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Abstract

Scientific applications and experimental facilities generate massive data sets that need to

be transferred to remote collaborating sites for sharing, processing, and long term storage. In

order to support increasingly data-intensive science, next generation research networks have been

deployed to provide high-speed on-demand data access between collaborating institutions. In

this paper, we present a practical model for online data scheduling in which data movement

operations are scheduled in advance for end-to-end high performance transfers. In our model,

data scheduler interacts with reservation managers and data transfer nodes in order to reserve

available bandwidth to guarantee completion of jobs that are accepted and confirmed to satisfy

preferred time constraint given by the user. Our methodology improves current systems by

allowing researchers and higher level meta-schedulers to use data placement as a service where they

can plan ahead and reserve the scheduler time in advance for their data movement operations.

We have implemented our algorithm and examined possible techniques for incorporation into

current reservation frameworks. Performance measurements confirm that the proposed algorithm

is efficient and scalable.

Keywords: Advance Reservation, Resource Allocation, Scheduling, Data Management, Dis-

tributed Computing.
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1 Introduction

Recent progress in high performance computing and distributed systems have provided collaborative

science and the necessary resources for emerging computationally- and data-intensive applications.

Scientific applications have especially become increasingly data intensive [29, 41] in the recent years.

The SuperNova project in astronomy is producing terabytes of data per day, and a tremendous

increase is expected in the volume of data in the next few years [7]. The LSST (Large Synoptic

Survey Telescope) is scanning the sky for transient objects and producing more than ten terabytes

of data per simulation [54]. Similarly, simulations in bimolecular engineering generate huge data-

sets to be shared between geographically distributed sites. In climate research, data from every

measurement and simulation is more than one terabyte. In high-energy physics [18], processing

of petabytes of experimental data remains the main problem affecting quality of the real-time

decision making. Often, such applications require geographically distributed resources to satisfy their

immense computational requirements. The dynamic nature of interconnects between collaborating

sites, heterogeneity of resources, and client/server side capacity bottlenecks (such as memory, CPU,

storage capacity) necessitate provisioning (preparing network, server and client before initiating a data

transfer operation for desired transfer throughput) for efficient resource utilization and performance.

A very simple use case can be explained as follows. Consider a scientific application which generates

immense amount of simulation data using supercomputing resources. The generated data is stored in a

temporary space and need to be moved to a data repository for further processing or archiving. Often,

the data repository is located in a remote site where the generated data will be analyzed/visualized

by collaborating researchers. In the remote site, another temporary space with limited lifetime may

be allocated to store the data. Another application may be waiting this generated data as its input

to start execution. We can allocate compute resources in advance, and we even can predict the

completion time of a compute job submitted in a supercomputer queue. Therefore, users have the

opportunity to have an estimation about the time their computation and analysis will finish, and the

generated data will be available to be moved to the remote repository.

In current systems [36, 13], a data transfer request is managed by the scheduler without any

constraints. The data transfer request is put in a queue to be scheduled after completing currently

running operations. This request may be delayed because of prior long-running jobs, or it can be

postponed by the scheduler to operate other short jobs. Depending on the scheduler’s policy, the

scheduler can initiate other jobs using some of resources shared by this job. In such a case, the

number of jobs completed will increase, but the total completion time of our data transfer job will

also increase. Delaying the data transfer operation, completing the transfer far after than the expected

finish time, may create several problems. One common case is that other resources are allocated for

further processing but they are waiting idle for the transfer operation to complete.

Delivering data placement (moving data between collaborating parties) as-a-service where users

can schedule their request in advance is highly desirable. In a data placement request, users can

provide a simple time constraint in which they state the earliest start time and latest completion

time. Earliest start time specifies when the source data set will be ready to schedule the given task.

Latest completion time specifies a desired deadline to complete the transfer operation. The scheduler
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confirms the request after checking availability of resources and other tasks in the given time frame.

If the request cannot be confirmed in the given time frame, the scheduler might suggest a longer

time period such that latest completion time extended to satisfy the request. It is the scheduler’s

responsibility to satisfy given requests with the given time constraints. Future time windows are

considered while accepting a request and initial decision are made in advance. On the other hand, the

scheduler can accept a request that needs to be initiated instantly if there is capacity available and

none of the reserved operations will be delayed.

A major challenge is to predict the completion time and also estimate the capacity of a resource

involved in data transfer operations. We assume that data scheduler gathers information about the

server and network capacities to control load on data servers in source and destination sites. On

the other hand, predicting performance and completion time over a dynamic and shared network is

quite difficult [12, 56]. Next generation research networks such as Internet2 [5] and ESnet (Energy

Sciences Network) [3] provide bandwidth guaranteed on-demand data access between collaboration

institutions. Advance network reservation systems such as ESnet’s OSCARS enable infrastructure for

data schedulers to retrieve possible future reservations [11] and allocate bandwidth between two sites

for a given duration with predictable throughput [6]. Using a network interconnect in which we can

reserve and guarantee bandwidth enables data scheduler to make accurate decisions and satisfy user

requirements with given time constraints.

