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Abstract 

 
Major scientific challenges hinder the success of an industrial-scale algal biofuels 
program. Four broad areas of R&D needs have been identified for economically 
viable, industrial-scale cultivation of algae: culture sustainability; system 
productivity; nutrient source scaling and sustainability; and water conservation, 
management, and recycling. Progress in each of these areas is limited by significant 
knowledge gaps in fundamental algal biology. This SAND report summarizes 
research conducted as part of an LDRD project (FY10- FY12) to address this 
shortcoming.  We have developed a novel, multidisciplinary, multiscale approach 
utilizing Sandia’s core expertise in bioanalytical spectroscopy, chemical imaging, 
remote sensing, genomics, and computational modeling in collaboration with 
researchers at University of New Mexico and Arizona State University to investigate 
the effects that dynamic abiotic and biotic stressors have on algal photosynthesis, 
growth, and lipid production. The discoveries will enable gains in productivity and 
sustainability that are critical for cost-effective, industrial-scale algal facilities.   
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1.  INTRODUCTION 
 
 
This SAND report summarizes research conducted as part of an LDRD project funded from 
October 1, 2009 through September 30, 2012 
 
1.1. Background and Motivation 
 
Microalgae can accumulate large amounts of oil (triacylglycerols) and polar lipids that can be 
converted to biodiesel and JP8 aviation fuel with currently available technology. Algae have 
many advantages including an inherently high photosynthetic efficiency, ability to utilize CO2 
and potentially reduce greenhouse gas emissions, and they will not compete with food 
production. Together these properties make microalgae an important potential piece in the 
renewable energy puzzle. However, like lignocellulosic materials, there are major scientific 
challenges to an industrial-scale algal biofuels program. Recently, four broad areas of R&D 
needs have been identified for economically viable, industrial-scale cultivation of algae: culture 
sustainability; system productivity; nutrient source scaling and sustainability; and water 
conservation, management, and recycling. Progress in each of these areas is limited by 
significant knowledge gaps in fundamental algal biology specifically surrounding the response of 
microalagae to dynamic environmental parameters.  
 
To quote the Algal Biofuels Roadmap: “Methods for automated biological and chemical 
monitoring in production settings will be essential for assessing the health and compositional 
dynamics of algal ponds.” To achieve this, a tool kit including sensitive, selective methods for 
the early detection of fluctuations in algal health, productivity, and invasive algal strains, 
pathogens and predators must be developed. At present very little is known about the effect these 
changes have on the biochemical indicators of algae health. Data are particularly scarce for 
locations in the southwestern U.S. that have the land, sunlight and saltwater resources required 

for large scale algal cultivation. In 
summary, these facts make our 
proposed research important, timely, 
and relevant not only on the DOE’s 
mission for sustainable, affordable 
energy, but also right here in our 
backyard. 
 
1.2.  Technical Approach 
 
This project begins to address the 
knowledge gaps presented in Section 
1.1. through the development and 
application of an innovative, 
multidisciplinary approach that 
combines traditional algal physiology 
with molecular biology, bioanalytical 
spectroscopy, chemical imaging, 

Figure 1-1: The primary goals of the project with 
arrows to highlight the strong integration across 
the different disciplines. 
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remote sensing, transcriptomics, and 
computational modeling to pr ovide an 
improved fundamental understanding of 
algal growth and development.  This 
permits identification of molecular and 
spectral biomarkers that indicate algal 
response to changing environmental 
conditions, translation of those 
biomarkers to field-based measurements, 
and development of a computational 
model capable of predicting algal growth 
at the industrial scale.   
 
This approach has three main 
differentiating features, namely the 
emphasis on: a  high- degree of 
integration (Figure 1.1), research over 
multiple spatial scales (Figure 1.2), and 
production-relevant, fundamental 
science.     
To ensure the project scope is 
manageable yet relevant the experiments 
utilize the model green alga 
Chlamydomonas reinhardtii (C. reinhardtii) as well as potential production strains of 
microalgae, including Nannochloropsis salina (N. salina), under optimal and CO2 and salt 
stressed conditions.  
 
1.3.  Impact 
 
This work fills a strategic niche in an important, yet largely unexplored area of biofuels where 
SNL has unique capabilities. The development of an integrated bioanalytical toolkit to provide 
sensitive, selective methods for detecting early fluctuations in algal health and productivity has 
the broad impact on algal biofuels and bioenergy, permitting early intervention and higher 
biomass production. This is aligned with the mission of Sandia National Laboratories in 
bioenergy and is directly relevant to the current national security mission of the Department of 
Energy.  
 
This project has positively impacted Sandia National Laboratories algal biofuels program in four 
overarching areas: 1) growing the infrastructure, 2) developing differentiating technical 
capabilities, 3) using these capabilities to facilitate discoveries in algal biology, and 4) increasing 
our external visibility.  These are detailed below. 
 
Growing Algal Biology at the SNL-NM site: 

 Development of a fully functional biological laboratory for culturing, manipulating, and 
conducting experiments on a variety of algae, cyanobacteria, fungi, viruses, and bacteria 

 Ownership and maintenance of algal greenhouse facility  

Figure 1-2: Investigations span multiple spatial 
scales in the biological processes studied as 
well as the culture size.  
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 Support of key hires in bioenergy/biofuels  
 Support of a total of 5 student interns 
 Development of key collaborations with Arizona State University, University of New 

Mexico, and Sapphire Energy 
 
Developing Differentiating Technical Capabilities  

 Development of hyperspectral reflectivity technology to remotely sense algal growth at 
the benchtop, greenhouse, and raceway scales. 

 Development of multidimensional bioanalytical pipeline for conducting experiments at 
the laboratory and greenhouse scales. 

 Discovery of spectroscopic signatures correlated to culture growth and productivity at 
laboratory and greenhouse scales and demonstrated the success of these methods at the 
industrial raceway scale.  

 Development of predictive computational models of algal growth and productivity at the 
industrial scale.  

 
Novel Biological Discoveries enabled by our Differentiating Capabilities 

 Understanding of the effect of CO2 stress on photosynthesis and lipid production in N. 
salina  

 Real-time spectroscopic modeling of N. salina growth and stress in greenhouse 
 Clarification of the boundary between stress and possible programmed cell death-like 

response in C. reinhardtii cells under salt stress 
 
Increasing External Visibility 

 Development of preliminary data and expertise for multiple internal and external 
proposal ideas  

 16 posters, 14 presentations at conferences (over ½ were invited) 
 Publication of manuscripts in Algal Research, PlosONE, J. Computational Biology, J. 

Chemometrics & Intell Lab Systems. 
 
Note: This SAND report is not meant to provide a comprehensive review of all of the 
experiments in elaborate detail, but rather capture the important highlights.  Select experiments 
conducted and results generated as part of this LDRD project are described in the sections that 
follow.  For detailed reports of the work conducted under this LDRD, the reader is referred to the 
peer-reviewed publications in print, press, and preparation. (Collins, 2011; James, 2010; Jones, 
2012; Reichardt, 2012) 
 
 
  



 

14 

 



 

15 

2.  DEVELOPMENT OF HYPERSPECTRAL REFLECTIVITY FOR 
ASSESSING ALGAL GROWTH AND PRODUCTIVITY AT THE 

LABORATORY, GREENHOUSE, AND RACEWAY SCALES 
 
2.1.  Introduction 
 
Both active and passive approaches can be considered for remote sensing of algal biofuel 
production.  Whether applying an active or passive approach, the goal is to remotely assess the 
inherent optical properties (Baker, 1982) of the algal culture via the collection and interpretation 
of light from the sample.  Both categories of approach rely on three processes – absorption, 
scattering, and fluorescence – to provide a spectral signature indicative of the culture 
constituents.  While active approaches require transmission of light to the culture, typically in the 
form of a laser beam (Hoge, 2005), passive approaches rely instead on external lighting 
conditions (e.g., laboratory growth lamps or the sun) to provide the incident light.  After 
performing initial demonstrations of both active and passive sensing at the laboratory benchtop 
scale, follow-on efforts focused on applying passive hyperspectral sensing to the greenhouse- 
and raceway-scales. 
 
2.2.  Laboratory Measurements 
 
The laboratory measurements have been fully described in a recent publication (Reichardt, 
2012), so only a brief summary is presented here.  The laboratory reflectance instrument 
consisted of a dual-channel fiber-coupled spectroradiometer (Ocean Optics Jaz system).  To 
capture the upwelling light, one channel of the spectroradiometer was connected to a bare fiber 
directed downward over a beaker containing the algal culture.  The other channel was connected 
to a fiber with a cosine-corrector diffuser attachment directed upward to measure the 
downwelling light.  The 0.22-numerical aperture (NA) of the bare fiber defined a 2×sin-1(0.22) = 
25o field-of-view (FOV) for the downward-looking fiber, while the cosine corrector attached to 
the upward-looking fiber allowed for the full collection of downwelling light.  The relative 
spectral responses of both channels were determined with an Ocean Optics LS-1 tungsten-
halogen calibrated light source.  Analysis of the resulting reflectance spectra (Reichardt, 2012) 
demonstrated successful extraction of the pigment optical activity and algal cell backscatter. 
 
2.3.  Greenhouse Measurements 
 
Reflectance measurements were performed on two greenhouse-contained mini-ponds (6-ft 
diameter stock tanks) located in TAIII at Sandia NM (Figure 2-1).  Each pond possesses a 
center-pivot with multiple arms for injecting air and carbon dioxide.  The major challenge 
associated with acquiring reflectance measurements from these ponds resulted from the 
greenhouse itself: the structure casted shadows (Figure 2-2) onto the downwelling detector as 
well as into the FOV of the upwelling detector.  In an attempt to reduce the impact of shadows 
on the acquired data, the downwelling detector was positioned within the FOV of the upwelling 
detector, with the goal of arranging the sensors to be more equally affected by the shadows.  
However, even in this configuration, the temporally varying shadows had an adverse effect on 
the reflectance spectra.  Other challenges included stabilizing the temperature of the 



 

16 

spectroradiometer: the heat transfer capacity of the instrument enclosure, which utilized 
thermoelectric cooling, was sometimes insufficient for temperature stabilization. 
 

 
Figure 2-1.  Mini-ponds in the Sandia greenhouse.  Two dual-channel spectroradiometers 
were configured in the instrument enclosure that is positioned between the ponds. 

 

 
Figure 2-2.  Reflectance measurement on mini-pond.  The shadows cast by the 
greenhouse structure, evident especially in the right side of the photograph, varied 
throughout the day. 
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2.4.  Raceway Demonstration  
 
From July-September 2012, the reflectance-measurement instrument was deployed at the 
Arizona Center for Algae Technology and Innovation (AzCATI), located at Arizona State 
University’s (ASU’s) Polytechnic Campus in Mesa, AZ.  (Figure 2-3) Measurements were 
conducted on a single raceway pond.  C ompared to the laboratory and greenhouse 
measurements, two additional channels were added: (1) a bare fiber staring at zenith to collect 
the radiance directly overhead, and (2) a fiber submerged into the water to measure the below-
surface radiance.  The  instrument temperature stabilization was upgraded to the use of an 
outdoor refrigerated enclosure (Summit SPR6OS 24) coupled to a digital thermostat control unit 
(Johnson Controls A419). 

 
Reflectance spectra were acquired over the entire 
12-day time span of N. salina culture growth.  
Sample reflectance spectra are displayed in Error! 
eference source not found., accompanied by fits to 
the reflectance model described by Reichardt et al. 
(2012).  In order to fit the spectra, the relative 
amplitudes of the absorption features of 
Nannochloropsis sp. (Gitelson, 2000) were no 
longer fixed within designated pigment groupings, 
as described by Reichardt et al., but ra ther were 
allowed to vary independently.  In addition, the 
backscattering spectrum was approximated to be 
spectrally flat.  Error! Reference source not 
ound. displays a comparison between the 
backscattering coefficient and the dry cell weight 
(DCW) determined from sampling measurements 
acquired daily.  The  linear scaling of the two 
vertical axes has been set to illustrate the agreement 

Figure 2-3  Reflectance measurement on the outdoor raceway pond 
at AzCATI. 

