
Parallel Breadth-First Search on
Distributed Memory Systems

Aydın Buluç Kamesh Madduri
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA

{ABuluc, KMadduri}@lbl.gov

ABSTRACT
Data-intensive, graph-based computations are pervasive in
several scientific applications, and are known to to be quite
challenging to implement on distributed memory systems.
In this work, we explore the design space of parallel algo-
rithms for Breadth-First Search (BFS), a key subroutine in
several graph algorithms. We present two highly-tuned par-
allel approaches for BFS on large parallel systems: a level-
synchronous strategy that relies on a simple vertex-based
partitioning of the graph, and a two-dimensional sparse matrix-
partitioning-based approach that mitigates parallel commu-
nication overhead. For both approaches, we also present
hybrid versions with intra-node multithreading. Our novel
hybrid two-dimensional algorithm reduces communication
times by up to a factor of 3.5, relative to a common vertex
based approach. Our experimental study identifies execu-
tion regimes in which these approaches will be competitive,
and we demonstrate extremely high performance on lead-
ing distributed-memory parallel systems. For instance, for a
40,000-core parallel execution on Hopper, an AMD Magny-
Cours based system, we achieve a BFS performance rate of
17.8 billion edge visits per second on an undirected graph of
4.3 billion vertices and 68.7 billion edges with skewed degree
distribution.

1. INTRODUCTION
The use of graph abstractions to analyze and understand

social interaction data, complex engineered systems such as
the power grid and the Internet, communication data such
as email and phone networks, data from sensor networks,
biological systems, and in general, various forms of rela-

This work was supported by the Director, Office of Science, U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231. This document
was prepared as an account of work sponsored by the United States Gov-
ernment. While this document is believed to contain correct information,
neither the United States Government nor any agency thereof, nor the Re-
gents of the University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, pro-
cess, or service by its trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof, or the
Regents of the University of California. The views and opinions of au-
thors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof or the Regents of the University
of California.

tional data, has been gaining ever-increasing importance.
Common graph-theoretic problems arising in these appli-
cation areas include identifying and ranking important en-
tities, detecting anomalous patterns or sudden changes in
networks, finding tightly interconnected clusters of entities,
and so on. The solutions to these problems typically involve
classical algorithms for problems such as finding spanning
trees, shortest paths, biconnected components, matchings,
flow-based computations, in these graphs. To cater to the
graph-theoretic analyses demands of emerging“big data”ap-
plications, it is essential that we speed up the underlying
graph problems on current parallel systems.

We study the problem of traversing large graphs in this
paper. A traversal refers to a systematic method of explor-
ing all the vertices and edges in a graph. The ordering of
vertices using a “breadth-first” search (BFS) is of particu-
lar interest in many graph problems. Theoretical analysis in
the RAM model of computation indicates that the computa-
tional work performed by an efficient BFS algorithm would
scale linearly with the number of vertices and edges, and
there are several well-known serial and parallel BFS algo-
rithms (discussed in Section 2). However, efficient RAM al-
gorithms do not easily translate into “good performance” on
current computing platforms. This mismatch arises due to
the fact that current architectures lean towards efficient exe-
cution of regular computations with low memory footprints,
and heavily penalize memory-intensive codes with irregular
memory accesses. Graph traversal problems such as BFS
are by definition predominantly memory access-bound, and
these accesses are further dependent on the structure of the
input graph, thereby making the algorithms “irregular”.

The recently-created Graph 500 list1, which ranks super-
computers based on their performance on data-intensive ap-
plications, chose BFS as their first representative bench-
mark. Today, distributed memory architectures dominate
the supercomputer market and computational scientists have
a good understanding of how to map conventional numeri-
cal applications to these architectures. By constrast, little is
known about the best practices of running a data-intensive
graph algorithm and the trade-offs involved. Consequently,
the current Graph 500 list is not based on the inherent ca-
pabilities of the architectures, but it is based on the quality
of various benchmark implementations.

