withstand failures that disable larger
portions of the system. However, a well-chosen redundancy
scheme allows checkpoints to be flushed infrequently.

SCR employs a library and a set of Perl scripts to manage
applications. Applications make calls into the SCR library
to indicate when checkpoints are being taken and to retrieve
information about where those checkpoints will be cached,
e.g., RAM disk. The SCR library manages the caching of
the checkpoints and application of the redundancy schemes
for resiliency. The Perl scripts are executed as needed,
primarily by the script used to launch the job, scr_srun.
The scr_srun script has the responsibilities of querying
the job’s environment, checking the health of nodes in the
allocation, and starting any daemon processes needed by
SCR. Additionally, it starts the application and attempts to
restart it after failures, assuming there are enough healthy
compute nodes left in the job.

B. MRNet

MRNet is a general-purpose, software-based multi-
cast/reduction network that can be used to build scalable
tools for HPC systems [11]. Several different types of tools
have been built using MRNet, including debuggers [23]
and performance tools [24]. MRNet uses a tree network
for scalable, flexible data aggregation from compute node-
resident daemons to a front end tool control program.
The flexible aggregation is accomplished with user-supplied
custom data aggregation filters. In this work, we simply use
the infrastructure to move checkpoints in controlled fashion
from the compute nodes to the parallel file system. In other
words, our filter does not aggregate checkpoints in any way,
but simply passes them down the tree.

An MRNet instance is composed of a library linked
into a tool’s front end process, mrnet commnodes, and
a library linked into a tool’s back end daemons on the
compute nodes. The front end process is the root of the
tree network and controls traffic through the tree structure.
The mrnet commnode processes are the interior nodes of
the tree. They facilitate scalable group communications and
execute data aggregation operations. The back end tool
daemons are co-located with the application processes on
the compute nodes and interact with the application, e.g.,
they initiate the transfer of checkpoint files.



Fig. 1. Example of Moving Checkpoints Through MRNet Tree

IV. IMPLEMENTATION

Our implementation of SCR with MRNet uses a front
end SCR/MRNet process to control SCR/MRNet back end
daemons running on the compute nodes. The front end
process initiates the asynchronous transfer of checkpoints
by sending messages that request the files from selected
daemons. It chooses the daemons to send files such that
only a subset sends files at a time. This mechanism throttles
the data transfer to the parallel file system. In our current
implementation, the front end process performs all writes to
the parallel file system (Section V-A discusses a write opti-
mization that we are exploring). In order to use MRNet with
SCR, we allocate a small number of additional nodes to the
allocation so that the application processes are not perturbed
by the activities of the front end or the mrnet commnodes.
We do not necessarily use a one-to-one mapping between
mrnet commnodes and additional compute nodes. Multiple
mrnet commnodes can run on a single compute node.

Figure 1 shows an example of the second in a series
of logical steps of moving checkpoints with MRNet. The
arrows indicate the movement that occurs in the third step.
The white circles represent compute nodes. Cylinders indi-
cate storage devices; gray cylinders are node-local storage
devices, while the brown cylinders are the parallel file
system. Colored rectangles in the storage cylinders repre-
sent checkpoint files. The blue circles marked with “CX”
are mrnet commnode processes, and the blue “FE” circle
marked is the SCR front end.

In the first step, the front end sends a command to the
daemons on nodes with yellow checkpoints to send their
checkpoint files, at which point, these daemons transfer their
files to the first level mrnet commnodes labeled “C0.” In the
second step (shown), the yellow checkpoints are transferred
to the next level of the tree, “C4.” Simultaneously, the front
end directs the daemons on nodes with orange checkpoints
to send their files, and those daemons then transfer their
files to the first level mrnet commnodes labeled “C1.” In the
third step, the yellow checkpoints move further down the tree

to mrnet commnodes “C6”; the orange checkpoints move
to mrnet commnodes “C4”; and green checkpoints move to
mrnet commnodes “C2.”

We modified the scr_srun script to execute
scr_mrnet_launcher, which serves as the SCR/MRNet
front end, instead of executing the user’s job command
directly. Front end arguments indicate the nodes to use for
mrnet commnodes, parameters to set up the tree such as
fanout and depth, and the original job command string.
The front end uses launchMON to start the application
processes and SCR/MRNET daemons. LaunchMON is an
infrastructure for co-locating tool daemons on the compute
nodes of a parallel job [25]. It communicates with the
resource manager to identify the locations of the remote
processes and to launch tool daemons scalably. Each back
end daemon queries launchMON for information about
the application processes on its compute node, such as
executable name and process identifier, and for information
about connecting to the front end process so that it can
connect to the tree structure.