Figure 2-4 Spectroradiometer 
instrument configured inside 
temperature-controlled enclosure. 
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between the algal backscattering coefficient and the DCW.   As  expected, the algal 

backscattering coefficient increases with increasing algal density, providing a remote assessment 
of biomass.  
   
2.5.  Conclusions and Future Outlook 
 
Hyperspectral reflectance provides the capability to monitor remotely the algal pigment optical 
activity and algal cell backscatter.  The hardware required for such a measurement is of 
reasonable cost (~$10K) and is sufficiently rugged for long-term autonomous field deployment.  
Challenges nevertheless remain in the quantitative interpretation of data, including 
 

(a) the variable angle of the sunlight and the resulting specular reflection from the water 
surface (Doxaran, 2004b; Lee, 2010; Singh, 2008), 

(b) potentially rapidly changing sunlight conditions due to shading (Adler-Golden, 2001; 
Doxaran, 2004a) or variable clouds (Adler-Golden, 2009), 

Figure 2-5 Reflectance spectra acquired at ~10 AM each morning for the first 7 days of 
culture growth.  T he data are displayed with black lines, while the model fits are 
displayed in red 
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(c) the uncertainty in defining the backscattering spectrum for any specific algal species 
(Ahn, 1992; Craig, 2006; Doxaran, 2009; Quirantes, 2006; Stramski, 2001; Svensen, 
2007; Vaillancourt, 2004; Whitmire, 2010; Zhou, 2012), 

(d) the spectral variation of the angular extent of the reflected light field (Hirata, 2009; 
Hlaing, 2012; Lee, 2011; Morel, 1996; Zibordi, 2001).   

 
Addressing these challenges is an area of active research within the field of oceanography.  
Having demonstrated that implementation of the approaches of the oceanography community are 
appropriate for assessing algal biofuel production, it is anticipated that algal remote monitoring 
will continue to benefit from their ongoing advances.   
 

 
 

 

Figure 2-6  Backscattering coefficient (circles) derived by 
fitting the spectra displayed in Fig. 5 compared to the DCW 
(line) determined via sampling. 
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3.  UNDERSTANDING THE ROLE OF THE CCM IN ALGAL GROWTH 
AND LIPID PRODUCTION UNDER NORMAL AND STRESS 

CONDITIONS 
 
3.1.  Introduction 
 
Algae are an extremely diverse and artificial grouping of organisms that span the tree of life, 
differing more from each other than humans from some algae. In the broadest interpretations, the 
term “algae” even includes prokaryotes (cyanobacteria and some proteobacteria). Despite these 
differences, they share the same core photosynthetic carbon metabolism based on the Calvin 
cycle. Many appear to have evolved add-ons to the core processes, though few have been tested. 
One common add-on is a pyrenoid-based carbon concentrating mechanism (CCM) (Badger, 
1998). The pyrenoid is an electron-dense proteinaceous body within the chloroplast and is 
repeatedly spanned by a network of thylakoid membranes. It is primarily composed of the CO2 
capturing enzyme ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), carbonic 
anhydrase, and a few other enzymes involved in the Calvin cycle. The function of the pyrenoid is 
to localize Rubisco and carbonic anhydrase to a region within the chloroplast where CO2 is 
elevated through the action of cellular CO2 and HCO3

- pumps. This effectively eliminates the 
oxygenase activity of Rubisco and increases the efficiency of photosynthetic CO2 capture. The 
pyrenoid CCM is also variably expressed in many algae, being down regulated in environments 
where CO2 and HCO3

- levels are high and up-regulated when they are low. It is not known if the 
expression of the pyrenoid CCM has an impact on the production of lipids. In fact, even the 
presence or absence of a pyrenoid CCM in most potential algal biofuel production species is 
unknown. 
 
Understanding the efficiency of CO2 capture and conversion to lipids in algae is essential for 
engineering and operation of an algal biofuel facility. The provision of CO2 is costly both 
energetically and economically, and the cost increases substantially if CO2 levels within cultures 
need to be maintained above atmospheric. At atmospheric CO2 levels, algae expressing a CCM 
can photosynthesize at the same rate as cells growing at 1-5% CO2. However, this requires extra 
investment by the cell to energize the CCM and to synthesize extra proteins. These additional 
energy requirements could be met through additional light harvesting or consumption of lipid 
reserves. It is also reasonable to hypothesize that low CO2 would be perceived as a stress, much 
like low nitrogen, and stimulate cells to store dramatically more lipid. Each of these outcomes 
has significant implications for life-cycle analyses of an algal biofuel production facility. 
 
This work examines the effect of CO2 supply on both CCM function and lipid production by 
growing Nannochloropsis salina strain 1776 in cultures bubbled with high or low concentrations 
of CO2 and then switching cultures between conditions. It is unknown if N. salina 1776 has a 
CCM, though Nannochloropsis gaditana has been shown to express one (Huertas, 2002). In 
addition, experiments conducted with Chlamydomonas reinhardtii have shown that providing 
CO2 at or above 5000 ppm down-regulates CCM expression whereas providing CO2 at or below 
500ppm up-regulates CCM expression (Vance, 2005). Therefore, by switching cultures between 
5000 ppm (high CO2) and 500 ppm (low CO2) and monitoring a time-course of their adaptation 
to each condition, we should be able to determine if there is a relationship between CCM 
function and lipid production. It should be noted, that this treatment is changing the total amount 
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of inorganic carbon (CO2 and HCO3
-) available ten fold, though the absolute amounts of either 

CO2 or HCO3
- depends on the pH, salinity, and possibly the carbonic anhydrase content of the 

media. 
 
3.2.  Description of Integrated Experiments Conducted 
 
3.2.1. Algal growth and sampling 
N. salina strain 1776 was grown in custom-built 500mL polycarbonate airlift photosynthetic 
bioreactors (Figure 3-1) using F/2 media adjusted to pH 7.6.  Media was continuously added via 
a peristaltic pump at a flow rate of approximately 300 mL day-1 for cultures grown at high CO2 
and 150mL day-1 for cultures grown at 
low CO2 in order to maintain similar cell 
densities in mid-log phase growth during 
the experiment. Cultures were 
continuously bubbled at a flow rate of 
approximately 100 m L min-1 with either 
approximately 5500 pp m (high) or 500 
ppm (low) CO2 in air and provided all 
mixing for the cultures. Fluorescent lights 
were kept on continuously and provided 
approximately 145 μmol photons m-2 s-1. 
Culture temperature was 25oC. pH was 
monitored daily as cultures were grown 
for seed stock and then at each time point 
during the experiment. Initially, two seed 
cultures were grown for 3-5 days in two 
photobioreactors, one at each CO2 level. 
Three days prior to the experiment, 150 
mL was taken from each seed reactor and 
split equally to start three identical 
photobioreactors for each condition. 
 
Cultures started at low CO2 were 
switched to high CO2 in order to suppress CCM function and cultures at high CO2 were switched 
to induce CCM function. Six cultures (3 for each treatment) were sampled at four time points: 0, 
4, 24, and 48 hours after switching the concentration of CO2 supplied to the culture to monitor 
the rate of adjustment to each condition. All sampling began about 60 minutes prior to each time 
point so that sample collection was complete by the designated time. At each time point ~25 mL 
of culture was removed through a valved port at the base of the photobioreactor and the pH was 
measured. Precisely 10 mL of the sample was pelleted, frozen, and stored at -80 oC for future 
analyses.  Five 5 m L of sample was placed into a glass tube for measurements of variable 
chlorophyll fluorescence, 1 m L was pelleted and frozen in liquid nitrogen for chlorophyll 
extraction, 1 mL was used to determine the rate of photosynthesis via net oxygen exchange, and 
5 mL were used for flow cytometry and microscopy (BODIPY staining, spinning disk 
fluorescence microscopy, and hyperspectral imaging). Air entering and exiting the culture was 

Figure 3-1 Airlifit photobioreactors. Filtered air 
was provided from the bottom and, along with a 
vertical baffle, was used to mix the cultures and 
to deliver CO2. Media was added continuously 
from the top using peristaltic pumps and 
overflow out the black valves at the top was 
collected for disposal. 
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also collected in Tedlar bags with gas ports for later determination of photosynthesis via net CO2 
exchange and photosynthetic discrimination. 
 
3.2.2. BODIPY staining and flow cytometry 
1.5 ml of culture from each PBR was mixed with 15 uL of bodipy (1mM stock) to a final 
concentration of 10 uM, and incubated for 5 minutes at room temperature. 100 μL aliquots were 
then removed for cell counting and analysis on a flow cytometer.  Three dilutions ranging from 
1:20 to 1:100 of each BODIPY labeled into culture media were analyzed using the Accuri flow – 
“slow fluidics” setting until 20,000 events above background were collected.  
 
3.2.3. Chlorophyll extraction 
Frozen 1 mL pellets were resuspended in cold methanol via vortexing. This freeze-thaw step was 
essential for complete extraction (data not shown). Cell debris was pelleted via centrifugation 
and the supernatant was assay spectrophotometrically for chlorophyll a content (Porra, 1989). 
 
3.2.4. Variable chlorophyll fluorescence 
Pulse-amplitude modulated variable chlorophyll fluorescence (Mini-PAM, WALZ, Inc) was 
measured at each time point to assess the efficiency of linear electron transport originating from 
PSII(Genty, 1989). Samples were measured in the light (Fv'/Fm') and after 20 min of dark 
adaptation (Fv/Fm). 
 
3.2.5. Net oxygen exchange 
An oxygen electrode (Hansatech, Inc) was maintained at culture temperature (25oC), illuminated 
with a fluorescent bulb (145 μmol photons m-2 s-1), and calibrated daily with water sparged with 
air (20.9% O2) or nitrogen. Rates of net photosynthetic oxygen production were determined from 
the slope of the increasing O2 concentration immediately after transferring a 1mL aliquot from 
the photobioreactor to the electrode cuvette. Rates were expressed on a per cell and per mg 
chlorophyll a basis. 
 
3.2.6. Net CO2 exchange and photosynthetic discrimination 
Gasses entering and exiting each photobioreactor were collected in Tedlar bags at each time 
point. Gas bags were then transported to the University of New Mexico (UNM) and analyzed for 
total 12CO2 and 13CO2 content using a tunable diode laser (TDL) absorbance spectrometer (TGA-
100, Campbell Sci.). Each bag was connected to a TDL inlet and sampled at a rate of 100 mL 
min-1 until a steady signal was achieved (usually1-2 min). The TDL uses a Nafion counter-flow 
system to dry all samples to a constant water content and two standards were sampled every 10 
min for calibration. All calibrations for each day were used to determine and offset and gain that 
were each fit by a spline function. This spline was used to generate offsets and gains during the 
time for each bag sampling in order to correct for slow instrument drift between calibrations. Net 
photosynthetic CO2 assimilation was then determined from the difference in total CO2 
concentration between air entering and exiting the photobioreactor after correcting for flow rate. 
Rates were determine on both a per cell and a per chlorophyll a basis. Photosynthetic 
discrimination (Δ, the preferential capture of 12CO2 over 13CO2) was determined from the change 
in the isotopic composition (δ13C) of air entering and exiting the photobioreactor relative to the 
rate of net photosynthetic CO2 assimilation (Barbour, 2007; Sharkey, 1985). 
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3.2.7. Hyperspectral confocal and spinning disk fluorescence microscopy 
Hyperspectral confocal fluorescence images were collected for both BODIPY stained and 

unstained (BG-38 filter) samples 
and analyzed using multivariate 
curve resolution (MCR). 
Hyperspectral confocal 
fluorescence microscopy and 
multivariate curve resolution 
analysis are described in more 
detail in Section 5 and in the 
literature (Jones, 2012; Sinclair, 
2006). MCR identified four 
components in the unstained cells 
that represent the major algal 
pigments shown in Figure 3.2: a 
lipid-body associated carotenoid, 
chlorophyll a, a chloroplast 
associated carotenoid, and a 
carotenoid not associate with the 
chloroplast or lipid bodies. These 
were used for subsequent 
analyses.  In addition to their 
independent analyses, the lipid 
associated carotenoid component 
was also quantified as a ratio 
relative to the chlorophyll a 
component on a per cell basis. 
 