Data scheduler checks the availability of resources, and the server and the network capacity are

allocated for the future time period in advance. We consider other requests reserved for future

time windows and examine available capacity both in network and server resources to make a new

reservation satisfying the requirements of a job submitted. If there is no available slot to execute

the transfer operation with the given user constraints, the job submitted is rejected, or the latest

completion time is extended and the user is notified about the possible finish time.

While scheduling a new job, we may also need to change a reservation that belongs to an already

accepted job which has not started yet. In that case, we release previously allocated resources to

make new reservations if possible, if there is available slot to move the job start time backwards.

Conversely, data transfer jobs can be moved forward if there is enough time before its deadline. Data

scheduler should operate in an opportunistic manner to maximize resource utilization and the number

of jobs accepted. On the other hand, it should first take into consideration of the jobs for which it

has already confirmed to satisfy their deadlines. Therefore, we make changes to the reservations of

previously accepted jobs only if we guarantee completion within the given time constraints.

In this paper, we present a new data scheduling model with advance reservation and provisioning.

We intend to eliminate possible long delays in completion of a transfer operation by taking advantage

of bandwidth guaranteed paths and user defined time constraints, and increase utilization both in

client and server sites by giving an opportunity to provision resources in advance. Users submit their

jobs by stating the total volume of data needed to be transferred between source and destination nodes.

In addition to resource constraints, each job is also bounded by time constraints, the earliest start time

and desired latest completion time. In order to take advantage of the available network bandwidth,

we should also provision other resources for storage and server capacity between collaborating parties.
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Data scheduler interacts with reservation managers and data transfer nodes in order to reserve from

the available capacity, to guarantee completion of jobs that are accepted, and confirmed to satisfy

preferred time constraint given by the user.

In general, number of reservation options is exponential, and the scheduling problem is NP-hard.

We analyze time-dependent resource assignment problem with bottleneck constraints, and present a

detailed study of data transfer scheduling with resource and time conflicts. We propose an efficient

heuristic for scheduling data placement operations with advance reservation. We have implemented

our algorithm and examined possible techniques for incorporation into current reservation frameworks.

Performance measurements confirm that the proposed algorithm is efficient and scalable.

The organization of this paper is as follows. In Section 2, we highlight some of the relevant studies

in the literature. In Section 3, we analyze scheduling of data transfer operations with time and

resource constraints., and we explain several common approaches used to evaluate file scheduling and

resource assignment problems. In Section 4, we propose an online scheduling heuristic such that the

scheduler makes decision whenever a new data transfer job is submitted, and we analyze data transfer

scheduling between distributed resources with given time and resource constraints. We conclude the

paper in Section 5.

2 Related Work

There are several studies concentrating on data management in scientific applications [8, 9, 55];

however, resource allocation and job scheduling considering the data requirements still remains as an

open problem. There is a few work towards coordinating resource allocation and advance reservation

together for data movements [48]. Existing systems fail to address issues such as scheduling according

to given user requirements and priorities, taking advantage of advance resource reservation, and

adapting to dynamic environment in distributed systems. Current data schedulers manage data

transfer jobs by trying to optimize for performance and resource utilization [36, 13], but they do not

provide advance resource reservation and coordination where users can plan ahead and allocate/reserve

the data placement service for a future time.

In [26], a reservation and allocation architecture, GARA, is defined to address several problems

in providing end-to-end quality of service for next generation research networks. Heterogeneity

of resources requires independent control and local administration policies of individual resources.

Computational elements also affect end-to-end performance and they should be managed and

monitored separately while dealing with reservation elements. The GARA project aims to provide

application level co-allocation by providing a reservation API in order to coordinate resources, and to

allocate them in advance.

There are also several relevant studies in the literature using reinforcement learning for resource

management and planning [27], and user constraints for file transfer scheduling [17]. Priority-

based scheduling has been studied for real-time system [45], especially for databases to satisfy time

constraints with transactions [22]. Deadline scheduling algorithms consider the time constraint of

every request to ensure the deadline (completion time). We can classify real-time requests into two
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categories; hard and soft transactions. In a hard real-time transaction system, the scheduler needs

to guarantee the exact completion time. There is no benefit to finish the request after the deadline.

In a soft real-time transaction system, the scheduler considers the time constraint and prioritizes

the requests with earliest deadline in the scheduling queue [45]. In our data scheduling paradigm,

we consider soft-deadline scheduling for data transfer requests. We can allocate the server and the

network capacity (bandwidth); however, it is difficult to guarantee the exact completion time due to

possible failures, system problems, and unpredicted instant performance degradations. The scheduler

takes into account time constraint and tries to schedules the job before its deadline while making the

decision to maximize the number of job accepted in the system.

There is an increase in developing projects for research networks to provide dedicated bandwidth

channels. The dedicated bandwidth networks brings the ability to provision the communication

channels when the data, especially large-scale massive data, is ready to be transferred [37, 43].