After the tree is connected, the front end begins to query
the back end daemons for files. If the daemons have files to
send, they send a message to the front end and then begin
to send files. If they do not have files, they send a message
indicating that they do not have files. If none of the daemons
have files to send, the front end waits a specified amount of
time and then again queries the back ends for files.

V. RESULTS

We ran our experiments on Sierra, a 1,944 node, 12 core
per node, Linux cluster at LLNL. We wrote all files to the
Lustre parallel file system lscratchc, which is a 1.6 TB file
system with a peak bandwidth of 30 GB/s from Sierra [26].
For our SCR/MRNet infrastructure, we used SCR version
1.1-8, MRNet version 3.0, and launchMON version 0.7.2.

For our experiments, we used the IOR benchmark version
2.10.2 [27]. IOR is a benchmark designed to mimic the
I/O patterns of real applications for testing the performance
of file systems. We used IOR to simulate an application
writing checkpoints at regular intervals of ten minutes.1 We
configured IOR to write files of 48 MB per process in HDF5
format [28] for ten iterations. Additionally, we specified that
IOR use barriers between the I/O operations and only do
write operations.

We configured SCR to use MRNet for asynchronous trans-
fer of checkpoints of every checkpoint set written by IOR.
The MRNet fanout was set to 48, which means that there
was one mrnet commnode for every 48 backend daemons.
We assigned a single core to each mrnet commnode. For

1We modified the IOR source slightly due to a bug that caused the
program to ignore the delay (interval) parameter. The bug was fixed in
version 2.10.3.



Fig. 2. I/O Time in IOR with Synchronous and Asynchronous Transfer

Fig. 3. Total Run Time for IOR With and Without SCR

the 9216 process runs, this amounted to a total of 770
nodes in the allocation, with 768 used by the application
and two additional nodes used by mrnet commnodes and
the SCR/MRNet frontend process.

In Figure 2, we report the average I/O time over ten
iterations as reported by IOR, which includes the time for
opening and closing files, as well as the write time. The
I/O time with synchronous checkpointing increases dramat-
ically with increasing process count. However, when using
asynchronous checkpointing with MRNet, the time increases
much more slowly. In all cases, asynchronous checkpointing
outperforms synchronous checkpointing, ranging from an
11× difference at 144 processors to a 15× difference at
9216 processors.

When inspecting the total run time of IOR when run

with and without SCR/MRNet, we discovered scalability
problems in our current implementation. For lower process
counts, IOR with SCR/MRNet performed slightly better than
IOR alone. However, as shown in Figure 3, this trend re-
versed at larger processor counts. The time for SCR/MRNet
at 4608 processes was 1.3× higher than without SCR, and
for 9216 processes, it was 2.3× higher.

A. Discussion

From our results, we can clearly see that SCR/MRNet can
reduce I/O time in applications, especially at larger scales.
However, our results for the total run time of IOR (Figure 3)
show that we have more work to do in order to benefit
applications in terms of total execution time. In particular,
we need to investigate our implementation, and our use of
the MRNet infrastructure.

One reason for the higher total run times is that in
SCR_Finalize SCR attempts to write the final checkpoint
cached on the compute nodes to the parallel file system. In
our current implementation, this is still a synchronous write
operation, and suffers from scalability problems.

Another major source of increased overhead in our im-
plementation is the use of the front end process as the
single writer to the parallel file system. At larger scales, the
front end could not process all checkpoint files in the time
it took IOR to complete its ”compute cycle,” after which
it starts the next checkpoint. As a result, the SCR library
blocks in SCR_Complete_checkpoint waiting for the
last checkpoint to finish being written to the parallel file
system before marking the next checkpoint as ready to be
written. An optimization that could reduce this overhead is to
alter our use of MRNet such that we use a ”forest of writers”
instead of a single writer. We could enable this mechanism
by informing the mrnet commnodes of their level in the
tree, and at which level to perform writes to the parallel file
system. Thus, we would increase the parallelism in our use
of the parallel file system and increase performance.