We present new parallel algorithms and discuss optimized
BFS implementations on current distributed-memory sys-
tems with multicore processors. BFS on distributed-memory

1Graph 500, http://www.graph500.org, last accessed Apr
2011.

http://www.graph500.org

systems involves explicit communication between processors,
and the distribution (or partitioning) of the graph among
processors also impacts performance. We utilize a testbed of
large-scale graphs with billions of vertices and edges to em-
pirically evaluate the performance of our BFS algorithms.
These graphs are all sparse, i.e., the number of edges m
is just a constant factor times the number of vertices n.
Further, the average path length in these graphs is a small
constant value compared to the number of vertices, or is at
most bounded by log n.

Our Contributions We present two complementary ap-
proaches to distributed-memory BFS on graphs with skewed
degree distribution. The first approach is a more tradi-
tional scheme using one-dimensional distributed adjacency
arrays for representing the graph. The second method uti-
lizes a sparse matrix representation of the graph and a two-
dimensional partitioning among processors. The following
are our major contributions:

• We present the highest-reported performance numbers
(in terms of per-node efficiency using the Graph 500
measure) for BFS on current large-scale distributed
memory systems.

• Our two-dimensional partitioning-based approach, cou-
pled with intranode multithreading, reduces the com-
munication overhead at high process concurrencies by
a factor of 3.5.

• Both our approaches include extensive intra-node mul-
ticore tuning and performance optimization. The single-
node performance of our graph-based approach is com-
parable to, or exceeds, recent single-node shared mem-
ory results on a variety of real-world and synthetic net-
works. The hybrid schemes enable BFS scalability up
to 40,000 cores.

• To accurately quantify the memory access costs in BFS,
we present a simple memory-reference centric perfor-
mance model. This model succinctly captures the dif-
ferences between our two BFS strategies and also pro-
vides insight into architectural trends that enable high-
performance graph algorithms.

Impact on Larger Scale Systems: Our algorithms ad-
dress inter-node bandwidth limitations. Therefore, the ad-
vantages of our approach are likely to grow on future systems
since the bisection bandwidth is one of the slowest scaling
components in supercomputers. For example, the next gen-
eration Cray XE6 system (Hopper2) hosted at NERSC has
bisection bandwidth comparable to the current generation
Cray XT4 (Franklin) although Hopper2 has 4 times many
cores than Franklin. As the cores to bandwidth ratio in-
creases, more and more of the compute capability goes un-
used with communication-bound algorithms.

2. BREADTH-FIRST SEARCH OVERVIEW

2.1 Preliminaries
Given a distinguished “source vertex” s, Breadth-First

Search (BFS) systematically explores the graph G to dis-
cover every vertex that is reachable from s. Let V and E
refer to the vertex and edge sets of G, whose cardinalities
are n = |V | and m = |E|. We assume that the graph is un-
weighted; equivalently, each edge e ∈ E is assigned a weight

of unity. A path from vertex s to t is defined as a sequence of
edges 〈ui, ui+1〉 (edge directivity assumed to be ui → ui+1

in case of directed graphs), 0 ≤ i < l, where u0 = s and
ul = t. The length of a path is the number of hops it travels
(or the sum of the weights of edges in the case of weighted
graphs). We use d(s, t) to denote the distance between ver-
tices s and t, or the length of the shortest path connecting s
and t. BFS implies that all vertices at a distance k (or“level”
k) from vertex s should be first “visited” before vertices at
distance k + 1. The distance from s to each reachable ver-
tex is typically the final output. In applications based on a
breadth-first graph traversal, one might optionally perform
auxiliary computations when visiting a vertex for the first
time. Additionally, a “breadth-first spanning tree” rooted
at s containing all the reachable vertices can also be main-
tained.

Algorithm 1 Serial BFS algorithm.

Input: G(V, E), source vertex s.
Output: d[1..n], where d[v] gives the length of the shortest

path from s to v ∈ V .
1: for all v ∈ V do
2: d[v] ← ∞
3: d[s]← 0, level← 1, FS ← φ, NS ← φ
4: push s→ FS
5: while FS 6= φ do
6: for each u in FS do
7: for each neighbor v of u do
8: if d[v] =∞ then
9: push v → NS

10: d[v]← level

11: FS ← NS, NS ← φ, level← level + 1

Algorithm 1 gives a serial algorithm for BFS. The required
breadth-first ordering of vertices is accomplished in this case
by using two stacks – FS and NS – for storing vertices at
the current level (or “frontier”) and the newly-visited set of
vertices (one hop away from the current level) respectively.
The number of iterations of the outer while loop (lines 5-
11) is bounded by the length of the longest shortest path
from s to any reachable vertex t. Note that this algorithm
is slightly different from the widely-used queue-based serial
algorithm [13]. We can relax the FIFO ordering mandated
by a queue at the cost of additional space utilization, but
the work complexity in the RAM model is still O(m + n).