In order to provide high-speed on-demand data access between collaborating institutions, research

institutions established production level network supporting on-demand bandwidth reservation in

which bandwidth is reserved for a specific time period [6, 5, 4]. On-demand bandwidth reservation

is usually supported by Multiple Protocol Label Switching (MPLS) in layer 3 [15, 23]. In layer 2,

a virtual secure circuit is setup between source and destination with a specific bandwidth over the

connection. Internet 2 [5] and ESnet [3, 6] provide dynamic circuit infrastructure to establish on-

demand guaranteed bandwidth point-to-point connections. TeraPaths [53] controls end-sites and

allows creation of secure circuits within the site to support guaranteed bandwidth service.

There are few studies in on-demand bandwidth allocation [1, 6, 2] and advance bandwidth

reservation [28, 44, 16, 21, 32]. A very typical case is to represent the network topology as a graph.

In addition to that, we need a proper representation for time in advance reservation. There are two

common approaches; slotted time model and continuous time model. In slotted time model, time

is divided into equal slots and each link keeps information about the available bandwidth in each

slot. Several studies addressing slotted time model are [28, 16, 51, 46, 26]. In continuous time model,

the link capacity is modeled as a time-bandwidth function. This provides better granularity and finer

control in scheduling with a cost of increased complexity in implementation. We extend the contiguous

time model and define two new concepts (time steps and time windows) to analyze time-dependent

topologies for scheduling and resource assignment.

In [38], the proposed scheduling algorithms are classified as periodic scheduling and differentiated

from instant scheduling. In instant scheduling, the scheduler makes a decision for every incoming

request. In periodic scheduling, the scheduler makes decision in certain intervals where several requests

in that period are considered. In [21], the scheduling algorithm considers flexibility in bandwidth and

the time period in order to increase utilization. Many of the given algorithms have high computational

complexity and large space requirements. We consider instant scheduling and use a practical approach

that is suitable in real-life applications. Once a job has been accepted, it is always preferred over other

jobs that are submitted later. Simply, we never dismiss and reject a committed job to accept other

recent jobs in order to favor the optimization criteria. We have recently reported a flexible network

reservation algorithm that provides alternate allocation possibilities for a single job, including earliest

time for completion, or shortest transfer duration - leaving the choice to the user [11]. We have
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implemented our algorithm as a new service extending the current underlying mechanisms of ESnet’s

OSCARS [6]. We try to come up with a near optimum allocation pattern for multiple data transfer

requests with advance reservation. We necessitate a new methodology that is easily applicable to

provide a solution for incorporation with other resource managers and reservation systems

3 Time and Resource Conflicts

We concentrate on scheduling data transfer operations in a time-dependent topology. The network

bandwidth assignment, which has been described in our previous work [11], plays an important role

designing a solution. In our scheduling model given in this study, the transfer rate is fixed and does not

vary over time. This is one of the crucial features that affect the methodologies used to approach the

problem. In order to elucidate the problem domain and introduce the concepts, we present the crucial

decision points in the process of designing a scheduling algorithm with resource and time constraints.

We give a simple example at the end of this section to make readers more familiar with the theory

behind scheduling with time and resource constraints with fixed bandwidth assignment.

There are several studies in the literature [20] categorizing several research problems in data

transfer scheduling [24, 50], and summarizing theoretical complexity and difficulty of those problems

in several domains. In [31], authors analyze some common cases and show that there are polynomial

time solutions for some very special types of the problem, though for the rest of the cases the solutions

are exponential. Other than that, the general problem is proven to be NP-hard. The study given

in [31] examines several network structures such as trees, bipartite graphs, networks with odd and

even cycles, and provides a detailed complexity analyze through relaxing the problem by eliminating

parameters such as file size and concurrency.

Data transfer scheduling with a specific start time and a particular deadline has been studied

in [39, 47, 42]. The scheduling problem has been formulated as a multi-commodity flow problem,

and uniform time slices have been used to model the time dependency in [42]. The objective is

to maximize the total transfer throughput and data transfers can use varying bandwidth in every

time slice. This problem can be generalized as a concurrent file transfer problem [47]; such that,

we share the bandwidth between multiple jobs and try to utilize the network as much as possible.

Using network flows to model and place a solution space to combinatorial optimization problems is

a common practice [39]. On the other hand, sharing bandwidth between concurrent transfers can

improve the total throughput but does not help satisfying completion time of each job. Our objective

is to provide allocation of scheduling time satisfying given user constraints, not to improve only the

system utilization. We would like to emphasize that multi-commodity flow does not apply to our case.

We are dealing with network topologies with bottleneck constraints [11].

We can use unsplittable flow problem to model and clarify our problem domain. The unsplittable

flow problem [35] is an interesting dilemma in algorithm research. We can simply describe it by t

tasks with start and end time and a particular demand d > 0 and a profit p. If we assign a task, it

requires bi amount of bandwidth. We are given a network with available bandwidth bt for every time

t. The purpose is to find a subset of tasks to maximize the profit. Similarly if every task acquires
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a cost value, objective is to minimize the cost. The unsplittable flow problem is NP-hard, and only

polynomial approximation algorithms are given as a solution [10, 14, 34, 33, 19]. Interestingly, even

for very special cases (i.e. planar graphs) the problem is still NP-hard.

In order to clarify the concept behind fixed bandwidth time dependent scheduling in a distributed

network, consider a single network with a single line. We let only one edge connecting two nodes.

