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Abstract
In astrophysical and laboratory plasmas, it has been discovered that plasmas relax towards

the well-known Woltjer-Taylor state specified by ∇ × B = αB for a constant α. To explain

how such a relaxed state is reached, Taylor developed his famous relaxation theory based on the

conjecture that the relaxation is dominated by short wavelength fluctuations. However, there is

no conclusive experimental and numerical evidence to support Taylor’s conjecture. A new theory

is developed, which predicts that the system will evolve towards the Woltjer-Taylor state for an

arbitrary fluctuation spectrum.

PACS numbers: 52.55.Lf, 52.55.Tn
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In the study of astrophysical and laboratory plasmas [1–10], it has been observed that

plasmas tend to evolve towards the final state satisfying

∇×B = αB, α is a constant. (1)

This is the well-known Woltjer-Taylor state. Theoretically, it is perplexing how and why

such a state is reached. In 1958 Woltjer first showed that this state [11] is the state that

minimizes the global magnetic energy

W ≡
ˆ
V

B2d3x, (2)

while keeping the global magnetic helicity

H ≡
ˆ
V

A ·Bd3x (3)

constant. In Eqs. (2) and (3) the integration domain V is the entire 3D volume surrounded

by the perfectly-conducting wall of the vacuum vessel in an experiment. Woltjer [12] showed

that in the ideal MHD (magnetohydrodynamics) model the global magnetic helicity H de-

fined in Eq. (3) is a constant of motion, which justifies constraining H during the variation

of W . A very simple variational calculation shows that such a minimizing state is indeed

given by Eq. (1) with the constant α being a Lagrange multiplier. To be faithful to his-

tory, it is necessary to point out that such a force-free field with a constant α had been

discussed earlier by Lust [13] and Chandrasekhar [14] in the context of astrophysics. But,

no convincing justification was given as to why it should be the most interesting force free

field. Woltjer’s theory was the first theoretical attempt; however, it is not complete since it

does not specify how this relaxed state can be reached. In the ideal MHD model, the global

helicity defined in Eq. (3) is not the only invariant. For any given flux surface ϕ = const.,

the helicity Hϕ ≡
´
ϕ

A · Bd3x of the volume enclosed by the flux surface is a conserved

quantity, and the topological structures of the magnetic field are invariant with respect to

the dynamics. As a consequence [15–17], for an arbitrary initial condition the final state

specified by Eq. (1) is not be accessible.

To explain this puzzle, Taylor suggested that if the plasma is resistive, then the topological

structure of the magnetic field will be destroyed, and the only invariant that may not subject

to this destruction of flux surfaces is the global helicity H defined by Eq. (3). Taylor argued

that in a slightly resistive plasma, the system will relax towards a final state which minimizes
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the global magnetic energy W while keeping the global helicity H constant, and the system

will evolve towards this relaxed state for any given initial condition. Such a state is of course

specified by Eq. (1). For this reason, we will refer this relaxed state as the Woltjer-Taylor

state in this paper.

Taylor’s theory is successful in terms of predicting the reversal of the toroidal field in a

series of RFP (Reverse Field Pinch) experiments [1–10]. Even though it has been extended in

various directions since the 1980s [17–26], Taylor’s relaxation theory maintains its popularity

because of its simplistic beauty, and is widely accepted as a fundamental theory with great

importance in plasma physics. However, there is one unsatisfactory element in Theory’s

theory, i.e., the so-called Taylor’s conjecture. The relaxation in Taylor’s theory is caused

by resistivity. Rigoriously speaking, when resistivity is finite, both helicity H and magnetic

energyW are not conserved quantities any more. In order to justify the variational procedure

of minimizing W while keeping H constant, Taylor, along with other researchers [10, 15, 16,

27], observed that the decaying rates for H and W are
dH

dt
' −2V c2η

4π
∑

k

|k|B2
k (4)

dW

dt
' −2V c2η

4π
∑

k

k2B2
k (5)

when η is the resistivity, k is the wavenumber of the fluctuation and Bk is the Fourier

component of the magnetic field at k. A detailed derivation of Eqs. (4) and (5) is given

by Eqs. (13), (14) and (27), and the validity of the Eqs. (4) and (5) is discussed near the

end of the paper. According to Eqs. (4) and (5) [10, 15, 16, 27], the dissipation of both the

magnetic energy W and the helicity H are mainly due to the finite resistivity. However, the

dissipation rate forW scales with k2, while that forH scales with k. If the relaxation process

is dominated by structures with wavelengths shorter than η1/2 over the entire volume, then

the dissipation rate of W is much larger than that of H. Taylor conjectured that this is

indeed the case, and the justification of minimizing W with H fixed follows this conjecture

naturally. “Unfortunately”, as pointed out by Ortolani and Schnack in Ref. [10], “in the RFP

there is no experimental evidence that relaxation is produced by small scale turbulence. The

dominant magnetic fluctuations associated with the relaxation process appear to have global,

long wavelength structure. This view is supported by extensive numerical simulations, which

show that relaxation is produced by the nonlinear interaction of long wavelength instabilities.

