Report on INL Activities for Uncertainty Reduction Analysis of FY12

PDF Version Also Available for Download.

Description

The work scope of this project related to the Work Packages of “Uncertainty Reduction Analyses” with the goal of reducing nuclear data uncertainties is to produce a set of improved nuclear data to be used both for a wide range of validated advanced fast reactor design calculations, and for providing guidelines for further improvements of the ENDF/B files (i.e. ENDF/B-VII, and future releases). Recent extensive sensitivity/uncertainty studies, performed within an international OECD-NEA initiative, have quantified for the first time the impact of current nuclear data uncertainties on design parameters of the major FCR&D and GEN-IV systems, and in particular on ... continued below

Creation Information

Palmiotti, G. & Salvatores, M. September 1, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The work scope of this project related to the Work Packages of “Uncertainty Reduction Analyses” with the goal of reducing nuclear data uncertainties is to produce a set of improved nuclear data to be used both for a wide range of validated advanced fast reactor design calculations, and for providing guidelines for further improvements of the ENDF/B files (i.e. ENDF/B-VII, and future releases). Recent extensive sensitivity/uncertainty studies, performed within an international OECD-NEA initiative, have quantified for the first time the impact of current nuclear data uncertainties on design parameters of the major FCR&D and GEN-IV systems, and in particular on Na-cooled fast reactors with different fuels (oxide or metal), fuel composition (e.g. different Pu/TRU ratios) and different conversion ratios. These studies have pointed out that present uncertainties on the nuclear data should be significantly reduced, in order to get full benefit from the advanced modeling and simulation initiatives. Nuclear data plays a fundamental role in performance calculations of advanced reactor concepts. Uncertainties in the nuclear data propagate into uncertainties in calculated integral quantities, driving margins and costs in advanced system design, operation and safeguards. This package contributes to the resolution of technical, cost, safety, security and proliferation concerns in a multi-pronged, systematic, science-based R&D approach. The Nuclear Data effort identifies and develops small scale, phenomenon-specific experiments informed by theory and engineering to reduce the number of large, expensive integral experiments. The Nuclear Data activities are leveraged by effective collaborations between experiment and theory, between DOE programs and offices, at national laboratories and universities, both domestic and international. The primary objective is to develop reactor core sensitivity and uncertainty analyses that identify the improvement needs of key nuclear data which would facilitate fast spectrum system optimization and assure safety performance. The inclusion of fast spectrum integral experiment data is key to minimizing the impact of nuclear data uncertainties on reactor core performance calculations, thus providing the best nuclear data needs assessment. This report presents the status of activities performed at INL under the ARC Work Package previously mentioned. As major achievement this year a comprehensive adjustment, including 87 experiments, was carried out. The results of this adjustment provide useful insights and helpful feedback to both nuclear data evaluation and measurer communities. In the following, we will document first the theory that underlines the adjustment methodology, and then we will illustrate the sensitivity coefficient computation and the nuclear data and experiment selection. Subsequently, the adjustment results will be shown, and, finally, conclusions, including future work, will be provided.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INL/EXT-12-27128
  • Grant Number: DE-AC07-05ID14517
  • DOI: 10.2172/1057686 | External Link
  • Office of Scientific & Technical Information Report Number: 1057686
  • Archival Resource Key: ark:/67531/metadc828943

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 20, 2016, 5:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Palmiotti, G. & Salvatores, M. Report on INL Activities for Uncertainty Reduction Analysis of FY12, report, September 1, 2012; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc828943/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.