In this special case of the general problem where network is a line, the unsplittable flow problem

converts to a very well known optimization problem, Knapsack problem [40]. In Knapsack problem,

we have a set of items each with a weight and a cost value, and we select a collection of items to

maximize the total profit considering that we have a limit in total capacity. Similarly, we have start

and end times for each task, and we have the bandwidth limit over the link. Beyond that, even if

we have unique profit p = 1, and unique demand d = 1 for all tasks, and we set the edge capacities

to a unique value, we still end up with a NP-hard problem. This special case can be generalized to

maximum edge-disjoint paths problem in graph theory [14]. The problem we attempt to solve is quite

hard. To the best of our knowledge, only polynomial approximation algorithms have been proposed

in literature as discussed above, and there is no constant factor approximation algorithm known to

solve the unsplittable flow problem.

A common approach is to design approximation algorithms in which we set priorities and rate each

selection to reduce the search space. The number of possible options to examine in order to make

the best selection exponentially increases in worst case. Instead of that, we rate each selection and

displacement based on the priority or the cost/desire we assign to each task. Thus, we can design

polynomial greedy heuristics which can solve the problem with a near optimum scheduling choice.

Note that very simple but effective greedy approaches like best-fit, first-come, and earliest-deadline,

use some preference/criteria to make a choice among multiple options. The design of the algorithm

and deciding on a good selection criteria play important role in terms of the quality of the resulting

scheduling approximation. There are many studies in the literature investigation approximation

algorithms for scheduling; [30] and [25] are one of them which show benefits in designing greedy

algorithms with priorities.

3.1 Analyzing the Assignment Problem

We define a sample network with three data transfer nodes connected to each other over a network,

given in Figure 1. Each node has a particular capacity that it can provide maximum upload and

download transfer rate. It defines the limit in server site such that total throughput is also constrained

by the capacity of data transfer nodes. Each job has a volume of data need to be transferred, and a

specific period of time this job need to be completed - earliest start time tE , and latest completion

time tL.

We are bounded by edge capacity as well as node capacities. Figure 2 shows the resource conflicts

in this simple example. If we have a transfer request from node n1 to n2 running at the same with

another request from node n3 to n2, the total bandwidth allocation given to both should not exceed

the capacity of the shared node n2.
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Figure 1: Sample Problem Definition

Figure 2: Node and Link - Resource Constraints

Earliest start time and latest completion time of each job defines its search interval. We focus on

the search interval to find a proper allocation for the given request. Figure 4 shows time steps which

are calculated according to constraints of each job. A time step shows the longest duration of time

in which we have a stable network structure in terms of available capacity ready for reservation [11].

Figure 3 shows time windows. A time window is a sequence of time steps. We traverse time windows

in a specific order, as shown in Figure 3. First we try to find an allocation which has shortest duration

of time; or simply say which includes less time steps. Besides, we want to find an allocation with

earliest completion; so, we traverse first time windows which end earlier. We further demonstrate

mapping time windows to search intervals for each job in Figure 3 and 5.

The total amount of data for each job that need to be transferred characterizes the duration of the

time period needed. Figure 5 shows how several time windows are eliminated in the search interval

(also see Figure 5 for comparison). Further, it also illustrates the resource constraints specific to each

time windows. For example, if we want to assign job J1 into time window tw6, we need at least

a capacity of 120 allocated over the link from n1 to n2 which provides maximum of 200 capacity.

However, we would first consider tw3 and tw5 if there is more capacity available since those time

windows consist of less time steps (shorter duration). Figure 6 provides a more detailed view of

capacities for each job to time window assignment.

We have analyzed the unsplittable flow problem. If we could solve that in a polynomial time,

we would also solve this problem. Figure 7 represents the sample problem using network flows. The

crucial point is that each time window may affect more than a single time step. And, those time steps

need to have the same capacity allocation during the entire period of time. As an example, tw9 and

tw5 both include ts2. Any flow passing over these two should also consume capacity in ts2. Even

though we could represent the network structure with discrete graphs in each time step, we still need

8



Figure 3: Time Windows

Figure 4: Time Steps and Search Interval

to consider time constraints. In other words, our problem complexity increases exponentially when

we have time constraints and resource constraints together. In this case, we have resource conflicts in

each time step, see Figure 2, and time conflicts for time windows as shown in Figure 7.

Figure 8 provides a table of possible assignment options that need to be considered with resource

constraints given in Figure 9. In Figure 10, we present how solution space is analyzed in this sample

problem. We show sample conflicts, and explain that search space is exponential. We have three

possible assignment option for J1, two for J2, and four for J3. Overall, we may need to consider

3× 2× 4 choices in order to make a selection. Each assignment might affect other options, but there

is no direct correlation between them.

For example, if we select tw8 for J2, we could assign J3 into time window tw13. tw8 includes ts3

and ts4, a period of time between t4 and t9. The minimum capacity we can use in this time window

for job J2 is 240, but we can finish by t8 if use 300. In such a case, we would not be able to assign J3

into tw13 since there will be no capacity left at node n3. However, if total volume of job J3 was 200

instead of 300, we could assign it between t8 and t10.
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Figure 5: Mapping Jobs to Time Windows

Assume that total volume of data for job J3 is 200. The flow from J3 to tw8 and tw12 would be 50

instead of 75. We would be able to select tw8 for J2, and tw12 for J2 (total makes 240+50 = 290 < 300).

