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Abstract—We present DI-MMAP, a high-performance run-
time that memory-maps large external data sets into an ap-
plication’s address space and shows significantly better perfor-
mance than the Linux mmap system call. Our implementation
is particularly effective when used with high performance
locally attached Flash arrays on highly concurrent, latency-
tolerant data-intensive HPC applications. We describe the
kernel module and show performance results on a benchmark
test suite and on a new bioinformatics metagenomic classifica-
tion application. For the complex metagenomics classification
application, DI-MMAP performs up to 4.88× better than
standard Linux mmap.

Keywords-data-intensive; memory-map runtime; memory ar-
chitecture; NVRAM;

I. INTRODUCTION

Data-intensive applications form an increasingly impor-
tant segment of high performance computing workloads.
These applications process large external data sets and often
require very large working sets that exceed main memory
capacity, presenting new challenges for operating systems
and runtimes. In this work, we target a data-intensive
node architecture with direct I/O-bus-attached Non-Volatile
RAM, such as attached Flash arrays today, and STT-RAM,
PCM, or memristor in the future. These persistent memory
technologies provide new opportunities for extending the
memory hierarchy by supporting highly concurrent read and
write operations that can be exploited by throughput driven
(latency tolerant) algorithms such as parallel graph traversal
[1].

In this work, we advocate a memory-mapping approach
that maps low latency, random access storage into an ap-
plication’s address space, allowing the application to be
oblivious to transitions from dynamic to persistent memory
when accessing out-of-core data. However, we, along with
many others, have observed that the memory-map runtime
in Linux is not suited for memory-mapped out-of-core appli-
cations [2] and cannot efficiently support this model. Even
with highly optimized massively concurrent algorithms and
high bandwidth low latency storage, applications designed
to interact with very large working sets in main memory

incur significant performance loss if they read and write data
structures mapped to external storage as if they were in main
memory.

For this reason, most out-of-core algorithms use explicit
I/O to load and store data between external store and
application-managed data buffers. Optimizing an application
for out-of-core execution is an exercise in carefully chore-
ographing data movement, requiring explicit data requests
through direct I/O and manual buffering.

The idea of memory-mapping data from storage into
main memory is appealing for its simplicity. Additionally, it
paves a path for scalable out-of-core computation because
buffering and data movement are implicitly handled by the
operating system’s runtime rather than the application.

In prior work [2] we demonstrated that the standard
memory-map runtime in Linux will rapidly lose performance
as both concurrency increases and as memory within the
system becomes constrained. At the time we speculated
that these performance bottlenecks were due to (a) the
overhead of dynamic page management, and (b) a page
buffering scheme and eviction algorithm ill-suited to many
data-intensive applications.

We have developed a new high-performance runtime that
can seamlessly integrate NVRAM into the memory hierar-
chy using the memory-map runtime abstraction. Our new
module, a data-intensive memory-map runtime (DI-MMAP)
addresses the performance gap in standard Linux memory-
map runtime. This paper demonstrates the effectiveness of
DI-MMAP for data-intensive applications. We demonstrate
that DI-MMAP can consistently achieve significant perfor-
mance improvement over standard Linux mmap on our test
suite, including an unstructured read/write access pattern,
micro-benchmarks that demonstrate searching several types
of data structure, and a bioinformatics application that
searches a large (hundreds of GB) “in-memory” metage-
nomics database. Our memory-map runtime delivers up to
4.88× the performance of standard Linux mmap on the bioin-
formatics application and approaches the peak performance
of raw, direct I/O on a random I/O benchmark.



II. THE DI-MMAP RUNTIME

The data-intensive memory-map runtime (DI-MMAP) is
a high performance runtime that provides a custom memory-
map fault handler and page buffering. It is a loadable Linux
character device driver and it works outside of the standard
Linux page caching system. It is derived from the PerMA
simulator outlined in [2], sharing a common core codebase,
and source code is available at [3]. It has been developed
and tested for the 2.6.32 kernels in RHEL6.

The key features of the runtime are:
• a fixed size page buffer
• minimal dynamic memory allocation
• a simple FIFO buffer replacement policy
• preferential caching for frequently accessed pages
The combination of these features allows DI-MMAP to

provide exceptional performance at high levels of concur-
rency compared to standard mmap, as shown in Section V.
The DI-MMAP device driver is loaded into a running Linux
kernel. As it is loaded, the device driver allocates a fixed
amount of main memory for page buffering. Once the device
driver is active, it creates a control interface file in the /dev
filesystem. The control file is then used to create additional
pseudo-files in the /dev filesystem that link (i.e. redirect) to
block devices in the system. When a pseudo-file is accessed
all requests are redirected to the linked block device.