3.3.  Results and Discussion 
 
3.3.1. Growth and photosynthetic response 
Growth rates of N. salina 1776 were consistent at each CO2 level during the 48-hr experiment as 
shown by the maintenance of a relatively constant cell density under a constant rate of media 
exchange (Figure 3-3A). The differences in cell density between conditions at time 0 hr were 
primarily due to different densities of the seed cultures grown at each CO2. Small errors in the 
estimation of the media flow rate needed to keep both sets of cultures at the same density may 
have also contributed, however, the consistency of the cell density between time 0 and 48 hr  
shows that the flow rates used were suitable for the experiment. Maintaining similar cell 
densities between conditions was desired since cell density can have an independent effect on 
rates of cellular respiration (DeLong, 2009a; DeLong, 2009b). The slight decline in mean density 
by the end of the experiment in cultures that were started at high CO2 and switched to low CO2 at 
time 0 hr correlates with a decline in net photosynthetic O2 exchange (Figure 3-3B) and an 
increase in pH (Figure 3-4).  
 
Measures of photosynthetic function showed different responses to the changing CO2 conditions. 
Net photosynthetic O2 production (Figure 3-3B) initially increased in both treatments. Cultures 

Figure 3-2 Multivariate curve resolution from 
hyperspectral imaging. This analysis identified four 
major components of the non-stained cultures that 
could separate out lipid droplets and chloroplast, 
along with some other unknown signals. 
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that moved into high CO2 (low start) then dropped back to the rates at 0 hr  and leveled out. 
However, cultures moving from high to low CO2 (high start) continued to decline after the initial 
increase at 4 hr. Similar patterns were seen when examining photosystem II (PSII) yield in the 
light, though declines for the high start cultures were not seen until between 24 and 48 hr (Figure 
3-3C). The quantum efficiency measured as Fv/Fm in dark adapted samples decreased 
consistently with time after 4 hr  (Figure 3-3D). Low quantum efficiencies are often associated 
with stress and could indicate PSII damage. Net photosynthetic CO2 uptake increases between 0 
and 4 hr in cultures switched from low to high CO2 (similar to net O2 release), but then levels out 
at the higher rates (Figure 3-3C). In contrast, net photosynthetic CO2 uptake decreases between 0 
and 4 hr in cultures switched from high to low CO2 (opposite of net O2 release), and then levels 
out at the lower rates rather than declining like net O2 release. In addition, net O2 release is 
consistently several fold higher than net CO2 uptake which suggests that there is much greater 
electron transport than is needed for CO2 assimilation. 

Figure 3-3 Growth and photosynthetic response. A. Cell density during the 
experiment.  Flow rates of liquid media were switched simultaneously with changing 
the concentration of CO2 supplied such that cultures receiving high CO2 always had 
about twice the flow rate as cultures receiving low CO2. B. Net photosynthetic CO2 
uptake and O2 release. Rates of CO2 exchange were determined from the fluxes of air 
entering and exiting the photobioreactors. Oxygen exchange rates were determined by 
measuring culture aliquots with an oxygen electrode set at the same light intensity 
and temperature as the photobioreactors. C. Relative electron transport yield 
measured via variable chlorophyll fluorescence in the light. D. Relative quantum 
efficiency of electron transport measured via variable chlorophyll fluorescence in 
dark-adapted samples. 
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3.3.2. Discovery of regulated CCM function in N. salina strain 1776 
The excess O2 release relative to CO2 uptake is consistent with the observations of an unusual 
CCM that has been characterized in N. gaditana (Huertas et al., 2002). The N. gaditana response 
has been characterized as a “pump-leak” CCM that pumps large amounts of HCO3

- into the cell 
from the surrounding media, but then also leaks much of it back out in the form of CO2. In fact, 
the activity of this CCM can be so great that there is an apparent net CO2 loss at the culture level. 
Essentially, the HCO3

- is pumped in and converted to CO2 much faster than Rubisco can capture 
it. This pumping requires ATP, which in the case of N. gaditana is at least partially supplied 
through mitochondrial respiration. These observations in N. salina are consistent with those of N. 
gaditana, though mitochondrial respiration may not be needed for the ATP. Further experiments 
are needed to determine the involvement of mitochondria. 
 
Unlike all but one prior study in algae (Sharkey and Berry, 1985), we have developed a method 
for measuring preferential use of 12CO2 over 13CO2 during photosynthesis as a method for  
detecting CCM function. Our method is novel, in that it makes these measurements in real-time 
(10 Hz), avoiding the need to capture, dehydrate, and then isotopically analyze CO2 isotopic 
composition at static points, and this is demonstrated in the proof of concept work. The data 
presented here are a slight modification where samples were collected in bags prior to analysis 
since the isotope analyzer was too large to bring to SNL where the hyperspectral data had to be 
collected. The only effect of this was to limit the collection to discrete time points. As shown in 
Figure 3-4, there is a large change in photosynthetic discrimination within 4 hr of switching CO2, 
increasing discrimination when switching to low CO2 and decreasing when switching to high 

Figure 3-4 Photosynthetic discrimination and pH. High photosynthetic 
discrimination was used to indicate that CCM activity was present 
while low discrimination indicated the absence of CCM activity. This is 
opposite of the expected CCM signal due to the unusual pump-leak 
style CCM found in Nannochloropsis. pH is also shown here to 
highlight that the decrease in discrimination after 4 hours of exposure 
to low CO2 was correlated with an increasing pH in cultures that were 
stable at high CO2 prior to switching. 
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CO2. However, 4 hr after the rapid switch to low CO2, discrimination decreases in parallel with 
the decline of net O2 release. 
 
Large changes in discrimination in response to the inorganic carbon content around cells is a 
strong indicator CCM function and is the best evidence of a CCM functioning in N. salina. This 
is because large changes in discrimination are caused by changes in how leaky cells are to CO2 
with higher discrimination for leakier cells (Sharkey and Berry, 1985). Normally, a CCM 
reduces leakiness of a cell and decreases discrimination. However, the unusual “pump-leak” 
CCM of N. gaditana would be likely to have the opposite signature since is becomes more leaky 

Figure 3-5 Top Panels: Representative hyperspectral images after MCR 
analysis from each culture at time 0 and 4 hr. Cultures A-C started at low CO2 
and D-F started at high CO2. Representative images were selected from those 
that were near the mean ratio of lipid to chlorophyll Bottom Panels: Box and 
whisker plot showing the relative lipid to chlorophyll content per cell. Notches 
represent the 95% confidence limits, so times where notches to not overlap 
are significantly different. 
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with respect to C O2 when the CCM is 
functioning. Since N. salina becomes 
leakier at low CO2, we believe that it has a 
“pump-leak” CCM like that of N. 
gaditana. Interestingly, the induction of 
CCM function upon transfer to low CO2 is 
transient, though it’s suppression at high 
CO2 was not. We hypothesize that this may 
be due to the sudden onset of stressful low 
CO2 conditions where a leaky CO2 system 
has the leaked CO2 stripped away into the 
atmosphere due to the bubbling rather than 
building up in the surrounding media. This 
stress could explain the drop in O2 release, 
decline in PSII function, and the increase 
in pH. However, we should note that N. 
salina can grow in the low CO2 conditions 
as they were growing well in the seed 
cultures. It is possible that the initial seed 
cultures were started in a manner that more 
gradually exposed the cells to low CO2. 
 
3.3.3. Lipid production response 
Lipid content per cell normalized to 
chlorophyll content was determined using 
hyperspectral imaging and multivariate 
curve resolution (MCR) techniques 
developed at SNL (Figures 3-5 and 3-6). 
This analysis was done only without 
exogenous staining and section 5 describes 
comparisons of this method with that of 
BODIPY staining. The MCR identified 
independent spectral components 
representing lipid body associated 
carotenoid and chlorophyll a, along with a 
chloroplast associated carotenoid signal 
overlapping spatially with chlorophyll a, 
and a non-plastid, non-lipid carotenoid 
(Figure 3-2). Representative imaging of 
cells are shown in Figure 3-5 top panel. 
Changes in the chlorophyll a signal per 
cell were consistent with changes in the 
bulk culture chlorophyll a content 
determined from methanol extractions 
(Figure 3-6 top panel). 

Figure 3-6 Chlorophyll and lipid content as 
determined by hyperspectral imaging and 
analysis. Top: Comparison of the bulk 
chlorophyll assay with hyperspectral imaging. 
Middle: Relative lipid content. Bottom: Ratio of 
lipid content to chlorophyll content per cell. 
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The lipid signature showed a small increase in the amount of lipid between 0 and 4 hr before 
declining in the cultures that were switched from high to low CO2 whereas the lipid content in 
the low to high switched cultures consistently dropped with time (Figure 3-6 middle panel). 
However, when lipid content is expressed per chlorophyll a, the pattern changes slightly. In this 
case, both treatments show an increase between 0 and 4 hr (Figure 3-6 bottom panel) though the 
increase only reaches significance at the 5% level in the high to low CO2 transition treatment 
(Figure 3-5, bottom panel). In both cases, lipid content returns to starting levels after 4 hr. It 
should be noted that the lipid changes were modest making them difficult to detect without the 
analytical and statistical power provided by the MCR analyses. 
 
3.5.  Conclusions and Future Research  
 
Interactions between CO2 supply, CCM function, and lipid production were evident in this 
experiment. It is clear that low CO2 induces a CCM in N. salina and that the CCM is suppressed 
at high CO2. This is the first demonstration of CCM function in N. salina and is supported by 
comparisons of net O2 and CO2 exchange along with changes in the usage of CO2 isotopologues. 
The interaction with lipid production is less clear and may be improved upon completion of bulk 
measures of lipid content. However, it does appear that a transient increase in lipid production 
occurs when CO2 supply is altered, and that per cell the lipid content is very similar whether cells 
are grown with high or low CO2. This suggests that investment in supplying high levels of CO2 
may not be warranted as the CCM of N. salina maintains sufficient carbon for lipid production 
even when only ambient air is provided. Simply a 4 hour boost in CO2 may be all that is needed 
to increases lipid synthesis. However, this experiment did not allow for changes in cell density 
through the continuous addition of culture media and the air bubbling also kept inorganic carbon 
levels from building up in the media after leaking out of the cells. The extra nutrients provided, 
the consistent density of cells, and the bubbling could all have independent effects on the 
production of lipids. Additional experiments under different conditions should determine if 
differences in engineering or biological function will maintain the same relationships between 
CO2 supply, CCM function, and lipid production in other culture systems. 
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4.  DEFINING THE BOUNDARY BETWEEN STRESS AND 
PROGRAMMED CELL DEATH IN A MODEL ALGA 

 
4.1.  Introduction 
 
“Pond crashes,” where target algal strain(s) rapidly die, represent fundamental bottlenecks in 
scalable algal biofuels production.  These events result from both biotic and abiotic stressors, 
such as pathogens/pest exposure, temperature fluctuation, high salinity as a consequence of 
evaporation, and nutrient depletion.  Abiotic drivers of these sudden, poorly understood die-offs 
(e.g., oxidative stress, elevated temperatures and high salinity) are believed to promote 
programmed cell death-like (PCD) responses in members of the green algae (taxonomic 
divisions Chlorophyta and Charophyta in kingdom Plantae), but information clearly linking 
genetic, physiologic and even organismal-level responses to factors possibly associated with 
these processes is limited and frequently ambiguous.  To address basic information gaps in 
“pond crashes,” we investigated PCD-like processes in Chlamydomonas reinhardtii and 
attempted an initial mapping of the boundary between physiologic stress and cell death.  C. 
reinhardtii is the focus of this work because it is the premier green algal model for biochemistry, 
classical genetics and genomics, and these resources enabled multi-scale, multi-dimensional lines 
of inquiry (Merchant, 2007). Approaches developed here, including genome-wide monitoring of 
expression patterns, tracking of spectral signatures associated with biological pigments, and 
surveying gross cellular morphological changes, represent potentially fieldable technologies for 
pond health and productivity. 
 