(Many of these results will be described in detail in Chapter 5).” It is at least fair to conclude
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that, through experimental [1–10] and theoretical [28–35] studies in the last 40 years, there

is not conclusive evidence to support the conjecture that plasma relaxations are always

dominated by short wavelength structures. Realizing this shortcoming in Taylor’s theory,

Bhattacharjee et al. [17, 18, 20–22] discovered that for a single helicity long wavelength

resistive tearing mode, H is approximately an invariant along with an infinite set of other

approximate invariants. A theory of relaxation has been developed using these invariants

[17, 18, 20–22], and the relaxed state in general is different from the Woltjer-Taylor state.

In this paper, we present a new theory on how the Woltjer-Taylor state can be reached

during the relaxation of a resistive plasma without invoking Taylor’s conjecture. We do not

assume that the fluctuation spectrum is dominated by short wavelength structures or thatW

decays faster than H. In our theory, the Woltjer-Taylor state is not reached by minimizing

W with H fixed. We show that the Woltjer-Taylor state can be reached in a resistive MHD

relaxation process for any fluctuation spectrum. We prove this fact as follows.

For any vector potential A and magnetic field B, the well-known Cauchy-Schwartz in-

equality is

QW −H2 ≥ 0 , (6)

Q ≡
ˆ
V

A2d3x . (7)

The equality is reached if and only if B = αA every where for a constant α. Amazingly, this

equality condition is exactly Eq. (1), i.e., the conditon for the Woltjer-Taylor state. We will

further prove that in the resistive MHD model the difference between QW and H2 decreases

with time, i.e.,
d

dt

(
QW −H2

)
≤ 0, (8)

and that the equality in inequality (8) holds if and only if Eq. (1) is satisfied. From inequal-

ities (6) and (8), it is evident that when the Woltjer-Taylor state is not reached, QW −H2

is positive definite and decreases at a non-vanishing rate, i.e., the system evolves towards

the Woltjer-Taylor state. The non-negative value of QW −H2 ceases to decrease only when

it is zero, i.e., when the Woltjor-Taylor state is reached. When the system is far away form

the Woltjer-Taylor state, the change rate d(QW −H2)/dt can be significantly negative and

system evolves towards the Woltjor-Taylor state at a fast pace. The dynamical behavior of

H2 and QW is illustrated in Fig. 1.
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Figure 1: Before reaching the Woltjer-Taylor state, QW − H2 is positive definite and decreases

with time at a non-vanishing rate, and the system evolves towards the Woltjer-Taylor state. The

system reaches the Woltjer-Taylor state when QW −H2 = 0.

We now give the proof of inequality (8) and the fact that equality is reached if and only if

at the Woltjor-Taylor state. As in previous studies, we will use the resistive MHD equations

[27] and assume that the thermal energy and kinetic energy are much smaller than the

magnetic energy. We will adopt the method of Fourier analysis. Let

(B,J ,A) =
∑

(Bk,Jk,Ak) exp(ik · x) , (9)

then Ampére’s law is expressed as

jk = ick ×Bk

4π , (10)

and ∇×A = B is expressed as

ik ×Ak = Bk . (11)

For k = 0, we will let A0 = 0, because the there is no magnetic field associated with A0

and we are free to choose an arbitrary constant for it. To solve for Ak(k 6= 0) in terms of

Bk, we choose to work with the Coulomb gauge k ·Ak = 0, which leads to

Ak = ik ×Bk

k2 (k 6= 0). (12)

Because (B,J ,A) are real, we have (B∗k,J∗k ,A∗k) = (B−k,J−k,A−k). Here u∗ denotes the

complex conjugate of u, and we adopt the notation u2 ≡ u · u∗ = |u|2 for a vector u. For
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resistive MHD, the rate of change of H is given by

dH

dt
= −2c

ˆ
V

ηj ·Bd3x , (13)

where the Ohm’s law E + v ×B/c = ηj has been used. Note that rate of change of H can

be both positive and negative. The integral in Eq. (13) can be evaluated using the Fourier

components,

ˆ
V

j ·Bd3x =
∑
k,l

jk ·Bl

ˆ
V

exp[i(k + l) · x]d3x = V
∑

k

jk ·B−k

= V
∑

k

jk ·B∗k = V
∑

k

icBk ×B∗k
4π · k = V

∑
k 6=0

2cBkR ×BkI

4π · k , (14)

where V is the volume of the system, BkR and BkI are real and imaginary parts of Bk, and

use is made of the following identities

ˆ
V

exp[i(k + l) · x]d3x =


0, k 6= −l ,

V, k = −l ,
(15)