We could use 240 amount of bandwidth for J3, and 50 amount of bandwidth for J3, between t4 and

t9. Alternatively, we could use 300 amount of bandwidth for J3 between t4 and t8, and 100 amount

of bandwidth for J3 between t8 and t10. In other words, we would introduce a new point at t8 and

divide the time step ts4 into two.

4 Scheduling with Advance Reservation

The data transfer scheduler checks other jobs in the system and considers both time and resource

conflicts. Each job contains information about the total volume of data need to be transferred, source

and destination end-points, and also the time period in which this data transfer operation need to

be completed. Users submit data transfer jobs with a simple time constraint; an earliest time when

this data will be ready to initiate the transfer, and a deadline when the user wants data transfer to

be completed. In order to admit a submitted job, it has to confirm the availability of resources to

complete the transfer of the data before the given deadline. If a job has been admitted, a period of

time is reserved in advance with required capacity in resources along the route between these two
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Figure 6: Minimum Capacity required for each Time Window

Figure 7: Time Conflicts

end-points. We consider that the scheduler has knowledge about the current and future capacity

of resources that affect the end-to-end transfer performance. Users have the opportunity to give a

desired period of time in which they want the transfer to be accomplished. If the scheduler cannot

find a suitable time slot, it can also shift other jobs that had already have a reservation in the given

time period without breaking any deadline requirements of previously admitted jobs.

An important constraint is to reserve contiguous time slots for each job such that a data transfer

operation starts with fixed transfer rate and maintains this until the data volume has completely

transferred. The scheduler has two main objectives. First, it ensures that no other admitted job will
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Figure 8: Time and Resource Conflicts

Figure 9: Resource Conflicts

Figure 10: Assigning Jobs to Time Windows

be postponed due to making a new reservation. In addition to this fairness objective, it also tries

to maximize the number of admitted jobs by moving reserved slots. The scheduler tries to be open
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a suitable period of time to admit a recently submitted job by resolving time and resource conflicts.

On the other hand, it also selects time slots which gives earliest completion time and with minimum

interference with other admitted jobs in the system.

The connection between two end-point may span over multiple routers. As can be seen in Figure 11,

data nodes are connected to the edge-routers in a network. Searching bandwidth allocation between

two edge-routers and finding possible network reservation options are studied in [11].

Figure 11: Connection between two data nodes

Problem Definition: We define the topology as a time-dependent directed graph G(V,E, T ),

with a node set V of n data transfer nodes, and an edge set E ⊆ V ×V with m edges, where ek : (vi, vj)

represents a connection from vi to vj . For every connection between two nodes, there is a function of

link capacity ueij (t) and ueji(t) where t is a variable in time domain T . In addition to that, every

node has separate upload and download capacities, uviout and uviin respectively.

We have a dynamic network environment in which edge capacities may vary over time. On the

other hand, we know the maximum upload and download capacities in each data transfer node. We

consider data transfer nodes (DTNs) as specialized machine(s), with back-end storage servers and data

transfer protocols, connected to the outside network with high-speed high-bandwidth interconnects.

A data transfer job is defined as Ji = (vsi , v
d
i ,Mi, t

E
i , t

L
i ), where Mi is the amount of data to be

transferred from source vi to destination node vj within the time period of (tEi , t
L
i ). tEi represents the

earliest possible time when this data will be ready to start the transfer operation. tLi represents the

latest completion time the transfer operation needs to be finished. tLi defines a soft-deadline for the

transfer operation such that the transfer operation is not interrupted if it cannot finish within the

given deadline. However, the scheduler makes decisions according to the time constraints. It does not

admit a job if it foresees that it is not possible to finish the transfer of the requested data before the

given deadline.

If a submitted job is admitted, we set up a reservation for this job and allocate resources for a

specific time period. A reservation is defined as Ri = (vsi , v
d
i , µi, t

s
i , t

e
i ), where µi amount of bandwidth

is reserved from source vsi to vdi between start time tsi and end time tei . A reservation request is only

confirmed if there exits enough capacity satisfying the allocation of µi bandwidth in the given time

period between tsi and tei . The total allocated bandwidth over link eij should be less than the capacity

ueij (t) of the link for every instance of t in [tsi , t
e
i ]. Similarly, the total in-coming bandwidth allocation

should be less than uviin, and total out-going bandwidth allocation should be less than uviout, in the
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time period of (tsi , t
e
i ). We consider non-preemptive operations where data transfer start at tsi and

continues till tei using µi bandwidth from resources along the end-to-end route; consuming upload

capacity of data transfer node vi, link eij , and download capacity of vj . The duration of the time

period, and the reserved bandwidth should be enough to satisfy transferring the requested amount of

data. We simply say Mi = µi × di, where di is the total time between tsi and tei . Therefore, it should

satisfy the requested bandwidth during the entire period of time from start to end of this transfer.