4.2.  Description of Integrated Experiments Conducted 
In the work summarized here, the genetic, physiological and morphological effects of different 
salinity levels (150 mM, 250 mM and 1M NaCl) were investigated in the model green algal 
species C. reinhardtii to give a detailed account of early, middle and late molecular events 
associated with programmed cell death (PCD) versus basal stress responses.  Recent reports have 
shown that elevated salinity induces PCD in both higher plants and green algae, but these studies 
fail to provide fine-grained insight into this phenomenon (Affenzeller, 2009; Clarke, 2000; 
Greenberg, 1996; Moharikar, 2006).  PCD studies in fresh water green algal species, such as 
Micrasterias denticulata, typically have presented results with morphological/ultrastructural and 
biochemical emphases, or have focused narrowly on expression of a few genes deemed 
important in genetically programmed death responses.  To address fundamental information gaps 
about PCD versus physiologic stress in Chlamydomonas, experiments were designed to measure 
responses to different levels of salinity mentioned above.  Experimental conditions examined 
here were suggested by published literature as well as pilot studies conducted in the early phases 
of this project that explored both the type and level of PCD-inducing factors considered for 
broader inquiry. Key findings include altered pigment composition, changes in gross 
morphology, severely diminished cell viability and differential gene expression.   
 
4.2.1. Algal growth and physiological measurements 
4.2.1.1 Strain 

C. reinhardtii CC-125 wild type mt+ (aka 137c) (for more info, see:  
http://chlamycollection.org/strain/cc-125-wild-type-mt-137c/).  The sequenced strain, CC-503 
cw92 mt+, a cell-wall deficient mutant, is derived from CC-125 (Merchant, 2007). 

http://chlamycollection.org/strain/cc-125-wild-type-mt-137c/
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. 
 
4.2.1.2 Culturing conditions 

C. reinhardtii CC-125 was maintained on tris-acetate-phosphate (TAP) agar medium (Gorman, 
1965). Single colonies were removed aseptically to liquid TAP medium and shaken continuously 
at 150 rpm and 23°C in an Innova 42 shaker series incubator (New Brunswick Scientific; 
Enfield, CT).  Cultures were grown under continuous light. When optical density at 750 nm 
(Lamda Bio, Perkin Elmer; Waltham, MA) reached approximately 0.6 cultures were used for 
experimentation. No antibiotics were added to liquid TAP medium; contamination of cultures by 
bacteria was monitored by plating liquid medium onto LB agar (20g LB Broth [Fisher Scientific; 
Waltham, MA], 20 g Difco agar [BD Biosciences; San Jose, CA], 1 L water) plates and by 
inspecting small culture volumes with light microscopy. Contaminated cultures were discarded.  
 
4.2.1.3 Assessment of photosynthetic efficiency 

Pulse amplitude modulated (PAM) fluorescence was measured using a Waltz Mini-PAM 
chlorophyll fluorometer. The quantum yield of photochemical conversion (Fv’/Fm’) was 
determined for each culture by taking 3 technical replicate measurements and reporting the 
average. 
 
4.2.1.4 Measurement of Reactive Oxygen Species (ROS) 

Reactive oxygen species (ROS) were detected using 2,7-dichloro fluorescein diacetate 
(H2DCFDA, Invitrogen).  H2DCFDA was added to 500 µL of control and experimental cultures 
to a final concentration of 1.02 µM from a stock of 1.02 mM H2DCFDA dissolved in dimethyl 
sulfoxide (DMSO).  DMSO was also added to a final concentration of 2% to increase cell 
membrane permeability.  The mixture of cells, H2DCFDA and DMSO was placed in a plastic 
microcentrifuge tube, and incubated under standard growth conditions for 1 hour.  After this 
period, the mixtures were analyzed using an Accuri C6 flow cytometer.  For each sample, 20,000 
cells were analyzed for fluorescence emission at 533 nm (30 nm bandwidth), and cells with 
increased fluorescence emission were considered to be positive for ROS. 
 
4.2.1.5 Rates of cell death in response to high salinity 

Cell viability in control and experimental treatments were assayed throughout the experiment 
using the mortal nucleic acid stain SYTOX Green (Life Technologies, Grand Island, NY).  
Sample aliquots (300 µL of control and experimental cultures) were incubated with 300 nM 
Sytox for 30 minutes in darkness at room temperature.  Mixtures were analyzed on the Accuri 
C6 flow cytometer described above (4.2.1.4).  Cells with compromised cells membranes, which 
are not viable, had green emission ~100 fold higher than control cells, and this metric was used 
to determine the ratio of live:dead in samples 
 
4.2.1.6 Oxygen evolution to monitor rate of photosynthesis. 
The rate of oxygen evolution was measured for each culture using a calibrated S1 Clark type 
electrode and measuring system from Hansatech Instruments (Norfolk, England).  For each 
reading, 1 mL of sample was added to the instrument chamber for analysis. The sample was 
illuminated with a fluorescent light source at an intensity of 125 μmol photons m-2 s-1, and the 
culture was mixed with a magnetic stir bar at 100 rpm. 
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4.2.2 Molecular biology 
4.2.2.1 RNA isolation and complementary DNA synthesis   

At each timepoint (0, 1, 3, and 5 h) two 75 ml samples were collected from each experimental 
condition. Cells were pelleted by two centrifugation steps (1000 x g for 3 minutes at 4 C [Allegra 
X-30R Centrifuge, Beckman Coulter; Indianapolis, IN] in sterile 50 ml tubes. Culture 
supernatant was decanted, cell pellets were re-suspended in small volumes [1-2 ml] and 
transferred to 2 ml microcentrifuge tubes. Samples were centrifuged again at 1100 x g for 1.5 
min [Centrifuge 5424, Eppendorf; Hauppauge, NY] and the supernatant was removed with a 
pipet.) Cell pellets were flash frozen with liquid nitrogen and stored at -80 C until RNA isolation. 
 
RNA was isolated with an RNeasy Plant Mini-Kit (Qiagen; Valencia, CA). Cell pellets were re-
suspended in RLT lysis buffer and vortexed vigorously; after this step, the manufacturer’s 
protocol was followed.  RNA samples were also treated with DNase twice (according to RNeasy 
protocol: the first treatment was done during RNA isolation and the second before performing 
optional RNA clean-up steps). RNA quality was accessed with a RNA 6000 Nano chip (Agilent 
Technologies; Santa Clara, CA), run on a 2100 Bioanalyzer with 2100 Expert software (Agilent 
Technologies, Santa Clara, CA). RNA quality and quantity were evaluated by measuring the 
absorbance at 260, 280, and 230 nm with a Nanodrop 2000 (ThermoScientific, Rockford, IL).  
RNA elutions with degraded RNA or low quality/quantity scores were not used in later steps. 
RNA was stored at -80°C until construction of complement DNA (cDNA). 
 
cDNA was synthesized with the QuantiTect Reverse Transcription Kit (Qiagen; Valencia, CA).  
A total of 1 µg of RNA was added to each library preparation and the manufacturer’s protocol 
was followed. Since expected cDNA fragment sizes were approximately 200bp, the synthesis 
step was extended from 15 min to 30 min as suggested by the Qiagen protocol. cDNA was stored 
for less than 24 h at -20°C before use in quantitative real-time polymerase chain reaction assays. 
 

4.2.2.2  Quantitative real-time polymerase chain reaction.   

Quantitative real-time polymerase chain reaction (qRT-PCR) assays were set-up on ABI Prism 
96 well Optical Reaction Plates (Applied Biosystems; Foster City, CA) with the following recipe 
for each reaction: 50 µl Sybr Green (Applied Biosystems; Foster City, CA), 47 µl sterile DEPC 
treated water (MoBio Laboratories, Inc.; West Carlsbad, CA), 1 µl 10 mM forward primer, 1 µl 
10 mM reverse primer, 1 µl of cDNA preparation. Each plate also included control reactions that 
contained RNA elutions (diluted to match total nucleic acid concentrations in cDNA 
preparations) instead of cDNA to verify that gDNA was not responsible for any detected 
amplification. Plates were sealed with MicroAmp Optical Adhesive Films (Applied Biosystems; 
Foster City, CA) and qRT-PCR assays were run on a 7500 Real Time PCR System with 7500 
Software v. 2.0.5 (Applied Biosystems; Foster City, CA) with a 50ºC step for 2 min, and 95ºC 
for 10 min hot start, followed by the cycling and melt curve stages.  The cycling stage program 
was as follows: 95ºC for 15s, 60ºC for 1 min, repeat for 40 cycles.   The melt curve program was 
as folllows: 95ºC for 15 s, 60C for 1 min, 1% increase in temp every 30s until reaching 100ºC, 
95ºC for 30s, and 60ºC for 15 s. 
 
The Ct values for replicate wells were average and used to compute a 2^-ΔΔCt value for each 
treatment.  When a Ct value was not established during qPCR (i.e., no detectable amplification) 
that sample was assigned a Ct value of 40. 
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4.2.3. Microscopy 
4.2.3.1 Light microscopy 

From each experimental condition, 1 ml of culture was removed at timepoints 0 h, 5 h, 10 h, 24 
h, 48 h, and 72 h. The sample was centrifuged (1100 x g for 1 min [Centrifuge 5424, Eppendorf; 
Hauppauge, NY]) and the supernatant removed. Ten µl of the wet cell pellet was mixed with 4 µl 
of warm 1% low-melting point agarose and immediately loaded onto a microscope slide and 
covered with a micro coverglass. Widefield images were acquired on an Olympus IX71 
microscope using a 60X oil immersion (NA=1.4) objective.  A minimum of 30 cells were 
recorded for each time point. 
 
4.2.3.3 Hyperspectral confocal fluorescence microscopy & analysis 

Hyperspectral imaging was used to investigate temporal changes in the pigment distributions at 
the cellular and subcellular level as a function of salt stress.  C. reinhardtii was subjected to three 
different salt concentrations over a period of nine hours.  The three salt concentrations were as 
follows: 1) Control cells – No salt was added, 2) PCD cells – 0.25M NaCl was added to mildly 
stress the cells and induce PCD, and 3) Necrotic cells – 1M NaCl was added. Hyperspectral 
imaging occurred at the 3, 6 and 9 hour time points for the control and PCD salt concentrations, 
while the necrotic cells were only imaged at t=3 hrs.  The hyperspectral imaging and analysis 
methodologies are described in more detail in Section 5 of this report.  For this experiment, 300 
nM Sytox Orange (Life Technologies, Grand Island, NY) was added to the cells before they 
were prepared onto microscope slides for imaging.  The Sytox Orange was added to identify 
cells with compromised cell membranes. 
 
4.3.  Results and Discussion 
 
4.3.1. Impact of salt stress on growth, morphology, and ROS 
Bright-field microscopy analyses distinguished C. reinhardtii cells under physiologic stress, 
programmed cell death (PCD) and necrotic conditions over the extended time sampling points.  
Stressed cells (0.15M NaCl) showed evidence of cell membrane collapse away from the cell wall 
at the 24 hr time point, and had shifted to a palmelloid state at the 48 hr mark.  Under PCD 
conditions, cell membranes pulled away from cell walls at the earlier 9 hr sampling point, and 
had also showed an earlier shift to the palmelloid state at 24 hr (Iwasa, 1969; Stern, 2008).  
Consistent with extra-nuclear morophological changes reported for in other organisms, 
cytosplamic blebbing at the 9hr and 24 hr time points is suggested prior to the shift to a 
palmelloid states in the PCD treatment (Figure 4-1).  The single cells observed at the 48 hr time 
point show marked membrane shrinkage from the cell wall, and ovoid, bleb-like cytoplasmic 
features are evident.  High salinity (1 M NaCl) resulted in whole-cell shrinkage (likely due to 
hyperosmotic milieu), and apparent evacuation of cell contents at the 48 hr time point.  As 
expected, cells receiving the high salinity treatment did not transition through a palmeloid state. 
 