2.2 Parallel BFS: Prior Work
Parallel algorithms for BFS date back to nearly three

decades [30, 31]. The classical PRAM approach to BFS is a
straightforward extension of the serial algorithm presented
in Algorithm 1. The graph traversal loops (lines 6 and 7) are
executed in parallel by multiple processing elements, and the
distance update and stack push steps (lines 8-10) are atomic.
There is a barrier synchronization step once for each level,
and thus the execution time in the PRAM model is O(D),
where the D is the diameter of the graph. Since the PRAM
model does not weigh in synchronization costs, the asymp-
totic complexity of work performed is identical to the serial
algorithm.

The majority of the novel parallel implementations de-
veloped for BFS follow the general structure of this “level-
synchronous” algorithm, but adapt the algorithm to better

fit the underlying parallel architecture. In addition to keep-
ing the parallel work complexity close to O(m+n), the three
key optimization directions pursued are

• ensuring that parallelization of the edge visit steps
(lines 6, 7 in Algorithm 1) is load-balanced,

• mitigating synchronization costs due to atomic up-
dates and the barrier synchronization at the end of
each level, and

• improving locality of memory references by modifying
the graph layout and/or BFS data structures.

We discuss recent work on parallel BFS in this section,
and categorize them based on the parallel system they were
designed for.

Multithreaded systems: Bader and Madduri [4] present
a fine-grained parallelization of the above level-synchronous
algorithm for the Cray MTA-2, a massively multithreaded
shared memory parallel system. Their approach utilizes the
support for fine-grained, low-overhead synchronization pro-
vided on the MTA-2, and ensures that the graph traversal
is load-balanced to run on thousands of hardware threads.
The MTA-2 system is unique in that it relies completely on
hardware multithreading to hide memory latency, as there
are no data caches in this system. This feature also elim-
inates the necessity of tedious locality-improvement opti-
mizations to the BFS algorithm, and Bader and Madduri’s
implementation achieves a very high system utilization on
a 40-processor MTA-2 system. Mizell and Maschhoff [28]
discuss an improvement to the Bader-Madduri MTA-2 ap-
proach, and present performance results for parallel BFS on
a 128-processor Cray XMT system, a successor to the Cray
MTA-2. The change specifically is to mitigate thread con-
tention for pushes into the newly visited vertices stack by
performing them in batches. The only limit to problem scal-
ability on these uniform shared memory XMT systems is the
memory capacity, which can be as large as 100s of gigabytes
to a few terabytes. However, overall performance on these
systems is bounded by the global memory reference rate that
a processor can achieve, which is in turn limited by the net-
work bisection bandwidth. Also, it is difficult to achieve
strong parallel scaling for small graphs (n or m comparable
to the number of lightweight threads).

The current generation of GPGPUs are similar to the Cray
XMT systems in their reliance on large-scale multithreading
to hide memory latency. In addition, one needs to ensure
that the threads perform regular and contiguous memory
accesses to achieve high system utilization. This makes op-
timizing BFS for these architectures quite challenging, as
there is no work-efficient way to ensure coalesced accesses to
the d array in the level synchronous algorithm. Harish and
Narayanan [21] discuss implementations of BFS and other
graph algorithms on NVIDIA GPUs. Due to the comparably
higher memory bandwidth offered by the GDDR memory,
they show that the GPU implementations outperform BFS
approaches on the CPU for various low-diameter graph fami-
lies with tens of millions of vertices and edges. Luo et al. [26]
present an improvement to this work with a new hierarchical
data structure to store and access the frontier vertices, and
demonstrate that their algorithm is up to 10× faster than
the Harish-Narayanan algorithm on recent NVIDIA GPUs
and low-diameter sparse graphs. You et al. [38] study BFS-
like traversal optimization on GPUs and multicore CPUs

in the context of implementing an inference engine for a
speech recognition application. They explore alternatives to
atomics in creating the stack of newly-visited vertices. In
particular, one could avoid the “not visited” check (line 8),
aggregate all the edges out of the frontier vertices, sort them
by the destination vertex v, and then perform the visited
check. This “aggregation-based” approach is an alternative
to atomics, but incurs a much higher computational cost.
We will further analyze this variant in the next section.