DI-MMAP uses a simple FIFO buffering system with
preferential storage of frequently accessed pages. Figure 1
shows a logical diagram of the DI-MMAP buffer and page
management queues. The buffer contains enough pages to
fill all of the queues plus one spare page. When a page
fault occurs, the page location table is checked to see if
another process (or thread) has already faulted the page into
the buffer. If the page is in the buffer, the page is added to
the page table of that process and the fault is completed.
Otherwise a free page is allocated from a pool of empty
pages. Data is then read from the block device into the fresh
page, and the page is queued into the series of FIFOs.

In the steady state, a page fault will displace the oldest
page in the primary FIFO. If the displaced page has been
faulted more frequently than the buffer’s average it will be
placed into the hot page FIFO, otherwise it will be placed
into the eviction queue. When an newly displaced page is
inserted into the hot page FIFO, it will displace a formally
hot page, which is then placed in the eviction queue. Once
a page is in the eviction queue, it will eventually be flushed
to storage if dirty, cleaned and returned to the free page
list. One important aspect to maintaining performance is to
properly manage TLB occupancy and eviction. Examples of
the performance loss that can occur due to excessive TLB
thrash have been noted by other research projects, such as
Wu et al.’s [4] work on storage class memory. To address
these problems, DI-MMAP removes pages from the page
table of every process (it was mapped in to) as they are

scheduled for eviction, but the translation look-aside buffers
(TLBs) are flushed in bulk (only when an eviction buffer is
full). Another optimization is page recovery. When a page
fault occurs for a page that is in the eviction buffer, it is
not flushed out. Instead, it is put into the primary FIFO, and
a fault counter is incremented to indicate that it has some
temporal locality (thus it might be a hot page).

DI-MMAP Buffer

Primary FIFO?

Hotpage FIFO

Eviction Queue

is a hot page

remove from
Page Tables

page fault

page evicted Free Page List

TLB Flush / 
writeback page

DI-MMAP Buffer Page Location Table

page recovered

Figure 1. DI-MMAP page buffer

III. RELATED WORK

Providing more control, and application specific-control,
over memory page management is not a new idea. Pre-
viously, there were several research efforts focused on
the virtual memory management system in the Mach 3.0
micro-kernel that have yet to be revisited for modern HPC
operating systems. They studied the effects of different
page eviction policies, application-specific pools of pages,
and even application defined replacement policies. Examples
include the HiPEC project by Lee et al. [5] and efforts by
Park et al. [6]. Qureshi et al. [7] studied adaptive cache
insertion policies, with an online voting mechanism, for
CPU’s.

All of these previous research projects have demonstrated
that customized memory management and paging policies
can dramatically improve a system’s performance. They
demonstrated that scalable performance is possible as appli-
cations shift from in-memory to out-of-core computations.

IV. EXPERIMENTAL METHODOLOGY

The DI-MMAP runtime is designed to provide high
performance on highly-concurrent, data-intensive workloads.
To test DI-MMAP we use three types of benchmarks:
a synthetic random I/O workload, a small set of three
microbenchmarks, and a metagenomics classification ap-
plication. The synthetic random I/O workload was chosen
because it is a good approximation for the unstructured ac-
cess patterns found in many data-intensive applications. The
micro-benchmarks are three commonly used data traversal
and search algorithms. Finally, the metagenomics classifica-
tion application is a new data-intensive bioinformatics appli-
cation developed at LLNL to identify pathogens in samples
containing an unknown variety of biological material.

The common approach to testing DI-MMAP was to load
data onto a PCIe-attached Flash storage card, and have the



DI-MMAP runtime create a pseudo-device that linked to
the raw Flash card. Each benchmark then memory-maps
the DI-MMAP pseudo-device(s), enabling all page faults for
the mapped address range to be serviced and buffered by
the DI-MMAP runtime. These results are then compared
to the existing Linux memory-map runtime and to direct
(unbuffered) I/O as appropriate.