Bk ×B∗k = −2iBkR ×BkI . (16)

Similarly,

H = V
∑
k 6=0

iBk ×B∗k
k2 · k = V

∑
k 6=0

2BkR ×BkI

k2 · k . (17)

From Eqs. (13), (14), and (17), we have

dH2

dt
= −V

2c2η

π

∑
k

BkR ×BkI · k
∑
k 6=0

BkR ×BkI

k2 · k . (18)

The rate of change of H2 given by Eq. (18) will be compared with that of QW,

d(QW )
dt

= Q
dW

dt
+W

dQ

dt
, (19)

where W and Q can be expressed in terms of the Fourier components of B ,

W ≡
ˆ
V

B2d3x = V
∑

k

Bk ·B∗k, (20)

Q ≡
ˆ
V

A2d3x = V
∑
k 6=0

Bk ·B∗k
k2 . (21)
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To calculate the rate of change of Q and W, we need to know dBk/dt ·B∗k, which can be

calculated from Faraday’s law dBk/dt = −ick ×Ek and Ohm’s law as

dBk

dt
·B∗k = −icηk × jk ·B∗k + ik × (v ×B)k ·B∗k . (22)

The second term on the right-hand-side of Eq. (22) can be expressed in terms of the current

ik × (v ×B)k ·B∗k = 4π
c

∑
l

Bl × j−k · vk−l (23)

which is associated with the variation of kinetic energy due to the Lorentz force. To see

this, we observe that the energy conservation law in the low-β limit takes the form of

∂

∂t

(
ρ

v2

2

)
+∇ ·

(
ρv

v2

2

)
− v

c
· (j ×B) = 0 . (24)

Integrating over the entire volume gives

∂

∂t

(ˆ
V

ρ
v2

2 d
3x

)
=
ˆ
V

v

c
·(j ×B) d3x = V

∑
k,l

1
c
vk−l ·j−k×Bl = − V4π

∑
k

ik×(v×B)k ·B∗k ,

(25)

which indicates that the work done by the Lorentz force is converted into the variation of

the kinetic energy. Since we have assumed that the kinetic energy is much smaller than the

magnetic energy, i.e.,
´
V
ρv2dx/2 �

´
V

B2d3x/8π, it is therefore clear that the work due

to the Lorentz force can only produce a small variation of the magnetic energy, i.e.,

i
∑

k

k × (v ×B)k ·B∗k �
∑

k

dBk

dt
·B∗k, (26)

and the variation of the magnetic energy is mainly due to the finite resistivity,

dW

dt
=
ˆ
V

2B · ∂B

∂t
d3x = 2V

∑
k

Bk · dB∗k/dt = −2V c2η

4π
∑

k

k2Bk ·B∗k . (27)

We further assume that the condition that the kinetic energy is much smaller than the

magnetic energy holds for large scales, and thus when each term in Eq. (26) is weighted by

1/k2, the total contribution from the Lorentz force term is still small, i.e.,

i
∑

k

1
k2 k × (v ×B)k ·B∗k �

∑
k

1
k2
dBk

dt
·B∗k. (28)

Under these conditions, the rate of change of Q can be expressed in terms of Bk ·B∗k as well,

dQ

dt
=
ˆ
V

2A · ∂A

∂t
d3x = 2V

∑
k 6=0

Bk · dB∗k/dt
k2 = −2V c2η

4π
∑
k 6=0

Bk ·B∗k . (29)
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We will give a more detailed discussion on the validity of Eqs. (5), (27) and (29) near the

end of the paper. Equations (21), (20), (27), and (29) can be assembled together to give

d(QW )
dt

= −2c2V 2η

4π

B2
0
∑
k 6=0

B2
k +

∑
k 6=0

B2
k

2

+
∑
k 6=0

B2
k

k2

∑
k 6=0

B2
kk2


= −2c2V 2η

4π

B2
0
∑
k 6=0

B2
k + 2

∑
k 6=0

B4
k + 1

2

k 6=l∑
k,l 6=0

(
2 + l2

k2 + k2

l2

)
B2

kB2
l


≤ −2c2V 2η

4π

B2
0
∑
k 6=0

B2
k + 2

∑
k 6=0

B4
k +

k 6=l∑
k,l 6=0

(
| l |
| k |

+ | k |
| l |

)
B2

kB2
l

 , (30)

where the following inequality has been used(
2 + l2

k2 + k2

l2

)
=
(
| l |
| k |

+ | k |
| l |

)2

≥ 2
(
| l |
| k |

+ | k |
| l |

)
. (31)