Multicore systems: There has been a spurt in recent
work on BFS approaches for multicore CPU systems. Cur-
rent x86 multicore architectures, with 8 to 32-way core-level
parallelism and 2-4 way simultaneous multithreading, are
much more amenable to coarse-grained load balancing in
comparison to the multithreaded architectures. Possible
p-way partitioning of vertices and/or replication of high-
contention data structures alleviates some of the synchro-
nization overhead. However, due to the memory-intensive
nature of BFS, performance is still quite dependent on the
graph size, as well as the sizes and memory bandwidths
of the various levels of the cache hierarchy. Recent work
on parallelization of the queue-based algorithm by Agarwal
et al. [1] notes a problem with scaling of atomic intrinsics
on multi-socket Intel Nehalem systems. To mitigate this,
they suggest a partitioning of vertices and corresponding
edges among multiple sockets, and a combination of the fine-
grained approach and the accumulation-based approach in
edge traversal. In specific, the distance values (or the “vis-
ited” statuses of vertices in their work) of local vertices are
updated atomically, while non-local vertices are held back
to avoid coherence traffic due to cache line invalidations.
They achieve very good scaling going from one to four sock-
ets with this optimization, at the expense of introducing an
additional barrier synchronization for each BFS level. Xia
and Prasanna [36] also explore synchronization-reducing op-
timizations for BFS on Intel Nehalem multicore systems.
Their new contribution is a low-overhead “adaptive barrier”
at the end of each frontier expansion that adjusts the number
of threads participating in traversal based on an estimate of
work to be performed. They show significant performance
improvements over näıve parallel BFS implementations on
dual-socket Nehalem systems. Leiserson and Schardl [24] ex-
plore a different optimization: they replace the shared queue
with a new “bag” data structure which is more amenable for
code parallelization with the Cilk++ run-time model. They
show that their bag-based implementation also scales well
on a dual-socket Nehalem system for selected low diameter
benchmark graphs. These three approaches use seemingly
independent optimizations and different graph families to
evaluate performance on, which makes it difficult to do a
head-to-head comparison. Since our target architecture in
this study are clusters of multicore nodes, we share some
similarities to these approaches. We will revisit key aspects
of these implementations in the next section, and attempt
to distinguish the new contributions of our work.

Distributed memory systems: The general structure
of the level-synchronous approach holds in case of distributed
memory implementations as well, but fine-grained “visited”
checks are replaced by edge aggregation-based strategies.
With a distributed graph and a distributed d array, a pro-
cessor cannot tell whether a non-local vertex has been pre-
viously visited or not. So the common approach taken is
to just accumulate all edges corresponding to non-local ver-

tices, and send them to the owner processor at the end of
a local traversal. There is thus an additional all-to-all com-
munication step at the end of each frontier expansion. In-
terprocessor communication is considered a significant per-
formance bottleneck in prior work on distributed graph al-
gorithms [10, 25]. The relative costs of inter-processor com-
munication and local computation depends on the quality
of the graph partitioning and the topological characteris-
tics of the interconnection network. As mentioned earlier,
the edge aggregation strategy introduces extraneous com-
putation (which becomes much more pronounced in a fully
distributed setting), due to which the level-synchronous al-
gorithm deviates from the O(m + n) work bound.

The BFS implementation of Scarpazza et al. [32] for the
Cell/B.E. processor, while being a multicore implementa-
tion, shares a lot of similarities with the general “explicit
partitioning and edge aggregation” BFS strategy for dis-
tributed memory system. The implementation by Yoo et
al. [37] for the BlueGene/L system is a notable distributed
memory parallelization. The authors observe that a two-
dimensional graph partitioning scheme would limit key col-
lective communication phases of the algorithms to at most√

p processors, thus avoiding the expensive all-to-all com-
munication steps. This enables them to scale BFS to pro-
cess concurrencies as high as 32,000 processors. However,
this implementation assumes that the graph families under
exploration would have a regular degree distribution, and
computes bounds for inter-process communication message
buffers based on this assumption. Such large-scale scala-
bility with or without 2D graph decomposition may not be
realizable for graphs with skewed degree distributions. Fur-
thermore, the computation time increases dramatically (up
to 10-fold) with increasing processor counts, under a weak
scaling regime. This implies that the sequential kernels and
data structures used in this study were not work-efficient.
As opposed to Yoo et al.’s work, we give details of the data
structures and algorithms that are local to each processor in
Section 4.