A. LRIOT
The Livermore Random I/O Testbench (LRIOT) is a

synthetic benchmark that is designed to test I/O to high-
performance storage devices. We have developed LRIOT to
augment the industry standard FIO benchmark for testing
high data rate memory-mapped I/O with different pro-
cess/thread combinations. LRIOT can generate tests that
combine multiple processes and multiple threads per process
to simulate the highly concurrent access patterns of latency
tolerant data-intensive applications. Furthermore LRIOT can
generate uniform random I/O patterns that mimic the un-
structured access patterns of algorithms such as breadth-
first search graph analysis [2]. LRIOT can also do standard
and direct I/O in addition to memory-mapped I/O, and thus
provides a common testing framework. Finally, the LRIOT
benchmark has been validated against the FIO benchmark
and provides comparable results for direct I/O.

B. Micro-benchmarks
To complement the LRIOT experiments, we tested

three micro-benchmarks that reproduce memory access pat-
terns common to data-intensive applications. The micro-
benchmarks are: binary search on a sorted vector, lookup
on a ordered map structure that is implemented as a red-
black tree, and lookup on an unordered map structure that
is implemented as a hash map. The micro-benchmarks use
the C++ STL and Boost library implementations of these
algorithms.
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Figure 2. Read-only random I/O benchmark with uniform distribution.
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Figure 3. Write-only random I/O benchmark with uniform distribution.

C. Metagenomic Classification

Metagenomics involves the sequencing of heterogenous
genetic fragments taken from the environment, in which
the fragments (also called “reads”) may be derived from
many organisms. This application queries a database of
genetic markers called k-mers, which are length k sequences
out of a DNA, RNA, or protein alphabet. We place these
large (hundreds of GiB) k-mer databases in Flash storage
and memory-map the database files to access the indexed
data sets. The access patterns to the datasets are extremely
random.

We perform two types of experiments to evaluate DI-
MMAP using this metagenomic database. First, we report
the performance of a raw k-mer lookup benchmark. Sec-
ond, we report the performance of the entire metagenomic
classification application. In both scenarios, we compare the
performance of standard Linux mmap of a file with DI-
MMAP.1 For the two experiments, we use the following
input sets: first a synthetic metagenome derived from a
human gut sample (HC1) and second, three real-world
collections of metagenomic samples.

The metagenomic database contains k-mer markers refer-
ring to genomes from within a reference database (set of
collected genomes) along with additional data associating
the k-mer with a genome and the genome’s position in the
taxonomy tree of organisms. For our tests, k = 18, the k-mer
is encoded in a 64-bit integer [8], and our database size is
635 GiB. Our implementation uses the gnu hash map with
the k-mer as key, and pointers to the associated genomes
and taxonomy information as value. A lookup retrieves the
associated data, which can range from from a few hundred
bytes to several thousand.

The metagenomic classification application uses k-mer

1We have also conducted tests comparing mmap of a raw device (without
DI-MMAP) containing a database with one stored on a file system and
have not observed any significant difference.
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Figure 4. Micro-benchmarks: Binary Search on Sorted Vector, Lookup on an Ordered Map, and Lookup on an Unordered Map, respectively.

lookup as a frequent kernel operation. The application
processes input files containing reads from the metagenomic
samples. Once the application has queried the index using
the extracted k-mers, it uses those results — the presence
of particular taxonomic identifiers — to assign a label to
each read. Input data is trivial to partition for processing
in parallel; thus, many classification procedures are run
concurrently using OpenMP threads.

V. RESULTS

A. LRIOT: Uniform random I/O distribution

The first experiment compares the performance of DI-
MMAP, standard mmap, and direct I/O. LRIOT generated
a random sequence of 6.4 million read operations to a
128GB file that was striped across three 80 GiB SLC
NAND Flash Fusion-io ioDrive PCIe 1.1 x4 in a RAID 0
configuration. The input read sequence is constructed so that
it is repeatable, has one address per page, and is unique per
process. Therefore each test will fetch 6.4 million unique
pages, about 24 GiB of data. The data transfer size for all
I/O (direct and memory-mapped) was 4KB pages. The host
system was a 16 core AMD 8356 2.3GHz Opteron system
with 64 GiB of DRAM and running RHEL 6 2.6.32.