On the other hand, from Eq. (18),

− dH2

dt
≤ V 2c2η

π

∑
k

2 | BkR || BkI || k |
∑
k 6=0

2 | BkR || BkI | / | k |

≤ V 2c2η

π

∑
k

B2
k | k |

∑
k 6=0

B2
k/ | k |=

V 2c2η

π

∑
k 6=0

B4
k + 1

2

k 6=l∑
k,l 6=0

(
| l |
| k |

+ | k |
| l |

)
B2

kB2
l

 . (32)

Combining inequalities (30) and (32), we have inequality (8). Examining inequalities (30)

and (32) shows that the equality in (8) is reached when the following four conditions are

satisfied (i) B0 = 0, (ii) BkR, BkI , and k are perpendicular to each other, (iii) |BkR| = |BkI |,

and (iv) all of the non-zero components will have the same | k |,i.e., | k |= α. By applying

the Fourier analysis to Eq. (1), it is easy to verify that these four conditions are necessary

and sufficient for Eq. (1) to be satisfied. This completes the proof of d (QW −H2) /dt ≤ 0

and the fact that the equality holds only at the Woltjer-Taylor state.

In the derivation of Eqs. (5), (27) and (29), we have assumed that the variation of the

magnetic energy due to the Lorentz force is small compared with that due to the resistivity.

This approximation has been essentially adopted by Taylor and other researchers [10, 15, 16,

27] when Eq. (5) is used. Here we discuss the validity of this assumption. First of all, it is

reasonable to argue that the Lorentz force term ik× (v×B)k ·B∗k = 4π
c

∑
l Bl×j−k ·vk−l in

Eq. (22) is a nonlinear term responsible for generating the turbulence and therefore should

not be ignored. On the other hand, if we consider the energy equation (25) for the kinetic

energy in the low β limit, it is clear that the part of the magnetic energy variation due to the
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Lorentz force is completely converted into the kinetic energy. This is of course not surprising.

If we assume that the kinetic energy in the system is smaller than the magnetic energy for

all time, then the work done by the Lorentz force, i.e., the energy exchange between the

magnetic energy and kinetic energy, has to be smaller than the magnetic energy. Thus any

substantial magnetic energy variation has to be caused by the resistivity. In the paper, we

further assume that this fact is true at large scales. We emphasize that this assumption

does not imply that the nonlinearity of the Lorentz force is not as important as other

nonlinearities, such as the convection term v · ∇v, in the relaxation process. It only means

that the total magnetic energy dissipation is mainly due to the resistivity. This assumption

is actually independent from other assumptions that one may wish to adopt in developing a

theory for plasma relaxation, and we believe that this assumption is a crucial component of

Taylor’s theory [e.g., Eq. (5)] as well as our theory. This further corroborates the view that

the Woltjer-Taylor state will not be that to which a plasma relaxes when β is high or the

kinetic energy is comparable to the magnetic energy [23–26].

It is also necessary to point out that as a theoretical model, certain theoretical simplifica-

tions have been adopted in order to make progress. For example, as in previous theoretical

analysis carried out by Taylor [15, 16], Schnack [27], and Bhattacharjee [17, 18, 20–22],

we have assumed that resistivity is a constant, even though the resistivity in laboratory

discharge experiments varies significantly between the center and the edge of the plasma.

Nevertheless, we believe the theoretical understanding enabled by these theoretical simpli-

fications do provide valuable insights into the complex plasma relaxation process. To bring

our understanding to the next level with the effect of inhomogeneous resistivity, along with

other effects such as the pressure and density gradients, further investigations are certainly

necessary, probably with new and refined theoretical tools and methods.

To summarize, in our new theory for plasma relaxation, the relaxed Woltjer-Taylor state is

reached as the non-negative quantity QW −H2 evolves towards zero. In contrast to Taylor’s

theory, which is only valid for relaxation dominated by short wavelength fluctuations, our

theory is valid for an arbitrary perturbation spectrum. The new theory can be tested by

experiments and numerical simulations. The prediction of the new theory, specifically, the

inequality (8) and the variations of H2 and QW illustrated in Fig. 1 can be verified using

magnetic fluctuation spectrum data. Testing the validity of this new relaxation theory is

one of the scientific objectives of the Keda Toroidal eXperiment (KTX), a RFP device that
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is being constructed at the University of Science and Technology of China.
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