Another source of overhead is application perturbation
from the back end daemons on the compute nodes. The
daemons use CPU resources as well as memory and network
resources. We could alleviate the CPU and memory usage
to some degree by dedicating a core on each node for the
daemon process. Potentially, we could reduce the overhead
resulting from the daemon’s use of network resources by
discovering when the application was in a compute phase
and transferring the files when the application is not using
the network resources.

VI. CONCLUSIONS

In this paper, we presented initial results of asynchronous
checkpoint movement in the checkpointing library SCR
using MRNet, a tree-based overlay network. Our goal was



to increase application efficiency by removing the need for
an application to block while checkpoints are transferred to
the parallel file system. We showed that the integration of
SCR with MRNet does significantly reduce the time spent
in I/O operations, especially as application scales increase.
However, we found that due to problems in our initial
implementation, the overall execution time of the application
increased with scale. We will investigate and correct these
scalability problems in the near future.

For future work, we will investigate optimizations of
our current implementation. As discussed in Section V-A,
we will explore the use of a ”forest of writers” to in-
crease our write performance and to avoid blocking in
SCR_Complete_checkpoint. We also plan to optimize
the interaction of the back end daemons with the application
processes to minimize application perturbation. Additionally,
we plan to experiment with MRNet configuration parame-
ters. For example, we simply used a fanout of 48 for the
mrnet commnode to daemon ratio, which may not have been
the optimal choice.

Additionally, we plan to pursue other research paths.
We will investigate new filters that could be used in the
MRNet tree reductions. For example, checkpoints could be
compressed and/or aggregated, which could offer significant
gains in write performance. Another area of research is the
new levels of resiliency that the MRNet infrastructure could
provide for multilevel checkpointing. Using an infrastructure
such as MRNet for asynchronous checkpoint movement
means that multiple copies of the checkpoints are made as
they move from the compute nodes through the tree to the
parallel file system. However, analogously to the methods
that SCR already uses for low-overhead resiliency, the addi-
tional copies of checkpoints could be cached on the nodes on
which the mrnet commnodes run; then, redundancy schemes
could be applied across those. This mechanism would allow
for recovery from major losses in compute nodes without
necessarily needing to restart from the parallel file system.

VII. ACKNOWLEDGEMENTS

We thank the reviewers of this paper for their helpful
comments which improved this paper.

This article has been authored by Lawrence Livermore
National Security, LLC under Contract No. DE-AC52-
07NA27344 with the U.S. Department of Energy. Accord-
ingly, the United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges
that the United States Government retains a a non-exclusive,
paid-up, irrevocable, world-wide license to publish or repro-
duce the published form of this article or allow others to do
so, for United States Government purposes. LLNL-PROC-
540391

REFERENCES

[1] B. Schroeder and G. A. Gibson, “A Large-Scale Study of Failures
in High-Performance Computing Systems,” in Proceedings of the In-
ternational Conference on Dependable Systems and Networks (DSN),
June 2006, pp. 249–258.

[2] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala,
and S. A. Wender, “Predicting the Number of Fatal Soft Errors in
Los Alamos National Laboratory’s ASC Q Supercomputer,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp.
329–335, September 2005.

[3] B. Schroeder and G. Gibson, “Understanding Failure in Petascale
Computers,” Journal of Physics Conference Series: SciDAC, vol. 78,
p. 012022, June 2007.

[4] V. Sarkar, Ed., ExaScale Software Study: Software Challenges in
Exascale Systems, 2009.

[5] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID: I/O-
Forwarding Infrastructure for Petascale Architectures,” in PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2008, pp. 153–162.

[6] R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer, “Parallel I/O on
the IBM Blue Gene/L System,” Blue Gene/L Consortium Quarterly
Newsletter, Tech. Rep., First Quarter, 2006.

[7] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski,
“Design, Modeling, and Evaluation of a Scalable Multi-level Check-
pointing System,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC’10, November 2010, pp. 1 –11.

[8] “Scalable Checkpoint/Restart Library.” [Online]. Available: http:
//sourceforge.net/projects/scalablecr/

[9] E. Gelenbe, “A Model of Roll-back Recovery with Multiple Check-
points,” in Proceedings of the 2nd International Conference on
Software Engineering (ICSE ’76), 1976, pp. 251–255.

[10] N. H. Vaidya, “A Case for Multi-Level Distributed Recovery
Schemes,” Texas A&M University, Tech. Rep. 94-043, May 1994.