The different salinity treatments (150 mM, 250 mM, 1 M NaCl) showed distinct cell viability 
and culture density (as measured by optical density) and effects (Figure 4-2).  Cells under 
physiologic stress conditions (150 mM NaCl) do not divide at the same rate as untreated (control 
cells), but do not appear to be dying (as assessed by Sytox staining), whereas cells receiving the 
PCD – level of salinity (250 mM) showed high mortality (~ 70 % at 12 hr) and low culture 
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density.  Most  (> 90%) of these cells were dead at 24 hr.  The majority cells (~ 80 %) in the 
necrosis-inducing treatment (1 M NaCl) took up Sytox orange at early sampling points (3 and 5 
hr), indicating that death had occurred. 

The generation of reactive oxygen 
species (ROS) ha s been linked to a 
variety of stress conditions, including 
both biotic and abiotic stressors (Apel, 
2004). As their name suggests, ROS are 
highly reactive and cause intracellular 
damage by reacting with essential 
proteins. ROS have also been shown to 
serve as signals for activating gene 
expression, including PCD response in 
plants (Gechev, 2006). While elevated 
ROS levels have been found under both 
stress and PCD conditions in algae 
(Affenzeller, 2009), the role of ROS in 
each process has yet to be  investigated. 
In this work, we analyzed the levels of 
ROS under all four conditions (0M, 
0.15M, 0.25M, a nd 1M NaCl). In 
agreement with the literature, elevated 
ROS levels were detected in both the stress (0.15M NaCl) and PCD (0.25M NaCl) conditions. 
However, the rates of ROS generation varied between the stress and PCD conditions. Under the 
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Figure 4-1 C. reinhardtii undergoes morphological changes 
under physiologic and stres and programmed cell death 
conditions 

Figure 4-2 Different salinity treatment show 
distinct cell viability (black lines) and culture 
density (blue lines) effects. 
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PCD condition, ROS levels rapidly increased within the cell population of the C. reinhardtii 
culture. After 5 hours, approximately 40% of the cell population stained positive for ROS, 
compared to only 2% and 7% for the control and stress conditions at this time point. Under the 
stress condition, the rate of ROS generation was much slower, reaching similar ROS levels (i.e. 
40% of the cell population) in 48 hours. These results confirm the involvement of ROS in both 
stress and PCD responses in C. reinhardtii, yet the rate of ROS production appears to be unique 
under each condition. PCD responses are characterized by a rapid rise in ROS levels within the 
first few hours of treatment, while a stress response elicits a gradual increase in ROS over the 
course of several days. This temporal variation in ROS generation may be essential in 
delineating between stress and PCD responses. 
 
4.3.2. Impact of salt stress on pigment relative abundance and localization 
Panels in Figure 4.3 overview the hyperspectral confocal microscopy experiments to assess 
temporal changes in the pigments of C. reinhardtii under salt stress.  The MCR analysis revealed 
four spectral components (Sytox Orange, chlorophyll a, chlorophyll associated with the Light 
Harvesting Complex II and a chlorophyll shift component) shown in the upper left panel of 
Figure 4.3.  Representative images of the control, PCD and necrotic cells are show in the bottom 
panel of Figure 4.3 and are colored accordingly to the component spectra.   Red pixels increased 
with increasing concentration of NaCl, indicating a chlorophyll shift.  This information is 
captured quantitatively in the boxplot (Figure 4.3, upper right).  The red bar is the median value 
of the chlorophyll shift component in 20 cells and notches in the blue box represent a 95% 
confidence level.  The presences of the chlorophyll shift becomes significant at t=6 hrs for the 
PCD cells.  Notice that this shift also trends with the amount of time that the cells are subjected 

Figure 4.3: Hyperspectral confocal fluorescence microscopy results. Top left: MCR 
spectral components.  Lower Left: RGB images using the color scheme associated 
with the spectral components (Blue = Sytox Orange, Green = Chl-a, Red = Chl-a 
Shift).  Upper Right: Statistical box plot of the mean cell concentrations for the Chl-
a Shift component. 
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to salt stress.  The necrotic cells have the greatest chlorophyll shift relative to the control cells.  
Sytox Orange which penetrates compromised cell membranes had a similar trend to the 
chlorophyll shift (blue pixels increasing in the lower panel of Figure 4.3 and similar boxplot); 
indicating that this chlorophyll shift is associated with compromised cells (results not shown). 
 
4.3.3. Impact of salt stress on photosynthesis 
Impact of the different salinity treatments upon photosynthetic efficiency was assessed by 
measuring pulse amplitude modulated (PAM) fluorescence as well as oxygen evolution.  The 
PAM fluorescence results (Figure 4.4) show that PCD and necrosis-inducing levels of salinity 
(250 mM and 1 M, respectively) significantly impair photosynthesis, consistent with the 
hypothesis that key organelles (e.g. cholorplasts) are structurally and functionally compromised 
in the PCD scenario, and that a ll cellular processes cease in necrosis treatments.  Treatments 
inducing physiologic stress affect photosynthesis measurably, but effects observed in this 
scenario are much less dramatic than those observed in the other treatments.  To validate trends 
observed in PAM measurements, evolved molecular oxygen, an indirect indicator of 
photosynthetic output, was also quantified.  The  evolved molecular oxygen results mirrors the 
PAM measurement results (not shown). 
 

 
4.3.4. Impact of salt stress on gene expression 
To identify loci potentially involved in programmed cell death-like processes in C. reinhardtii, 
the Arabidopsis thaliana genome was mined for gene products with physiologic stress and 
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apoptosis-relevant annotation.  Mining was carried out using “The Arabidopsis Information 
Resource” and the Joint Genome Institute “Phytozome” framework, together with apoptosis-
relevant information for these two organisms from GenBank (http://www.arabidopsis.org/; 
http://www.phytozome.net/).  (Altschul, 1990; Merchant, 2007).  Primers were designed in silico 
and optimized in vitro (see section 4.2.2.2) for the predicted PCD-relevant loci mined in the C. 
reinhardtii genome (Appendix A). Further in silico investigations revealed both interesting 
similarities and marked divergence in putative programmed cell death machinery, such as loci 
encoding putative Gene products mined from A. thaliana were used to build query sets to search 
for homologs in the C. reinhardtii genome.  The C. reinhardtii genome was searched using 
BLAST (basic local alignment search tool) at a significance threshold of E-05 metacaspases, 
enzymes known to play central roles in programmed cell death processes (Figure 4-5) (Coll, 
2010; Tsiatsiani, 2011).  Amino acid sequences predicted for metacaspase genes in Arabidopsis 
and Chlamydomonas were aligned using ClustalX, and the guide tree for these pair-wise 
alignments is presented below (Larkin, 2007).  
 
Early transcriptomic events associated with physiologic stress (125 mM) and PCD (250 mM) 
treatments were monitored via qPCR at 0, 1, 3 and 5 h.  The results are summarized in Table 4.1.  
Certain instances of dramatic differential expression in PCD- and physiologic stress-response- 
relevant loci were evident (e.g., metacaspase expression above and below controls in the PCD 
series of experiments), however, caveats must be applied in interpreting the information 
presented below, as inter-experiment variation was high (but intra-experimental standard 
deviation was low).  The greatest increase in expression above controls was metacaspase (PCD, 
T=5), while the most dramatic downregulation was for also for the same gene at the initial 
sampling point just after experimental treatment (T=0).  The magnitude of fold changes for the 
other genes (i.e., HSP70, deg-P protease and Dad1a) was much less dramatic over the course of 
the PCD experiments; consistent with the hypothesis that metacaspase 1 is an apical regulator 
with tightly controlled expression.  Under physiologic stress conditions, metacaspase also 
showed the greatest fold change above controls over each sampling point (Table 4.1).  It is 
interesting to note that metacaspase expression levels appear relatively stable in these 
experiments, as those for HSP70 show upregulation over time.  Data presented here were 
analyzed using the 2(-Delta Delta C(T)) method (Livak, 2001).  Preliminary assessment of 
targeted expression data suggest the following:  1) Dramatic differential expression was 
suggested, accompanied by large inter-experiment variation, but modest intra-experimental 
deviation; 2) physiologic stress appears to be distinguishable from PCD from a magnitude of 
expression-difference perspective, with the most dramatic changes evident in metacaspase 1; 3) 
metacaspase expression increases dramatically over the PCD time course, but was relatively 
stable in the physiologic stress experiments; 4) expression trends for the other genes (HSP 70, 
Deg-P protease, Dad1a) were less clear, and appear to be less useful than metacaspase 1 for 
distinguishing physiologic stress vs. PCD. 
  

http://www.arabidopsis.org/
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Figure 4.5 Estimated pair-wise distances among known and 
predicted metacaspase polypeptides in A. thaliana and C 
reinhardtii.  Homology-based sequenced comparisons suggest 
two distinct functional cliques (red and blue circled clades) of 
of metacaspase-like proteases involved in programmed cell 
death (PCD) processes in A. thaliana and C. reinhardtii.  In A. 
thaliana, two type 1 metacaspases (AtMC1, AtMC2; highlighted 
in brown) antagonistically control programmed cell death; 
AtMC1 positively regulates the process, while AtMC2 is a 
negative regulator.  The other metacaspase-related proteins in 
Arabidopsis have not yet been the focus of detailed molecular 
and genetic analyses, nor have the two predicted polypeptides 
in Chlamydomonas (highlighted in green).   
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Table 4.1 Differential Expression of Programmed Cell Death- and Physiologic Stress-
Relevant Loci 

 
 Metacaspase HSP70 Deg-P Dad1a 

PCD T =0 

-139.22 -1.5 -4.64 -2.8 

± 248.56 ± 2.85 ± 3.42 ± 0.64 

PCD T= 1 

1.51 -1.25 0.38 -10.7 

± 3.55 ± 2.26 ± 4.42 ± 16.56 

PCD T=3 

-10.26 -1.6 -17.57 -7.68 

± 8.23 ± 3.03 ± 13.86 ± 7.12 

PCD T=5 

25.05 1.04 -0.49 0.29 

± 40.67 ± 2.87 ± 1.33 ± 1.59 

Stress T=0 

3.45 -3.37 -2.52 -4.22 

± 2.79 ± 2.57 ± 1.32 ± 1.96 

Stress T=1  

5.89 2.67 -0.25 -0.09 

± 1.03 ± 0.01 ± 1.79 ± 1.58 

Stress T=3 

-4.85 -0.83 -16.94 -8.37 

± 4.57 ± 4.17 ± 14.16 ± 9.89 

Stress T=5 

4.10 0.49 -2.40 -2.34 

± 3.64 ± 2.23 ± 1.32 ± 1.2 

 
 
4.4.  Conclusions and Future Outlook 
 
Results presented here highlight molecular events and processes potentially useful in monitoring 
algal pond health and stability.  Early, middle and late multi-dimensional samplings of C. 
reinhardtii cells under physiologic stress (150 mM) and PCD-inducing (250 mM) conditions are 
distinguishable (Figures 4.1 – 4.4), and in certain instances, suggest thresholds beyond which 
cultures will not recover if in programmed cell death molecular mode (e.g., Figures 4.2 and 4.3) 
 
Follow-on work will include genome-wide responses to the PCD treatment. RNASeq 
experiments will be performed at the initial and three hour time points for control and 250 mM 
NaCl treatment sample sets, containing two biological replicates each.  Multiplex-sequencing on 
an Illumina platform will be used; single-end 50 base reads will be obtained for each replicate.  
Libraries and sequencing will be performed at National Center for Genome Resources in 
collaboration with Dr. Joann Mudge and colleagues.  Data will be analyzed using SNL and 
NCGR bioinformatics resources and expertise.  Genome-wide expression patterns will be 
validated using our quantitative polymerase chain reaction (qPCR) results. 
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5.  IDENTIFICATION OF FLUORESCENCE SPECTRAL SIGNATURES 
FOR ALGAL GROWTH AND PRODUCTIVITY AT THE SUBCELLULAR, 

SINGLE CELL AND ENSEMBLE LEVELS 
 
5.1.  Introduction 
 
Fluorescence hyperspectral imaging has been an ideal tool for characterizing photosynthetic 
pigments in plants, cyanobacteria and algae (Davis, 2012; Pedroso, 2010; Ruffing, 2012; 
Vermaas, 2008). With the use of Sandia’s hyperspectral confocal fluorescence microscope plus 
Sandia’s image analysis algorithms, we were able to discover independently varying spectral 
signatures without any prior knowledge about the algal sample being imaged.  This ability 
allowed us to discover endogenous fluorescence signatures that were associated with the algae 
and how these signatures changed depending on the condition of the algal cells (e.g., health or 
stress).  In addition, imaging provided the location of these signatures at the cellular and 
subcellular level which aided in the interpretation of how the algal cells were changing as a result 
of the environment or experimental conditions.  Once these spectral signatures are obtained, they 
can be utilized for monitoring algal cells in pond and raceways using a simpler bulk or ensemble 
fluorescence measurement.  In this report, we will only discuss the spectral signatures that have 
been found to give information about the health and state of the algae.  Future work can build 
upon these signatures to generate monitoring technologies.  Hyperspectral confocal fluorescence 
microscopy is used for characterization in other sections of this report; therefore this section 
gives a brief overview of the instrumentation and the preprocessing and analysis techniques used 
globally throughout the project. 
 
