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Abstract 

A realistic approach to calculate the transport matrix in 
RF cavities is developed. It is based on joint solution of 
equations of longitudinal and transverse motion of a 
charged particle in an electromagnetic field of the linac. 
This field is a given by distribution (measured or 
calculated) of the component of the longitudinal electric 
field on the axis of the linac. New approach is compared 
with other matrix methods to solve the same problem. 
The comparison with code ASTRA has been carried out. 
Complete agreement for tracking results for a TESLA-
type cavity is achieved. A corresponding algorithm will be 
implemented into the MARS15 code. 

TRANSVERSE MOTION OF THE 
CHARGE PARTICLE IN THE RF CAVITY 
Equation 

Let us consider a cavity with the given distribution of 
the longitudinal field along its axis, so that the function 

( )zE z  is known. It means that the radial electrical field 

( )rE z  and azimuthal magnetic one ( )H zϕ
 will affects an 

electron which is moving in the cavity according to the 
following Maxwell’s equations: 
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where r  is the distance from the cavity axis and β  is the 
relative velocity of the electron. These transverse fields 
result in a Lorenz force which is radially affecting the 
electron (with mass m  and absolute charge q ) and 
equals  
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In the case of an axially-symmetric cavity it is possible 
to consider the electron motion in the plane ( , )x z  and 
after simple transformation of the expression (1)  one can 
obtain the following equation for transverse motion of the 
particle: 
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Here the prime means derivative with respect to z. 
Usually, the motion of electron is considered as ultra 
relativistic, so that ( )2 21 2 1β β+ ≈ , but we will not 

restrict ourselves to this case only. 

Standard Matrix Consideration [1, 2] 
The standard approach is as follows. The 

electromagnetic field of RF cavity includes a few higher 
spatial (temporal) harmonics. For this reason it is possible 
to present the motion of the charge particle as sum of two 
components: smooth (“slow”) and “fast” and apply the 
matrix approach to solve the equation (2). After averaging 
over time, significantly exceeds the characteristic time of 
the fast component, and after the necessary 
transformations, it is possible to reduce the equation (2)  
to the following form: 
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Some special factor ( )η ∆φ  appears in this equation to 
takes into account an RF-field structure in the cavity and 
a phase shift ∆φ  of the particle when it enters to the 
cavity. 

Solution of equation (3) for ultra relativistic particle in 
the case of the “pure” (without other spatial harmonics) 
π − mode of the field in the cavity can be written using 
the so-called matrix Chambers [3, 4] (which already takes 
into account the effect of the edge of the transverse 
focusing [1, 5] for the entrance/exit of the cavity): 
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Some other matrix representations of particle motion in 
the cavity are discussed in details in the paper [6]. 
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NEW MATRIX APPROACH 
The main feature of this approach is to use the known 
distribution of the RF cavity electric field ( , )zE z t , the 
paraxial character of particle motion and do not restrict 
the consideration to ultra relativistic energies of the 
particle only.  

Equations and solution 
To do this, the following standard equation for the 
longitudinal motion (acceleration) of a particle in the field 
of the cavity must be used: 

 ( , ),z
d q E z t
dt mc
γ β
=  (6) 

as well as to convert equation (2) to a more convenient 
form [11]: 
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For RF cavity with the   transverse TM-mode 
 0( , ) ( ) cos( )zE z t E z tω ∆φ= +  (8) 

the equation (7) takes the form 
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and the equation (6) can be integrated, so that relative 
gain /γ γ∆  of the particle energy while moving through 
the cavity during the time interval t t t÷ + ∆  is equal to 
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All “bar-values” in this expression are referred to the 
moment / 2t t+ ∆ .  

It is convenient to use a “length” ctτ = , wave number 

0 /k cω= and express the amplitude of the electric field 
2

0 0 /E qE mc = . Then one can find the final equation 

for the transverse motion (a sign « '» means now the 
derivative over length τ ): 
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To integrate this equation over τ  it is necessary to 
present the whole integration range   as a number of 
subintervals (slices) τ τ τ÷ + ∆  and corresponding 
slices z z z÷ + ∆ . On each of these subintervals one can 

neglect a change of parameters ,  β γ , as well as of the 

values of the field 0 ( )E z  and its derivative. In this 
approach, instead of equation (10) one has the simplest 
equation of the second order with “constant” coefficients: 
 0x zx bx′′ ′+ + =  (11) 
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with ( )zβ β= , ( )zγ γ=  and ,  zτ  are the centers 
of the slices. It is quite easy to find a solution to this 
equation for the coordinate fx  and angle fx′  at the exit 

of the cavity using their values ,  i ix x′  at the entrance: 
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Where 2
1,2 ( 4 ) / 2a a bα = − ± − . These expressions 

allow one to find the desired matrix of transformation of 
the coordinate vector during particle passage  through the 
cavity. Let us use the coefficient 1,2α  and introduce the 
following parameters: 
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So, 1,2α δ ε= − ±  and after simple manipulations the 

following result will be found for the matrix M  of the 
slice of the cavity with length τ∆ : 
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It is very simple to calculate the determinant of the 
transport matrix M  of the cavity: 

2 /det .M e eδ τ γ γ− ⋅∆ −∆= =  As mentioned above, during 
slicing of the whole cavity in order to integrate the 
transverse motion of the particle it is necessary to take 



 

 

into account that for each slice the relative acceleration 
rate must be small, i.e. for all subintervals with length 
τ∆ , the value / 1γ γ∆  , so it is possible to replace 

the direct integration by a solution which uses the matrix 
approach. 

Verification of the new approach 
To verify this approach, the code MatLab Dark Current 

(MLDC) was created. This code realizes two possibilities: 
direct integration of equation (11) by method Runge-
Kutta with a fixed time step (4th order; function ode45 
from the MatLab package) and matrix approach (using 
expressions (13)) for this equation. To calculate the 
acceleration rate the expression (9) was used. 

The results of simulations with the code MLDC were 
compared with the results (naturally, for the same data), 
received while using  the code ASTRA (A Space charge 
TRacking Algorithm) [7].  

To compare both codes, the TESLA-type cavity is used 
with field amplitude 0 36.815E =  MV/m. 

Results of the scanning over a phase are shown for both 
codes are shown in Fig. 1.  

 

 
Fig. 1. Energy gain in the NML-cavity depending on 

phase of the particle. 
 

 
Fig. 2. Acceleration in the Tesla-type cavity. 
 
The Fig. 2 is illustrated the process of the acceleration 

and gives the same results for both codes.  

Next figures demonstrate the result of tracking with 
both codes in the cases of DI (direct integration) and MA 
(matrix approach). 

 
Fig. 3. Particle’s track (DI approach). 0 2.5 MeVE = . 

 

Fig. 4. Particle’s track (MA method). 0 2.5 MeVE = . 
Complete agreement between all results is achieved. It 

proves the validity of the code MLDC and approaches 
used to create it. 

CONCLUSSIONS 
A realistic approach to calculate the transport matrix in 

RF cavities is developed. Complete agreement for 
tracking results with existed code ASTRA is achieved. 
New algorithm will be implemented into MARS15 code.  
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