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Abstract—High-performance computing is having a profound
impact on scientific discovery and engineering in a number of ar-
eas, and researchers are beginning to study how HPC can impact
energy grid planning and operations problems. Contemporary
supercomputers can perform over 1015 floating point operations
per second and have more than 300 terabytes of memory —
roughly 5 orders of magnitude more than a commodity PC
workstation. This level of computer power changes what is
possible.

Resarchers are LLNL have already used HPC systems to
accelerate a multi-scenario planning study by solving a thousand
unit commitment models in parallel which enabled a more
detailed study than would have been achievable otherwise in
the time given. LLNL is developing and testing new parallel
algorithms for the unit commitment problems, including the
stochastic unit commitment. These algorithms will enable higher
network and time resolution and provide better solutions because
of the increase model fidelity. solution of unit commitment model

Index Terms—Supercomputers, parallel machines, power gen-
eration planning, photovoltaic systems, wind power generation.

I. INTRODUCTION

SUPERCOMPUTING is having a profound impact in
science discovery and engineering. Supercomputers are

being used to perform climate modeling, weather prediction,
astrophysical simulation, drug discovery, fusion reactor mod-
eling, and many other important simulations. For example, re-
searchers at Lawrence Livermore National Laboratory (LLNL)
have used computational fluid dynamics (CFD) models run-
ning on supercomputers to study the aerodynamics of trucks.
These studies identified ways to retrofit trucks to improve a
truck’s contours to result in a 17 percent efficiency gain. These
changes could save the shipping industry 6 billion gallons of
fuel and $24 billion a year [1]. Similarly, Boeing has used CFD
to dramatically reduce the number of wing prototypes they
need to construct for testing in the development of new planes.
Figure 1 summarizes decades of research and development at
Boeing, and on the bottom it shows the number of prototype
wings tested starting with 77 for the 767 going to 5 for the
latest aircraft [2].
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Fig. 1. Boeing code advances showing the reduction in the number of wing
prototypes that required testing. [2]

Contemporary leading supercomputers are able to perform
over a quadrillion floating people operations per second
(petaFLOPS) and have over 1.4 million gigabytes of memory
[3]. To put this in perspective, a top-of-the-line desktop work-
station achieves roughly 66.9 gigaFLOPS on the LINPACK
benchmark. Thus today’s fastest supercomputer has roughly 5
orders of magnitude more computing power and memory than
a top-of-the-line desktop system1.

Orders of magnitude increases in computing power changes
what’s possible. For example, using LLNL’s BG/L super-
computer, which has 212,992 CPUs, LLNL scientists were
able to perform the first micron-scale simulation of a Kelvin-
Helmholtz instability using molecular dynamics. This simu-
lation required 2.8 CPU-millennia of run time with over 1.5
CPU-millennia of continuous runtime. [5] A simulation of this
magnitude is only conceivable on the largest supercomputers.

The power of supercomputers is advancing at an exponential
rate. Figure 2 shows performance on the high-performance
LINPACK benchmark for the fastest supercomputers for the
past 19 years. The dashed line shows the trend for the top
ranked machine and extrapolates the results through 2019.
Current U.S. Department of Energy plans call for an exaFLOP
(1018 FLOPS) computer to be fielded before 2020. Areas of
science and engineering that are able to utilize supercomputers
will be able to solve larger problems with higher fidelity
models.

Research in supercomputing is also valuable because su-
percomputers and desktop systems are looking more and
more alike. Due to the difficulty of increasing clock speeds,
hardware manufacturers are expanding performance by adding
more processing cores to commodity desktop systems. Su-
percomputer developers already have decades of experience

1Based on a Dell Dimension T5500 with dual quad-core Intel Xeon
processors running at 2.64GHz Using Intel’s optimized high performance
LINPACK download [4]
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Fig. 2. Performance of top ranked, bottom rank, and average of the top 500 supercomputers based on the LINPACK benchmark. [3]

writing algorithms that can take advantage of multiple concur-
rent processors. Supercomputer developers are investigating
technologies like OpenMP, CUDA, and OpenCL to address
multi-core and GPU programming, and these tools are also
available on desktop workstation systems [6]–[8].

Researchers at LLNL are researching application of super-
computers to problems in the energy grid. Section II covers a
case study in partnership with Energy Exemplar where LLNL
supercomputers were used to accelerate a study of the 33%
renewable portfolio standard for the California Public Utilities
Commission (CPUC). Section III covers our conclusions and
discusses future work.

II. SUPERCOMPUTERS FOR GRID PLANNING

In late 2008, the CPUC initiated the CAISO/PLEXOS 33%
Renewable Portfolio Standard (RPS) study to investigate the
impact of California’s 33% renewables target. Initially, the
study was a collaboration between the California Independent
Systems Operator (CAISO), PLEXOS Solutions who built the
model, and Southern California Edison (SCE) who was tasked
with running the models. Mid-project, the CPUC contacted
LLNL to investigate using supercomputers to accelerate the
exection of the ensemble of simulations required for the study.
LLNL partnered with Energy Exemplar, makers of PLEXOS
for Power Systems R©, to accelerate the solution by running
the large computational simulations on LLNL’s Hyperion
supercomputer and by modifying the problem formulation [9].