5.2.  Hyperspectral Confocal Fluorescence Microscopy 
 
5.2.1 Instrumentation 
This project utilized a hyperspectral confocal fluorescence microscope developed at Sandia 
(Sinclair, 2006).  This microscope is equipped with multiple objectives (10x, 20x, and 60x).  For 
the experiments conducted in this report, only a Nikon 60x oil immersion objective (NA 1.4 plan 
apochromat) was used.  This provided a 25 x 25 micron square field of view for all of the images 
with diffraction limited spatial resolution.  The microscope is also equipped with a solid state 
488 nm laser (Coherent, Incorporated).  This excitation source was utilized for all imaging, 
except for the two-photon imaging discussed in section 5.3.  If required for the experiment, an 
emission filter (Newport Optics, BG-38) was placed prior to the EMCCD to reduce the 
chlorophyll emission and allow us to increase the laser power by a factor of 300.  This increased 
power allowed us to obtain resonance enhanced Raman spectral signatures of the carotenoid 
pigments in algae, while preventing the saturation of the EMCCD with the chlorophyll emission. 
 
5.2.2. Data preprocessing and analysis 
The image datasets were preprocessed to remove unwanted spectral artifacts present in the 
hyperspectral images.  These artifacts consisted of cosmic gamma-ray spikes, detector offset, and 
a structured noise artifact.  These preprocessing techniques are extensively described by Jones et 
al. (Jones, 2012).  After preprocessing data, the data were analyzed using Multivariate Curve 
Resolution (MCR) algorithms using Sandia developed image analysis software packages 
(imageMCR© and rapidMCR©).  Overlapping fluorophores are typically problematic for many 
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traditional fluorescence microscopy techniques; however hyperspectral imaging allows for the 
separation of many overlapping fluorescence species and creates interpretable quantitative 
images from biological samples with both known and unknown fluorescence species.  MCR 
provides a relative quantitative analysis of the hyperspectral image data without the need for 
standards, and it discovers all the emitting species present in an image, even those in which there 
is no a priori information (Collins, 2011; Haaland, 2009; Timlin, 2005).  MCR requires that the 
emitting species vary independently, therefore (when possible) to improve the separation of the 
spectral signatures, the hyperspectral images were combined and analyzed together from 
multiple images within the experiment of interest, thereby maximizing the differences in the 
spectral signatures. 
 
5.3.  Characterization of Microalgae using Two-photon Excitation 
Hyperspectral Imaging 
 
Two-photon excitation hyperspectral imaging was used as a tool to understand and extract 
spectral signatures associated with the health of algal cultures.  The use of a tunable Chameleon-
Ultra pulsed laser (Coherent, Inc.) allowed for the exploration of multiple excitation wavelengths 
varying from 690 to 1040 nm on the same algal sample.  Since the emission intensity of each 
spectral species is dependent on the excitation wavelength, multiple excitations will cause the 
relative intensities of each spectral species to vary in independent from each other, thereby 
improving the MCR analysis and improving the estimate of the overall spectral signature.   
 
5.3.1. Experiment 
C. reinhardtii cells were grown photoheterotrophically for 7 days.  The cells were then subject to 
heat treatments to create three different cell conditions: 1) unheated cells (healthy control), 2) 
cells incubated at 55 degrees C for 10 minutes (PCD-like cells), and 3) cells incubated at 85 
degrees C for 2 minutes (necrotic cells).  Figure 5-1 shows optical light microscopy of the 
morphological changes between the three different cell conditions.  Cells were then immobilized 
onto 0.75% agar coated slides and the samples were sealed using a coverslip and fingernail 
polish. 
 
Hyperspectral images were taken at each condition using three different two-photon excitation 
wavelengths (750, 840 and 976 nm).  These wavelengths were selected based upon the single 
photon excitation wavelengths of 375, 420 and 488 nm.  The emission wavelengths (490-740 
nm) were collected on the EMCCD for each of the excitations.  To prevent stray reflections of 
the laser at the detector, a cut-off filter was used to block emissions starting at 740 nm.  We 
collected 12 confocal sections of C. reinhardtii from the three different cell conditions (3 
sections of the healthy control, 4 sections of the “PCD-like” condition, and 5 sections of the 
necrotic condition).  The emission of each confocal section was repeated at the three different 
excitations (750, 840 and 976 nm) to create 36 total images.   
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Figure 5-1: Optical microscopy captures the morphological effect of heat stress on C. 
reinhardtii. 
 
5.3.2. Data analysis 
All 36 images from the three different cell conditions and three different excitation wavelengths 
were combined together for the MCR analysis.  The initial MCR analysis discovered four 
spectral components that we interpret to be : 1) Antenna chlorophyll that is a combination of 
chlorophyll a and chlorophyll b but is denoted chlorophyll b for clarity, 2) Photosystem I (PSI), 
3) Chlorophyll a, and 4) a chlorophyll shift related to antenna chlorophyll.   Normally, we apply 
non-negativity constraints to prevent the spectral components and the resulting concentrations 
(or intensities) from being negative; however in some cases it’s necessary to remove this 
constraint (Haaland, 2009).  In this analysis, it was necessary remove this constraint to model a 
varying shift in the chlorophyll.  Figure 5-2 shows these four spectral components.  Figure 5-3 
shows the relative intensities of the chlorophyll b (green), chlorophyll a (red) and PS I (blue) 
components represented as RGB images for the 750 nm excitation images.  Figure 5-4 shows the 
concentration images for the chlorophyll shift component. 
 
5.3.3. Results 
These results will focus on the comparison of the images from the single excitation wavelength 
of 750 nm.  Although the results are slightly different across the images for the other two 
excitation wavelengths, the same general conclusions apply. The relative intensities of the 
pigments change across conditions as observed in Figure 5-3.  The relative intensity of the PSI 
component increases in intensity relative to the two chlorophyll components as the cells become 
increasingly stressed. Figure 5-5 shows the percent relative distributions of the pigments per cell 
condition and per excitation wavelength.  For the healthy cells, chlorophyll b is the most intense 
because the cells are energy transfer limited.  However, as the cells become stressed, these 
energy transfer pathways begin to degrade and therefore the pigment distributions begin to 
change.  The degraded pathways no longer dictate the relative intensities of the pigments; instead 
the excitation wavelength dictates the intensity.  As can be seen with the necrotic cells, each 
excitation wavelength has a different relative distribution of pigment intensities.  Curiously, the 
amount of chlorophyll shift is more dominate in the “PCD-like” stressed cells as compared to the 
healthy or necrotic cells (Figure 5-4).  This shift component can be used as an early health 
indicator of stressed cells.  Overall, this type of imaging provided insights into the energy 
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transfer mechanism of the cells undergoing heat stress, as well as provided a spectral biomarker 
for cell status. 
   

 
Figure 5-2: MCR pure spectral components 
 
 

 
Figure 5-3: Emission images from the 750 nm excitation are shown.  The colors of these 
RGB images represent the colors from the spectral components in Figure 5-2. 
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Figure 5-4: Concentration images of the chlorophyll shift from the 750 nm excitation are 
shown. 
 

 
Figure 5-5: Percent distribution of pigment intensity for each cell condition for each 
excitation wavelength.  Under optimal conditions cells are energy transfer limited, 
however as the cells become stressed the energy pathways begin to degrade. 
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5.4.   Hyperspectral Imaging Results from Greenhouse Algae Study 
 
Hyperspectral imaging was used to understand the spectral signatures associated with algae in a 
non-laboratory setting.  We conducted greenhouse studies to temporally follow the health of two 
algal ponds by changing the CO2 concentration and as a consequence, the pH of the ponds.  
Finally, the ponds were intentionally crashed to understand whether spectral signatures can 
provide early warnings into the health-status of the ponds.  
 
5.4.1. Experiment 
A laboratory grown culture of N. salina were inoculated into two ponds (west and east) at the 
greenhouse located at Sandia in Tech Area III.  These ponds are briefly described and shown in 
section 2 of this report.  The experiment consisted of measuring the two ponds during a two-
week period of time in November 2011.  The two ponds were operated at different CO2 levels.  
The first week, the west pond was bubbled at 3 scfh CO2, while the east pond only had ambient 
CO2 levels.  The second week the CO2 levels were swapped for the two ponds.  Following this 
two week experiment, the ponds were crashed with the use ~0.005% (v/v) sodium hypochlorite. 
 
Fluorescence hyperspectral imaging using single photon 488 nm laser excitation was performed 
on aliquots of samples acquired from each pond.  These measurements occurred at four different 
times of the experiment: 1) After the first week, 2) After the second week, 3) Following day 1 of 
bleach addition, and 4) Following day 2 of bleach addition.  Samples were prepared onto glass 
slides and sealed with a coverslip and fingernail polish.  Data were collected with and without 
the BG-38 emission filter to obtain both carotenoid and chlorophyll only data sets. 
 
5.4.2. Data analysis 
After the preprocessing of the data, the chlorophyll only and carotenoid data sets were combined 
and analyzed separately using MCR. Following MCR to obtain the spectral components and the 
associated intensities for each component, the mean intensities of each cell for each spectral 
component was calculated using an in-house written Matlab routine called CellFinder (Collins, 
2012).  Temporal trends between the spectral components were observed by looking at 
multidimensional plots, also created using Matlab. 
 
5.4.3. Results 
Figure 5-6 shows the spectral components obtained using MCR for the chlorophyll only region.  
Since N. salina only has chlorophyll a, this was the major component found within the cells.  As 
indicated in section 5.3, it is necessary to remove the non-negativity constraints when modeling 
spectral shifts.  It is also true for modeling spectral broadenings.  Spectral shifts can be modeled 
with the use of a derivative while a spectral broadening can be modeled with the use of a 2nd 
derivative.  We found both a shift and a broadening spectral component associated with 
chlorophyll a in this pond study.   For this chlorophyll only model, there were only 3 
components.  Representative images are also shown in Figure 5-6, the colors of these RGB 
images correspond to the colors of the spectral components (chlorophyll a is green, the shift is 
red and the broadening is blue).  The images become bluer over the two week course of the 
experiment.  This can be more easily seen in the three-dimensional scatterplot.  As the cells 
become older over the course of this experiment, the intensity of chlorophyll a decreases and the 
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signature broadens.  However, during the pond crash, as highlighted in Figure 5-6, the spectral 
signature of chlorophyll a significantly decreases, broadens and red-shifts.  For clarity, only the 
west pond is shown in the scatterplot, although the east pond shows the same trend.   In 
conclusion, small subtle changes in the chlorophyll signature can differentiate unhealthy cells 
that can be used for early detection of algal health problems. 

 

 
Figure 5-6: Chlorophyll only imaging results from greenhouse CO2 study.  ( Top Left) 
Small spectral variations (shift, broadening) found in the chlorophyll signature of N. 
salina.  (Right) Scatter plot of the 3 discovered spectral signatures. Chlorophyll intensity 
alone is independent of cell health, however chlorophyll intensity + amount of 
chlorophyll broadening can be used an indicator of cell health. (Bottom Left)  R GB 
images from the four cell populations shown in the scatter plot.  RGB colors correspond 
to the pure component spectra. 
 