[11] P. C. Roth, D. C. Arnold, and B. P. Miller, “MRNet: A Software-Based
Multicast/Reduction Network for Scalable Tools,” in Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, SC’03, 2003.

[12] J. S. Plank, K. Li, and M. A. Puening, “Diskless Checkpointing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 9, no. 10, pp.
972–986, October 1998.

[13] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca,
and J. Dongarra, “Fault Tolerant High Performance Computing by
a Coding Approach,” in PPoPP ’05: Proceedings of the Tenth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, 2005, pp. 213–223.

[14] L. A. Bautista-Gomez, N. Maruyama, F. Cappello, and S. Matsuoka,
“Distributed Diskless Checkpoint for Large Scale Systems,” in CC-
GRID, 2010, pp. 63–72.

[15] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie,
“Leveraging 3D PCRAM Technologies to Reduce Checkpoint Over-
head for Future Exascale Systems,” in Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis
(SC’09), 2009.

[16] J. S. Plank and K. Li, “ickp: A Consistent Checkpointer for Multi-
computers,” IEEE Parallel & Distributed Technology, vol. 2, no. 2,
pp. 62–67, 1994.

[17] X. Ouyang, R. Rajachandrasekar, X. Besseron, H. Wang, J. Huang,
and D. Panda, “CRFS: A Lightweight User-Level Filesystem for
Generic Checkpoint/Restart,” in Proceedings of the 2011 International
Conference on Parallel Processing, ICPP’11, Sept. 2011, pp. 375 –
384.

[18] L. A. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High Performance Fault
Tolerance Interface for Hybrid Systems,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, SC’11, 2011.

http://sourceforge.net/projects/scalablecr/
http://sourceforge.net/projects/scalablecr/


[19] J. Hursey and A. Lumsdaine, “A Composable Runtime Recovery
Policy Framework Supporting Resilient HPC Applications,” Indiana
University, Tech. Rep. TR686, 2010.

[20] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and
F. Zheng, “DataStager: Scalable Data Staging Services for Petascale
Applications,” in Proceedings of the 18th ACM International Sympo-
sium on High Performance Distributed Computing, HPDC’09, 2009,
pp. 39–48.

[21] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
L. Ward, and P. Sadayappan, “Scalable I/O Forwarding Framework
for High-Performance Computing Systems,” in Proceedings of IEEE
International Conference on Cluster Computing and Workshops,
CLUSTER’09, 2009, pp. 1–10.

[22] R. Rajachandrasekar, X. Ouyang, X. Besseron, V. Meshram, and
D. K. Panda, “Can Checkpoint/Restart Mechanisms Benefit from
Hierarchical Data Staging?” in Proceedings of the Workshop on
Resiliency in High Performance Computing in Clusters, Clouds, and
Grids, Resilience ’11, held in conjunction with EuroPar, Aug. 2011.

[23] D. Arnold, D. Ahn, B. de Supinski, G. Lee, B. Miller, and M. Schulz,
“Stack Trace Analysis for Large Scale Debugging,” in Proceedings of
the Parallel and Distributed Processing Symposium, 2007, IPDPS’07,
March 2007.

[24] A. Nataraj, A. Malony, A. Morris, D. Arnold, and B. Miller, “In
Search of Sweet-Spots in Parallel Performance Monitoring,” in Pro-
ceedings of 2008 IEEE International Conference on Cluster Comput-
ing, Nov. 29 - Oct. 1 2008, pp. 69 –78.

[25] “LaunchMON.” [Online]. Available: http://sourceforge.net/projects/
launchmon/

[26] “LLNL LC Parallel File Systems Summary.” [On-
line]. Available: https://computing.llnl.gov/tutorials/lc resources/
index.html#ParallelFileSystems

[27] “IOR Benchmark.” [Online]. Available: https://asc.llnl.gov/sequoia/
benchmarks/#ior

[28] “The HDF Group.” [Online]. Available: http://www.hdfgroup.org/
HDF5/

http://sourceforge.net/projects/launchmon/
http://sourceforge.net/projects/launchmon/
https://computing.llnl.gov/tutorials/lc_resources/index.html#ParallelFileSystems
https://computing.llnl.gov/tutorials/lc_resources/index.html#ParallelFileSystems
https://asc.llnl.gov/sequoia/benchmarks/#ior
https://asc.llnl.gov/sequoia/benchmarks/#ior
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/

