Compton Backscattering Concept for the Production of Molybdenum-99

PDF Version Also Available for Download.

Description

The medical isotope Molybdenum-99 is presently used for 80-85% of all nuclear medicine procedures and is produced by irradiating highly enriched uranium U-235 targets in NRU reactors. It was recently proposed that an electron linac be used for the production of 99Mo via photo-fission of a natural uranium target coming from the excitation of the giant dipole resonance around 15 MeV. The photons can be produced using the braking radiation (“bremsstrahlung”) spectrum of an electron beam impinged on a high Z material. In this paper we present an alternate concept for the production of 99Mo which is also based on ... continued below

Creation Information

L. Merminga, G.A. Krafft May 1, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The medical isotope Molybdenum-99 is presently used for 80-85% of all nuclear medicine procedures and is produced by irradiating highly enriched uranium U-235 targets in NRU reactors. It was recently proposed that an electron linac be used for the production of 99Mo via photo-fission of a natural uranium target coming from the excitation of the giant dipole resonance around 15 MeV. The photons can be produced using the braking radiation (“bremsstrahlung”) spectrum of an electron beam impinged on a high Z material. In this paper we present an alternate concept for the production of 99Mo which is also based on photo-fission of U-238, but where the ~15 MeV gamma-rays are produced by Compton backscattering of laser photons from relativistic electrons. We assume a laser wavelength of 330 nm, resulting in 485 MeV electron beam energy, and 10 mA of average current. Because the induced energy spread on the electron beam is a few percent, one may recover most of the electron beam energy, which substantially increases the efficiency of the system. The accelerator concept, based on a three-pass recirculation system with energy recovery, is described and efficiency estimates are presented.

Source

  • PAC09, 4-8 May 2009, Vancouver, BC, Canada

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: JLAB-ACC-09-1131
  • Report No.: DOE/OR/23177-1711
  • Grant Number: AC05-06OR23177
  • Office of Scientific & Technical Information Report Number: 1021877
  • Archival Resource Key: ark:/67531/metadc829150

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2009

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 6:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

L. Merminga, G.A. Krafft. Compton Backscattering Concept for the Production of Molybdenum-99, article, May 1, 2009; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc829150/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.