Figure 5-7 shows the spectral components obtained using MCR for the carotenoid spectral 
region.  For this spectral region, MCR discovered four spectral components.  Building upon the 
work from a previously internally fund program (“From Algae to Oilgae: in-situ Studies of 
Factors Controlling Growth and Oil Production“, Sand Report, submitted September 28, 2011, 
SAND2011-7241), we were able to use carotenoid as a spectral marker for lipid within the N. 
salina cells.  The red spectral component is a carotenoid spectral signature specific to lipid 
within the algal cells.  The sharp spikes a re the resonance-enhanced Raman bands associated 
with carotenoids.  The green spectral component also has carotenoid features and is associated 
with the chloroplast.  Its fluorescence shape is different from the lipid carotenoid shape and the 
resonance enhanced Raman bands have different relative intensities compared to the lipid 
carotenoid spectral signature.  Due to these differences, we are able to differentiate the lipid from 
the chloroplast solely upon the differences in the carotenoid signature.  Also, since the emission 
filter does not entirely block the chlorophyll emission and chlorophyll a co-varies with the 
carotenoid present in the chloroplast, it is extracted as one spectral component.  In addition, there 
is a broad auto-fluorescence component that is specifically associated with the health of the cells.  
Also shown in figure 5-7 are representative hyperspectral images acquired.  The colors of these 
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images correspond to the spectral component colors (green = chloroplast, red = lipid, and blue is 
autofluoresence).  Notic e the lipid droplets in red compared to the green chloroplast (the cell 
membrane is not visible in fluorescence without the use of an exogenous fluorophore).  When the 
pond crashes, the spe ctral signature becomes dominated by only the auto-fluorescence 
component.  The scatterplot shown in Figure 5-7 illustrates the ability to track an external pond 
with respect to lipid production and the health of the cells.  Week 1 (red points) shows the cells 
healthy with increased chlorophyll.  Week 2 (green points) shows cells becoming stressed (lower 
chlorophyll), however the lipid production has increased.  Af ter the induced pond c rash, the 
majority of the cells fall in the upper right hand quadrant with an increase and dominance in the 
autofluorescence.  In conclusion, these three spectral biomarkers can be used to describe two of 
the most important parameters in algae farming: 1) lipid production rates and 2) health of the 
pond or raceway.  
 

 
Figure 5-7: Carotenoid imaging results from greenhouse CO2 study.  ( Top Left) Three 
spectral components representing the chloroplast, lipid and an autofluorescence 
component in N. salina.  (Right) Scatter plot of the 3 discovered spectral signatures (* - 
west pond, o – east pond). The autofluorescence intensity is an indicator of cell health.  
These signatures can be used for the development of methodologies to monitor ponds 
for health and lipid content. (Bottom Left)  RGB images from the four cell populations 
shown in the scatter plot.  RGB colors correspond to the pure component spectra. 
 
5.4.4. Carotenoid characterization studies 
It should be pointed out that we have looked extensively at the resonance enhanced Raman 
spectral signatures using hyperspectral Raman microscopy (Collins, 2011) rather than the 
fluorescence hyperspectral imaging described above during this project.  These published 
findings showed that w e could extract multiple carotenoid species and isolate these species 
within live algal cells. 
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5.5.   Conclusions and Future Outlook 
 
Although the findings described in this section require rather sophisticated instrumentation and 
analysis algorithms to develop endogenous spectral biomarkers that are important to algal 
biofuels, the spectral biomarkers found can later be used for the development of less 
sophisticated spectroscopic monitoring methodologies for ponds and raceways. One example can 
be the use of a flow-cell that is continually sampling an algal pond and recording the 
fluorescence signatures to monitor the status of the algae and lipid production.  Spectroscopic 
monitoring can be an early indicator of a change in pond status and signal the need for additional 
off-line measurements. 
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6.  DEVELOPMENT AND OPTIMIZATION OF COMPUTATIONAL FLUID 
DYNAMICS MODELS OF ALGAL GROWTH AND PRODUCTIVITY 

 
6.1.  Introduction 
 
Despite their lower specific yield when compared to closed photobioreactors, open ponds, 
particularly raceway style ponds, are typically used for large-scale algae cultivation due to the 
lower cost to build, operate, and maintain them.  Thus it is especially important to optimize these 
systems.  A number of operational parameters are candidates for analysis and optimization, 
including temperatures, incident radiation, effects of covering raceways with greenhouses, 
nutrient distribution and availability, depth flow characteristics, geometry and channel 
dimensions, and predation. 
 
Models and numerical simulations are relatively inexpensive tools that can be used to enhance 
economic competitiveness through operation and system optimization to minimize energy and 
resource consumption while maximizing algal oil yield. This work uses modified versions of the 
U.S. Environmental Protection Agency’s Environmental Fluid Dynamics Code (EFDC) (Thanh, 
2008) in conjunction with the U.S. Army Corp of Engineers’ water-quality code (CE-
QUAL)(Cerco, 1995) to simulate flow hydrodynamics coupled to algal growth kinetics(James, 
2010). The model allows the flexibility of manipulating a host of variables associated with algal 
growth such as temperature, light intensity, and nutrient availability.  
 
6.1.1. Growth kinetics model 
The governing equation for biomass growth in CE-QUAL is (Cerco, 1995): 
 

 ( ) ( ) L
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 (6.1) 

 
where B (g/m3 or mg/L) is the biomass, t (days) is time, P (day−1) is the production (growth) rate, 
BM (day−1) is the basal metabolic rate, PR (day−1) is the predation rate, ws (m/day) is the settling 
velocity, z (m) is the vertical coordinate, BL (g/day) represent external loading rates from 
inoculation and harvesting, and V (m3) is the model cell volume. Biomass production rates are 
determined by the availability of nutrients (including CO2), light intensity, local temperature, and 
pH. The effect of each is multiplicative and decoupled (Cerco, 1995), 
 
 ( ) ( ) ( ) ( )M pH .iP P f g I h Tn=  (6.2) 
 
where, PM (day−1) is the maximum production rate under optimal conditions, f() is the effect of 
non-optimal nutrients, which includes CO2 limitation (0 ≤ f() ≤ 1), g(I) is the effect of non-
optimal illumination (0 ≤ g(I) ≤ 1), h(T) is the effect of non-optimal temperature (0 ≤ h(T) ≤ 1), 
and i(pH) is the effect of non-optimal pH (0 ≤ i(pH) ≤ 1). All of these functions are spatially 
dependent, and their values vary from cell to cell in the model according to local nutrient 
concentrations (including CO2), incident solar radiation, and temperature. (Cerco, 1995) 
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6.1.2. Growth model improvements 
The pH of the medium is a newly added operational parameter governing algal growth that 
affects algae photosynthesis, differential availability of inorganic forms of carbon, enzyme 
activity in algae cell walls, and oil production rates. (Janardhanam, 2012) Media pH can be 
entered as a measured value or calculated based on CO2 concentrations. 
 
The first step toward optimizing such a system is achieving an in-depth understanding of which 
parameters play significant roles in affecting the rate at which biomass is produced (i.e., a 
sensitivity study). Once sensitive variables have been identified, not only can they be optimized 
(e.g., water-column depth), but modelers can request that experimentalists collect specific data 
(e.g., concentration dependent light attenuation) to help reduce model uncertainties. In this work, 
a sensitivity study is performed in which the roles of chlorophyll-based light extinction, water-
column depth, production rate, and basal metabolic rates are examined. 
 
6.2.  Incorporating Algal Growth Dependency on pH 
 
Inorganic carbon plays an important role in eutrophication processes and is available in several 
forms in water: free dissolved CO2, carbonic acid (H2CO3), bicarbonates (HCO3

−), and as 
carbonates (CO3

2−). The relative amount of each form of carbon present in the media is closely 
related to the pH of the media. At pH values less than 6.5, the dominant form of inorganic carbon 
in the medium is free CO2, while at pH values above 10, inorganic carbon mostly exists as 
carbonates. Between pH values of 6.5 and 10, bicarbonates form the major source of inorganic 
carbon. For photosynthesis, all algae species use free dissolved CO2 although many also use 
bicarbonates and some species can use carbonates and can grow in high-pH environments (e.g., 
Scenedesmus quadricauda). It is also known that carbonate ions can be toxic to certain algae 
species and hence elevated pH can lead to species succession and competition (Hansen, 2002). 
Because pH has an intrinsic effect on enzymes in algae cell membranes and walls, which are 
responsible for absorption of different essential nutrients, pH affects photosynthesis (Moss, 
1973). High extracellular pH can also alter membrane transport processes and change the cellular 
content of amino acids and their relative compositions and hence affect growth rates (Raven, 
1980; Smith, 1979). Moreover, pH of the medium is also known to influence biomass regulation 
and even metabolic rates of certain algae species (Azov, 1982; Goldman, 1982). Clearly, pH is 
an important factor for algae growth and must be considered in a growth model. pH limitation is 
represented with a decoupled multiplicative function, i(pH); this is included along with other 
factors (i.e., light, temperature, nutrients) to limit the production rate for an algal group in 
Equation 6-2. 
 
To simulate the effects of pH limitation, the maximum and minimum values of pH that support 
algae growth must be estimated. If pH of the medium is elevated, then growth may be inhibited 
in most species due to the lack of free dissolved CO2. Most algae species can maintain growth up 
to pH values of 8.6−8.85. Some species that can get CO2 from bicarbonates or carbonates can 
grow up to pH values of 9.2−9.3 Most algae species do not grow well below pH values of 
4.5−5.1, although certain species (e.g., Euglena gracilis) can grow in pH values at least as low as 
3.9 (Moss, 1973). In many practical instances, CO2 concentrations may not be known, but pH is 
often measured. The model is set up to handle pH as a data input or to calculate i(pH) based on 
CO2 concentrations (if these are known or can be calculated based on CO2 concentrations). pH 
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also varies with temperature, however only by 0.1 unit per 20°C change in temperature so this 
effect is ignored here. 
 
6.2.1. pH limitation with known pH values 
With known pH, the multiplicative function i(pH) ~ i([H+]) is modeled after the work of Mayo 
(1997), 
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where the hydration constants are modeled as a function of temperature (°C), which is obtained 
from a polynomial fit to data available from Mayo (1997), 
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6.2.2. pH calculated from CO2 
At the air-water interface (especially if CO2 is bubbled through the growth medium), the 
interaction between H2O and CO2 results in formation of carbonic acid (H2CO3) that dissociates 
into two protons (H+) and a carbonate (CO3

2−). Thus, all else being equal, an increase in CO2 
results in a decrease in the media pH; this can be directly evaluated. The functional form of the 
relation between pH and dissolved CO2 is derived from chemical equilibrium theory. 
 
Gaseous CO2 (CO2(g)) upon contact with H2O becomes aqueous CO2 (CO2(aq)), which in turn 
reacts with H2O to form carbonic acid: 

 2(g) 2 2(aq) 2

2(aq) 2 2 3

CO H O CO H O,

CO +H O H CO .

+ +€

€
 (6.5) 

In the preceding reactions, only a small fraction of CO2(aq) is converted into H2CO3, which is 
given by the hydration constant (at 25°C) as 

 32 3
h
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H2CO3 is a diprotic acid that can dissociate into two protons in a two-stage process: 
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with dissociation (or acidity) constants for the two stages of: 
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Because k1 >> k2, the second stage o f dissociation proceeds slowly and can be neglected. Under 
this assumption, carbonic acid is considered a weak monoprotic acid. 
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The initial concentration of H2CO3 dissociates into carbonates and bicarbonates, thus mass 
balance provides the net concentration of dissolved CO2 (note that these equations show 
concentration equivalence, not stoichiometric equivalence): 
 2

h 2 2 3 initial 2 3 3 3[CO ] [H CO ] [H CO ] [HCO ] [CO ],k       (6.10) 
and from the electro-neutrality condition, 
 + 2

3 3[H ] [OH ] [HCO ] 2[CO ].      (6.11) 
Under the assumption that carbonic acid is a weak monoprotic acid, 2

3[CO ]  formed during the 
second dissociation of [HCO3

−] is neglected. 
 