The problem is to find a contiguous set of time slots such that a fixed amount of bandwidth can be

allocated to satisfy the data transfer request.

4.1 Online Scheduling

We propose an online scheduler that can come up with a decision easily when a new job is submitted,

so it can instruct the underlying reservation managers quickly. The main objective of the scheduler is

to maximize the number of admitted jobs. Besides, it also increases the utilization by maximizing the

number of jobs that use the system. With such an objective in hand, one would expect the scheduler to

accept jobs with small data volume and reject or delay jobs which have large data volume. Moreover,

a job interfering with many other jobs and creating time conflicts will not be preferred. Those criteria

will help maximize number of admitted jobs but will result in unfairness in practice. Therefore, a

crucial condition in our approach is to ensure that no other committed job will be postponed due to

admitting a new reservation request.

Input: A set of admitted jobs (already in the system) and their active advance reservation
Input: A new job request Ji with earliest start tE , latest completion tL, volume M , source vs

and destination vd

Get a set of time steps in the search interval [tE − tL] : {ts1, ts2, . . . , tsn} ;
for i = 1 to n do

for j = i to 1 do
Get time window tw = twj−i which contains all time steps between tsj and tsi;

Check available capacity for vs, vd and link vs → vd in time window tw ;
if the given criteria can fit into the time window tw = tsj . . . tsi then

Make allocation and admit the job;

Return: No reservation found;
Algorithm 1: Scheduling Algorithm: select the time window that gives earliest completion
time with shortest duration.

When a new job request arrives, the scheduler checks available time slots and considers resource

constraints to find a proper allocation for the new request. One major objective is to complete the

given request as early as possible. It selects time slots which gives earliest completion time and with

minimum interference with other admitted jobs in the system. Even though there is available resource

capacity both in nodes and the link, it is always beneficial not to have many concurrent transfers

running at the same time. Furthermore, we would prefer to complete a job as soon as possible. We

prefer allocating higher bandwidth for a shorter duration instead of allocating lower bandwidth for a

longer duration. Data transfers which takes longer and which run on resources shared concurrently

with other jobs, would have higher failure probability. Algorithm 1 gives a greedy heuristic in which
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data transfer operations are scheduling in submission order.

We enhance the scheduling approach given in Algorithm 1. If there is no availability, we try to open

a suitable period of time to admit a recently submitted job by moving previously made allocations

to resolve time and resource conflict Our approach, inspired from Gale-Shapley [52] and N-queen [49]

algorithms, is to design an effective methodology which can easily be implemented and deployed in

practice. When a new job request cannot find a suitable time slot to make a reservation, it competes

with previously admitted jobs to move their reservations and open a proper reservation time for itself.

The outline of our scheduling methodology is as follows. When a new request arrives, we first

evaluate its time and resource constraints, and we try to find a reservation satisfying given criteria.

We search through possible time windows and make a reservation with the preference of selecting the

one which gives earliest completion and shortest transfer duration. If there is no contiguous period of

time with enough resource capacity in the given search interval between tE and tL, we start exploring

possible options to move previously made time reservations to open a contiguous time slot that could

satisfy the resource requirements of the new job request.

In this phase, we search over time windows for the new request, and look for jobs with less

preference value that have allocation in the time window we are traversing. If there are jobs which

Input: A set of admitted jobs (already in the system) and their active advance reservations
Input: A new job request Ji with earliest start tE , latest completion tL, volume M , source vs

and destination vd

Get all time windows which contains all time steps between tE and tL ;

Check available capacity for vs, vd and link vs →vd in time window tw ;
Search time windows to find a reservation satisfying given criteria ;
Time window search sequence : According to earliest completion time but time window with shortest

duration preferred first ;
if A suitable time window satisfying resource constraints found then

Make allocation and admit the job;
else

for All time windows that could satisfy the new request do
For time window tw, search if there is a job with less preference;
Omit jobs which are flagged not to be displaced ;

Request that are already started or already displaced in the current search sequence are also

omitted ;
if There is a job Jk with less preference then

if We can make a reservation for Ji by Displacing Jk then
Displace Jk and Make a reservation for Ji ;
Jk and Ji are flagged ;
Run Algorithm 2 for Jk to find a new reservation ;

if All jobs in the system (including Ji) are scheduled then
Admit the new job Ji;
Accept the new allocation (job-to-resource) mapping by committing the final Reservation Set ;

else
Rollover to the initial state (job-to-resource mapping) ;

Algorithm 2: Scheduling Algorithm: displace previously admitted jobs if necessary to open
space for the new request.
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have less preference for this time period, we select the job with minimum preference. We move out this

job and take over its time allocation to make a temporary reservation for the new request. The job

which recently moved out from its allocated time space starts competing with other jobs to find a new

slot. This recursive operation continues until no reservation left to shift out in worst-case. Algorithm 2

gives a glimpse of the methodology used to search and find a new advance resource assignment, in

order to accept a new job, and displace a previously admitted jobs if necessary to open space for the

new request

4.2 Evaluation

For each new job, we divide the search interval into time steps. The search interval [tE , tL] of a job is

the time period between earliest start time tE and latest completion time tL in which the data need to

be transmitted. A time step represents the longest duration of time in which we have a stable discrete

status in terms of available capacity over the link and the data transfer nodes. The set of confirmed

reservations in the system characterizes time steps since each reservation modifies available capacity

in the topology.