Figure 2 shows the number of I/O per second (IOPs)
that LRIOT achieved for the different I/O methods as
concurrency increased. Note that each test used one process
and the x-axis shows the number of concurrent threads.
There are 5 specific test configurations shown here. The
first line is for direct I/O and is typically the upper bound on
achievable performance for a set of devices. The second and
third lines are for the standard Linux memory-map handler
when there is sufficient memory to hold all pages that are
accessed in memory, i.e. mmap buffering is unconstrained,
and when the page cache is constrained to hold only 8
GiB of pages. Finally, curves four and five are for DI-
MMAP with a fixed buffer size of 4 GiB and 1 GiB,
respectively. Figure 2 shows that the performance of DI-
MMAP is very close to the performance of direct I/O and
mmap when unconstrained, even with a very small buffer
size of 1GiB. Furthermore, Figure 2 shows that standard
Linux mmap performs well when memory is unconstrained,

but performance drops significantly when system memory
is constrained and the requested data exceeds the capacity
of main memory. Overall, we see that DI-MMAP is able
to deliver near peak performance with limited buffering
resources, with only a 15% loss in IOPs due to overheads.

Figure 3 shows the number of IOPs that LRIOT is able
to achieve with a similar write-only working set. As with
the read-only working set, DI-MMAP offers a bit more than
double the performance of Linux memory-map when it is
constrained and similar performance to the unconstrained
Linux mmap. However, unlike the read-only test the perfor-
mance of DI-MMAP does not match that of direct I/O and
is the subject of further investigation.

B. Micro-benchmarks

The three micro-benchmarks were all performed on an
8 core AMD 2378 2.4GHz Opteron system with 16 GiB
of DRAM and two 200 GiB SLC NAND Flash Virident
tachIOn Drive PCIe 1.1 x8. The database size for the vector
and maps ranged from ∼ 112GiB to ∼ 135GiB and each
micro-benchmark issued 220 queries. For each of graphs in
Figure 4 performance is measured in lookups per second
and the x-axis is the number of concurrent threads. In each
figure, line one is the performance of Linux mmap with un-
constrained memory, lines two and three is the performance
of Linux mmap with 8 and 4 GiB of available buffering
(respectively), and line four is the performance of DI-MMAP
with 4GiB of available buffering. These figures show that the
performance of DI-MMAP significantly exceeds the perfor-
mance of Linux mmap when each is constrained to an equal
amount of buffering, and in some cases the performance with
DI-MMAP is able to approach the performance of mmap
with no memory constraints.

C. Metagenomics Search & Classification

We have performed these experiments on a 4 socket, Intel
E7 4850 @ 2 GHz, running Linux kernel 2.6.32-279.5.2
(Red Hat Enterprise 6). For storage we use a software RAID
over two Fusion-io 1.2 TB ioDrive2 cards, formatted with
block sizes of 4 KiB, and 16 GiB DRAM available for buffer
cache.
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Figure 5 shows the performance of the raw k-mer lookup
benchmark using the HC1 input set. The x-axis denotes
increasing numbers of threads used for each trial and the
y-axis shows k-mers per second. When using 8 threads, k-
mer lookup performs better using DI-MMAP than standard
mmap with a file system, and the performance gap increases
with additional concurrency. Notably the performance with
standard mmap peaks at 16 threads and then degrades. The
peak performance for DI-MMAP with 240 threads is 4.92×
better than the peak performance for standard mmap with 16
threads.

Figure 6 shows performance for metagenomic sample
classification. We have selected thread counts that offer near
peak performance, 16 and 160, for standard mmap and DI-
MMAP, respectively. The difference in overall performance
between the input sets varies due to percentages of re-
dundant k-mers and the diversity of the metagenome. The
peak performance of DI-MMAP vs standard mmap ranged
from 4.88× for the SRX input set down to 3.66× for the
ERR input set, which exhibited greater diversity, and thus,
required additional computation for the classification.

VI. CONCLUSIONS

The goal of the data-intensive memory-map (DI-MMAP)
runtime is to provide scalable, out-of-core performance for
data-intensive applications. We show that the performance
of algorithms using DI-MMAP scales up with increased
concurrency, and does not significantly degrade with smaller
memory footprints. As such, DI-MMAP provides a viable
solution for scalable out-of-core algorithms. DI-MMAP of-
floads the explicit buffering requirements from the appli-
cation to the runtime, allowing the application to access its
external data through a simple load/store interface that hides
much of the complexity of the data movement.

We demonstrate the performance of DI-MMAP over
Linux’s existing memory-map runtime with a simple random
I/O workload, three micro-benchmarks, and a metagenomics
classification application. Our results show that as the tests
increase in complexity the performance of DI-MMAP can
be 3.66× to 4.88× better than standard Linux mmap for
the metagenomics sample classification application. Further-
more, the use of DI-MMAP alleviates the need to implement
a custom, user-level buffer caching algorithm and infrastruc-
ture to achieve high performance.
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