From the preceding two equations, [HCO3

−] and [H2CO3] concentrations are: 
 3[HCO ]=[H ] [OH ]    (6.12) 
 2 3 h 2 3 h 2[H CO ] [CO ] [HCO ] [CO ] [H ] [OH ],k k- + -= - = - +  (6.13) 
and these are substituted into Equation 6-8 to calculate k1 
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Using the hydration constant for water, kw = [H+][OH−] = 1.008×10−14 at 25°C, and using 
[OH−] = kw/[H+], the simplified expression for k1 in terms of [H+] is 
 ( )3 2

1 1 h 2 w 1 w[H ] [H ] [CO ] [H ] 0.k k k k k k+ + ++ - + - =  (6.15) 
This is a cubic equation in [H+] that can be solved numerically and depends on the parameters k1, 
kw, and [CO2], all of which are known. However, in the preceding equation, k1kw is negligible; 
~O(10−21), so it can be reduced to a quadratic. Rearranging Equation 6-15 yields, 
  2

1 1 h 2 w[H ] [H ] [CO ] 0.k k k k      (6.16) 
From Equation 6-16, the quadratic equation yields 
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Note that above approximations yield a simple expression for pH as a function of [CO2]: 
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The preceding expression for pH was calculated assuming that k2 is negligible. In a more precise 
scenario, k2 could be considered and a thorough analysis of the chemical equilibrium theory in 
the presence of bicarbonates and carbonates could be used (Park, 1969). Of course, other 
chemical factors not considered here could yield changes in pH and increased alkalinity, so it 
may be best to simply measure pH for use in the limitation function, i(pH). 
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6.3.  Assessing the Sensitivity of Algal Growth Model to Input 
Parameters 
 
Different algal strains have different growth rates, different metabolic rates, different settling 
rates, require different nutrients, exhibit different self-shading properties, and attract different 
types of grazers.  Biomass production does share qualitative properties across systems. For 
example, biomass production always ceases in the absence of light or nutrients, grazers always 
cause biomass to decrease, reproduction always causes biomass to increase, and self-shading 
always reduces the available down gradient light energy. To understand the behavior of a wide 
variety of algae systems, SNL-EFDC is supplied with a physically realizable range of parameter 
values and the sensitivity of the overall biomass to the parameters is observed. In particular, the 
parameters to be investigated are chlorophyll-based light extinction kChl, water-column depth d, 
maximum production rate PMx, and decay rate S (the rate at which biomass decreases due to 
respiration and grazing). Throughout the analysis, nutrients are assumed to be in abundance. 
 
The system’s final biomass is independent of the initial concentration and that for a given system 
(i.e., set of parameter values) the biomass concentration approaches a constant value; this is its 
carrying capacity, B*. However, the carrying capacity is dependent upon the parameter values. 
Therefore, the problem of biomass optimization reduces to determining the parameter values that 
yield the largest carrying capacity. 
 
For example, to determine the way in which depth affects B*, all of the other parameters are set 
to their base values and B* is numerically for various values of d. The scaled sensitivity of 
parameter p is given by , with all other parameters held at their base values. 
Sensitivity plots in Figure 6.1 are constructed by differentiating the single-variant curves 
normalizing the parameters across their ranges using the transformation 
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From this plot, it is clear that all parameters are sensitive at some point in their range. For 
predictive models, these parameters will have to be measured precisely to ensure agreement with 
the physical system, especially where sensitivities are greatest. 
 
Figure  shows how individual parameters may be optimized, but, in practice, it is unlikely that 
these parameters will be optimized individually. Rather, they are optimized cumulatively, 
meaning that their combination will be optimized. To do this, a quantitative relationship is 
required between B* and d, kChl, S, and PM.  
The general relation is  
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where e is the natural exponent. 
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Figure 6.1: Scaled parameter sensitivities. 

 
 
Now, if an experimentalist has measured d, kChl, S, and PM for different systems (e.g. different 
algal strains, different raceway operations, etc.) Equation 6-20 estimates which system is capable 
of producing the largest biomass concentration. 
 
6.4.  Generation of Species Specific Parameters and Constituent 
Relationships for Potential Production Strains 
 
At the start of this project limited data existed in the literature relating important physiological 
parameters to algal growth for potential production strains like N. salina. Given the diversity of 
algae growth and productivity even across highly similar species (Sheehan, 1998) it is not 
acceptable to simply extrapolate from existing literature on related organisms; therefore, a 
significant undertaking of this project was to generate several relationships for N. salina, the 
strain utilized for our benchtop, greenhouse, and pond-scale experiments.  
 
6.4.1. Generating accurate light extinction coefficients 
Light utilization by algae depends on the optical properties of photosynthetic pigment within the 
cell. While the absorptivity of pigments is generally known in select organic solvents, light 
extinction is undoubtedly different in vivo. Therefore, we developed a quantitative relationship 
between optical depth (as a function of wavelength) and dry cell weight (DCW) for N. salina; 
thus, generating the absorptivity at all wavelengths. In brief, a dense culture of N. salina was 
used as a stock and serially diluted to create a series of various concentrations of cells. The 
absorbance of each sample was measured from 300-900 nm and in parallel, the DCW of these 
same samples were determined gravimetrically. The reference DCW values were projected onto 
the spectral data using Classical Least Squares to generate the absorptivity curve following 
Beers’ law 
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 (6-21) 
 
 
Where ε is the absorptivity at wavelength λ, c is the sample concentration in DCW (μg/ml) and l 
is the pathlength. Further details to the CLS method is given elsewhere (Haaland, 1985). 
 
The absorbtivity curve that yields the light extinction coefficient, kB, was measured for N. salina 
grown in the laboratory and used as inoculum for the greenhouse is shown in Figure 6.2. At 680 
nm, the light extinction value (used in the model) is kB = 0.314 (g/m3)–1/m. 
 

 
Figure 6.2: Light extinction coefficient measured for laboratory-grown Nannochloropsis 

salina (the 680-nm wavelength is indicated with the dashed line). 

 

 

6.4.2. Optimal light intensity 
Optimal light intensity to grow N. salina was also estimated in the laboratory. Low (26 ly/day), 
medium (35 ly/day), and high (88 ly/day) light intensities were applied to the algae and growth 
rates measured. While the total biomass at high light intensity was slightly higher than at 
medium light intensity, the algae grown under the high light intensity were notably less green. 
The optimal light intensity was specified in the model to be Is = 35 ly/day.  Note: 1 Langley/day 
= 0.48 W/m2 = 2.3 mol photosynthetic photons/m2/s. 
 
6.4.3. Temperature 
Reasonable minimum and maximum temperatures for optimal growth of algae in the pond are T1 
= 18°C, and T2 = 22°C [personal communication from Ann Ruffing, Sandia National 
Laboratories] and N. salina, grows well between 17°C and 32°C (Boussiba, 1987). The 
minimum and maximum suboptimum temperature-effect coefficients, 1

TK  and 2
TK , are 

0.693°C−2 and 0.007°C−2, respectively, so that at T = 17°C and 32°C, the suboptimal temperature 
effects restrict algae growth by 50%. 
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6.4.4. Atomic composition 
Algae atomic composition ratios were measured three times over the course of the greenhouse 
experiment. Samples were collected on days 7, 11, and 14 of the growth experiment yielding 
C:N:P ratios of 358:38:1, 365:36:1, and 423:39:1, respectively (for reference, the Redfield ratio 
for marine planktons in open oceans is 106:16:1 (Redfield, 1934)). Significant variability of 
elemental composition exists across strains and even within strains due to environmental 
stressors and adaptations. Deviations from this ratio can be used to infer nutrients that limit 
growth (Hecky, 1993; Hillebrand, 1999; Ricklefs, 2000). Generally, values of N:P less than 16:1 
suggest that nitrogen is the limiting nutrient, whereas N:P ratios greater than 16:1 indicate 
limited phosphorus (Ricklefs, 2000). A C:N:P ratio of 358:38:1 was applied to N. salina in the 
simulation. Initial nitrate and phosphate concentrations were 54.7 and 3.1 g/m3, respectively. 
Post-test nitrate was 33.1 g/m3 and phosphate was below the detection limit after the required 
dilution. 
 
6.5.  Greenhouse Model 
 
The model is also used to simulate algae growth corresponding to an experimental pond 
maintained inside a greenhouse under known temperature and irradiance conditions. The 
simulated pond is 1.67×1.5 m2 and is 0.211 m deep, containing approximately 0.53 m3 of growth 
medium.  CO2 is supplied to the system through a bubbler that acts as a point source. While the 
amount of CO2 added to the pond was metered, aqueous CO2 concentrations were not known and 
some CO2 certainly escaped to the atmosphere. For the first 7 and last 3 days, air was bubbled at 
2 SCFM resulting in 40 g of CO2 bubbled per day. For the middle 7 days, 2 SCFM of air was 
augmented with 0.1 SCFM CO2 (yielding about 5% CO2). Based on data from (Vance, 2005), 
50% of added CO2 was available to algae when added at a concentration of 0.04% (atmospheric 
concentration) while only 1% of it was available when added at 5% concentration (i.e., excess 
CO2 was assumed lost to the atmosphere). This equated to CO2 being added at 20 g/day when 
bubbling air and 80 g/day when bubbling 5% CO2. Whether or not these CO2 source rates are 
appropriate for the greenhouse system is questionable because of atmospheric loss; regardless, 
CO2 was never particularly limiting in this model (minimum i(pH) of 0.96). 
 
Algae growth was measured for 17 days after inoculation at 15.4 g/m3 of biomass. Maximum 
growth rate at optimum conditions, PM, was obtained by performing a least squares fit of algal-
to-measured biomass using the parameter estimation code, PEST (Doherty, 2009; Doherty, 
2010). PEST uses a nonlinear Gauss-Marquardt-Levenberg method to minimize the objective 
function (i.e., minimize a weighted sum-of-squared differences between the model-generated 
algae biomass and the measured biomass). A maximum growth rate of PM = 1.05 day−1 was 
estimated for the greenhouse model (linearized 95% confidence range is 1.01−1.13 day−1). This 
is consistent with the maximum growth rate of 1.3 day‒1 reported by Van Wagenen (2012). 
Recall that the maximum growth rate is mediated by the limitation functions. When considering 
all of the growth limitations and multiplying by the optimized growth rate of PM = 1.05 day−1, 
the maximum production was achieved near day 7 because the product of all limiting factors was 
greatest and also because 5% CO2 was added to the system from days 7 to 14. Measured (and 
modeled) pond productivity was about 1.6 g/m2/day.  Figure 6.3 shows the comparison between 
the modeled and measured biomass. 
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Figure 6.3: Comparison of measured and simulated algal biomasses. 

 
6.6.  Conclusions and Future Utility 
 
Models and simulations are quick and inexpensive ways to replicate and extend experiments. 
SNL-EFDC in conjunction with CE-QUAL was expanded to include the effects of pH and [CO2] 
on algae growth as a modeling capability. The improved model was then used to simulate algae 
growth in an experimental greenhouse pond. Good agreement between estimated and measured 
algae concentrations was demonstrated when a calibrated maximum growth rate of 1.05 day−1 
was applied to the model (this was, of course, modulated by limitation factors). These models 
can now be used with added confidence to predict system behaviors without conducting actual 
experiments or risking algae colonies. For example, model application to an algae-growth 
raceway is under development. In the future, this open-source algae growth model, SNL-EFDC, 
will be improved as new data become available to develop additional empiricisms. 
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7.  CONCLUSIONS 
 
This report describes an integrated multidisciplinary bioanalytical approach for conducting 
research into the response of algae to abiotic stressors.  The approach has been successful across 
spatial and culture scales and thus has provided new knowledge about the fundamental biological 
processes that determine algal response and technologies for monitoring and predicting culture 
behavior.  The results have been disseminated through the algal biology and biofuels community 
through presentations at national and international conferences and through peer-reviewed 
journal publications.  Importantly, the biological insight has prompted new hypothesis that will 
be the foundation of new proposals as well as validated technology for pond monitoring and 
computational prediction that will be employed in large-scale algae test-beds in follow-on work. 
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