The CAISO/PLEXOS 33% RPS model is based on data
maintained and provided by CAISO. It incorporates resource
data, hourly load data for wind, import, hydro, solar, geother-
mal, and qualifying facility generation. The model covers 12
regions total across the WECC grid (shown in Figure 3), and
it includes 42 utilities, 2157 generators, and 104 transmission
lines [9].

Fig. 3. Tranmission grid use in the CAISO/PLEXOS 33% RPS study.

The basic form of the model is an ensemble of deterministic
unit commitment models. PLEXOS reads the model definition
and data, and it generates a large collection of individual unit
commitment models that must be solved independently. Each
unit commitment model instance is formulated as a mixed-
integer program (MIP), and PLEXOS invokes a MIP solver
such as FICO’s Xpress-MP or IBM’s CPLEX. MIP solution
requires approximately 99% of the overall execution time.

LLNL focused on running the ensemble of unit commitment
models in parallel. To accomplish this, parts of the PLEXOS
system, written to run on Windows using the .Net framework,
were ported to Linux using mono, a Linux/Unix implemen-
tation of the .Net framework [10]. The system was extended
to utilitize the a parallel computer to solve a number of unit
commitment models in parallel — allocating one core to the
solution of each unit commitment model. Figure 4 shows
LLNL progress in improving the execution speed measured
in the number of scenarios per day that could be run. The first
improvement (Sept to Oct) came from porting the system to
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Fig. 4. Improvements in the number of simultaneous scenarios able to be
executed, September–November 2010 [9].

Fig. 6. LLNL and Energy Exemplar researchers were also able to improve
solution time by improving the formulations used in the PLEXOS model.

Linux, and the improvement from Oct. to Nov. was by utilizing
the Hyperion supercomputer at LLNL.

The ability to run thousands of scenarios in parallel trans-
lates into the abililty to perform large-scale sensitivity analyses
on the data and results, a capability the study previously
lacked. LLNL performed a massively parallel suite of runs
varying the random seed used to generate the scenarios thus
creating numerous patterns of generator outages. The results
of this sensitivity study were enlightening: for some output
parameters of interest, the impact of varying the generator
outages caused a normally distributed pattern of ensuing re-
sults; for others, this distribution was exponential in shape; and
for yet others, the distribution appeared bimodal (see Figure 5
a–c). This implies that constraining events such as generator
outages to a fixed pattern can have a potentially large impact
on the results. For instance, if the fixed pattern was chosen
from one of those on the tail of an exponential distribution,
this would produce markedly different results than a pattern
from the mean. Altogether, this suggests that such sensitivity
analyses may be very important in building confidence in the
results obtained overall.

In addition to parallelizing the scenario modeling, Energy
Exemplar and LLNL staff worked together to improve the MIP
formulation underlying the PLEXOS model. Figure 6 shows
the improvement in the solution times for each month of a
one year simulation. The overall average is 4x speedup in
execution time.

III. CONCLUSIONS AND ONGOING WORK

Overall, LLNL’s collaboration with Energy Exemplar
yielded over a thousand fold increase in execution speed for
the CAISO/PLEXOS 33% RPS study. It is likely that even
greater increases are possible by utilizing a bigger supercom-
puter. By bringing more computational power to bear on the
problem, we were able to provide a more thorough analysis in
significantly less time than would have been required to run
the simulations on standard desktop computers.

The collaboration between Energy Exemplar and LLNL is
ongoing. LLNL is developing a system to enable modelers
running PLEXOS on their Windows desktop to automati-
cally launch simulations in parallel on supercomputers. The
network-based system manages transfering the model details
from the desktop to the supercomputer and transfering indi-
vidual simulation results back to PLEXOS on the desktop.
LLNL researchers have also investigated the impact on MIP
solver tolerances on solution time and results. Lowering the
tolerance can improve solution times with only small impacts
on the simulation results.

LLNL is investigating new parallel algorithms to solve a
single unit commitment model rather than an ensemble of runs.
Our initial approach uses Lagrangian relaxation to decouple
the MIP into a collection of independent MIP that can be
run in parallel. LLNL is also beginning work on semi-definite
programming to solve the optimal power flow problem. Work
in both these areas is in the early phase.
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(a) (b) (c)
Fig. 5. Probability distribution for different output parameters in the sensitivity analysis: (a) an approximately normal distribution for the load following
down price, (b) an exponential distribution for the MUNI regulation down price, and (c) a bimodal distribution for the Southern CA Edison’s net export.
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