If there are r committed reservations falling into the period, there can be maximum 2r+1 different

time steps in the worst-case. If s is the total number of time steps, there are (s × (s + 1))/2 time

windows since time windows are subsequent combinations of time steps. We search through these

time windows in a sequential order to check whether we can satisfy the requested allocation in that

time window. Overall, the worst-case complexity is bounded by O(r2). Time steps are associated

with reservations and the total number linearly scales with the number of reservations in the system.

Therefore, worst-case complexity for Algorithm 1 is O(n2).

A new data transfer request is only admitted only if we could allocate time and resource capacity in

advance without breaking the constraints of previously admitted jobs. In Algorithm 2, if we can still

find a space for all previously admitted jobs and the new request, we admit the new request and make

the temporarily made reservations permanent. Otherwise, we roll back all temporary reservations and

return back to the previous state. We try and execute the same search procedure for other possible

time windows that this new request can reserve. If we succeed in none of them, we could not end up

finding a schedule satisfying all admitted job and this new request, we either reject the new request

or suggest a new latest completion time.

Assume that there are already n jobs in the system which have already been admitted. When we

receive the (n+ 1)th job, and we could not confirm a reservation just by looking time windows it can

span over, we try to displace other jobs to open space for this recent request. We sequentially traverse

time windows that can satisfy given criteria, and try to find a job with less preference that already

has allocation in the time window we are considering. As it has been described above, this recursive

process will end when we cannot place a previously admitted job. Therefore, there can be maximum

n tries. Thus, total complexity is bounded by number of jobs and number of time windows, O(n×s2).

In a very extreme case where all jobs fall into same search interval, complexity of Algorithm 2 is O(n3)

in worst-case.
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4.3 Preference Metric

Assigning a preference value is important in the design of a greedy heuristic algorithm. Even though we

assign random ranks to each transfer request, the algorithm in general will conclude with a scheduling

decision. Since no previously admitted job will be displaced in order to allocate resources for a new

request, we guarantee that scheduler will eventually come up with a decision that satisfies users by

making reservations based on their criteria. However, we would like to have a good selection metric

in order to have an efficient algorithm. Therefore, we define the following preference metrics.

• P1: (tL− tei )/(tL− tE). The first metric defines time left to complete the job before its deadline,

proportional to the duration of the search interval between earliest start time tE and latest

completion time tL. A job that has lower P1 value has higher preference.

• P2: tsnumJi
/tstotalJi

, where tsnum is the total number of time steps in the current time window

assigned to the job that we are examining, and tstotal is the total number of time steps that

this job can span over to make its reservations. We prefer to assign a job to a time window

which includes less time steps. Therefore, we favor a job which has already been using more

time steps compared to the total number of time steps it can cover. A job assigned to a time

window with higher preference has better chance to have its transfer overlapping with other

transfer operations.

• P3: twid/twnum, where twid is the index of the current assigned time window, and twnum is the

total number of time windows associated for this job. For a recently arrived job twid represents

the current time window we are evaluating to allocate. We compare its preference with other

jobs that are already using this time window. A job with higher P3 value is more close to its

deadline; so, it has higher preference.

• P4: (tL−tsi )/(tL−tE). The last metric is related to the start time. A job that has started earlier

relative to the search interval ([tE , tL]) has lower preference. We favor the jobs that has higher

P5 value. For P2, P3, and P4, higher value means higher preference. Those jobs with lower

preference metric are likely to be displaced to open up space for the jobs with higher preference

values. For P1, higher value means more time to deadline, so less preference.

We have implemented Algorithm 1 and Algorithm 2, and developed a simple simulator that

generates random topologies. In order to test the performance of the given metrics under heavy

system load, we generated random jobs with search interval, time period between latest completion

time and earliest start time, limited to a maximum of two days. User parameters such as data

volume, source and destination data transfer nodes, earliest start time and latest end time are all

set randomly. Available node capacity, and network capacity connecting data nodes are also random.

Default capacity of data nodes are generated between 5Gbps and 10Gbps, available network bandwidth

is between 1Gbps minimum and 10Gbps maximum. In this experimental setup, there are no separate

upload and download capacities. A connection capacity between two nodes is randomly generated

and it is shared for each direction.
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Table 1: Test results for 1000 nodes
nj : number of submitted jobs, nr: number of rejected jobs, ni: iteration count, t: elapsed time in
millisecs

Set 1 Set 2
nj nr ni t nj nr ni t

Alg1 500 343 500 4 500 282 500 5
1000 710 1000 18 1000 648 1000 22
1500 1112 1500 42 1500 1038 1500 52
2000 1528 2000 78 2000 1469 2000 96
2500 1951 2500 127 2500 1895 2500 157

Alg2 500 341 509 5 500 280 523 7
P1 1000 699 1069 28 1000 638 1091 34

1500 1108 1568 61 1500 1021 1682 84
2000 1520 2248 130 2000 1448 2590 195
2500 1936 2903 233 2500 1869 3250 333

Alg2 500 341 504 5 500 278 517 7
P2 1000 702 1055 27 1000 641 1065 33

1500 1108 1562 61 1500 1023 1660 82
2000 1518 2216 128 2000 1449 2569 195
2500 1936 2882 233 2500 1870 3217 324

Alg2 500 341 504 5 500 278 519 7
P3 1000 702 1054 28 1000 641 1070 33

1500 1108 1562 61 1500 1023 1661 82
2000 1518 2219 128 2000 1449 2549 192
2500 1936 2884 233 2500 1870 3214 324

Alg2 500 342 503 5 500 281 514 7
P4 1000 709 1011 25 1000 648 1020 30

1500 1109 1530 59 1500 1031 1553 74
2000 1524 2074 114 2000 1461 2195 156
2500 1944 2653 201 2500 1883 2719 253

Table 2: Test results for 1000 nodes
nj : number of submitted jobs, nr: number of rejected jobs, ni: iteration count, t: elapsed time in
millisecs

Set 1 Set 3
nj nr ni t nj nr ni t

Alg1 2000 1445 2000 79 2000 44 2000 312
2500 1817 2500 119 2500 98 2500 710

Alg2 2000 1427 2124 120 2000 10 2818 561
P1 2500 1803 2621 175 2500 12 3279 1532

Alg2 2000 1430 2104 118 2000 11 2814 562
P2 2500 1804 2596 174 2500 12 7556 4711

Alg2 2000 1430 2104 117 2000 10 2806 576
P3 2500 1804 2596 172 2500 12 3417 1762

Alg2 2000 1436 2047 111 2000 19 2136 428
P4 2500 1810 2538 167 2500 30 3078 1362

We have defined three test sets. In Set 1, data transfer jobs are generated randomly. In Set 2,

jobs have higher chance to get accepted since their data sizes are proportional to the maximum

network bandwidth connecting source and destination. In Set 3, we calculate the data volume size by

multiplying total duration between tE and tL by the minimum link capacity in the topology. In Set 3,

we will have the highest acceptance rate, and in Set 1 we will have highest number of rejected jobs.

For each job, we also generate a submission time. We simulate a real-life scenario where data

transfer operations are submitted independently. We have performed minimum 50 test runs for each

case. We took average of the test results from measurements, and rounded them to the nearest integer.

These test are conducted on a mid-range workstation with 2.5GHz Intel CPU and 4G RAM. We have

collected number total elapsed time along with the number of scheduling iterations to measure the

effectiveness of Algorithm 2. A search sequence is triggered in each iteration. In Algorithm 1, the

iteration count is equal to the number of jobs. In Algorithm 2, it is higher than the number of jobs
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submitted since we might displace other jobs and initiate a new search to come up with a better

scheduling decision. Table 1 and Table 2 show our initial results.

Table 3: Test results for 100 nodes and 250 jobs
nr: number of rejected jobs, ni: iteration count, t: elapsed time in millisecs

nr ni t

Set1 Alg1 182 250 1
Alg2 P3 172 299 2

Exponential-ALL 172 17577 283

Set2 Alg1 158 250 1
Alg2 P3 155 329 3

Exponential-ALL 155 126508 2466

According to experimental results, P2 and P3 are better than others preference metrics in general.

The number of iterations is mostly bounded by the number of nodes - far away from the worst case

scenario O(n3). Furthermore, total time required to make scheduling decisions for all jobs submitted

is less than a second. The scheduling algorithm is efficient and easily applicable to real-life scenarios.

On the other hand, we also compare the competitiveness of the greedy heuristic. We implemented a

special case in which all possible assignments are examined for best scheduling decision. The number

of reservation options increases exponentially. Therefore, we could only test this special case for small

number of jobs. As can be seen in Table 3, Algorithm 2 with preference metric P3 gives same results

in a very efficient manner. Experimental results verify that our proposed approach produces near

optimum results.

5 Conclusion

We have developed a new scheduling model considering resource allocation in client sites and

bandwidth allocation on network link connecting resources. Our model provides a basis for

provisioning end-to-end high performance data transfers in which users submit their jobs with time

and resource constraints to make an advance schedule. The focus of our work is to optimize data

scheduling in the wide-area backbone. Other projects such as TeraPaths and LamdaStation address

reservations between the clients and edge routers, whereas OSCARS addresses reservation between

edge routers. Our scheduler interacts with reservation managers and queries resource availability for

a certain period of time. Once we displace a previously admitted job in order to open space for a new

request, we require specific interface to communicate with the reservation managers and temporarily

hold a reservation. If the scheduler commits the new state, it will communicate and ensure that all

temporary reservations in end points are also replaced. Current reservation systems do not provide

such capabilities at this moment.

We have analyzed time-dependent resource assignment problem with bottleneck constraints, and

presented a detailed study of data transfer scheduling with resource and time conflicts. We have

proposed an efficient heuristic for scheduling data placement operations with advance reservation.

We have implemented our algorithm and examined possible techniques for incorporation into current

reservation frameworks. Performance measurements confirmed that our proposed algorithm is efficient

and scalable.
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