Cong et al. [11] study the design and implementation of
several graph algorithms using the partitioned global ad-
dress space (PGAS) programming model. PGAS languages
and runtime systems hide cumbersome details of message
passing-based distributed memory implementations behind
a shared memory abstraction, while offering the programmer
some control over data locality. Cong’s work attempts to
bridge the gap between PRAM algorithms and PGAS imple-
mentations, again with collective communication optimiza-
tions. Recently, Edmonds et al. [15] gave the first hybrid-
parallel 1D BFS implementation that uses active messages.

Software systems for large-scale distributed graph algo-
rithm design include the Parallel Boost graph library [20],
the Pregel [27] framework. Both these systems adopt a
straightforward level-synchronous approach for BFS and re-
lated problems. Prior distributed graph algorithms are pre-
dominantly designed for “shared-nothing” settings. How-
ever, current systems offer a significant amount of paral-
lelism within a single processing node, with per-node mem-
ory capacities increasing as well. Our paper focuses on graph
traversal algorithm design in such a scenario. We present
these new parallel strategies and quantify the performance
benefits achieved in Section 3.

External memory algorithms: Random accesses to
disk are extremely expensive, and so locality-improvement

optimizations are the key focus of external memory graph
algorithms. External memory graph algorithms build on
known I/O-optimal strategies for sorting and scanning. Ajwani
and Meyer [2, 3] discuss the state-of-the-art algorithms for
BFS and related graph traversal problems, and present per-
formance results on large-scale graphs from several families.
Recent work by Pierce et al. [29] investigates implementa-
tions of semi-external BFS, shortest paths, and connected
components.

Other Parallel BFS Algorithms: There are several
alternate parallel algorithms to the level-synchronous ap-
proach, but we are unaware of any recent, optimized im-
plementations of these algorithms. The fastest-known al-
gorithm (in the PRAM complexity model) for BFS repre-
sents the graph as an incidence matrix, and involves repeat-
edly squaring this matrix, where the element-wise opera-
tions are in the min-plus semiring (see [16] for a detailed
discussion). This computes the BFS ordering of the vertices
in O(log n) time in the EREW-PRAM model, but requires
O(n3) processors for achieving these bounds. This is per-
haps too work-inefficient for traversing large-scale graphs.
The level synchronous approach is also clearly inefficient for
high-diameter graphs. A PRAM algorithm designed by Ull-
man and Yannakakis [34], based on path-limited searches, is
a possible alternative on shared-memory systems. However,
it is far more complicated than the simple level-synchronous
approach, and has not been empirically evaluated. The
graph partitioning-based strategies adopted by Ajwani and
Meyer [3] in their external memory traversal of high-diameter
graphs may possibly lend themselves to efficient in-memory
implementations as well.

Other Related Work: Graph partitioning is intrinsic
to distributed memory graph algorithm design, as it helps
bound inter-processor communication traffic. One can fur-
ther relabel vertices based on partitioning or other heuris-
tics [12, 14], and this has the effect of improving memory
reference locality and thus improve parallel scaling.

A sparse graph can analogously be viewed as a sparse
matrix, and optimization strategies for linear algebra com-
putations similar to BFS, such as sparse matrix-vector mul-
tiplication [35], may be translated to the realm of graph
algorithms to improve BFS performance as well. We will
study this aspect in more detail in the next section.

Recent research shows prospects of viewing graph algo-
rithms as sparse matrix operations [8, 18]. Our work con-
tributes to that area by exploring the use of sparse-matrix
sparse-vector multiplication for BFS for the first time. The
formulation of BFS that is common in combinatorial opti-
mization and artificial intelligence search applications [5,23]
is different from the focus of this paper.

3. BREADTH-FIRST SEARCH ON
DISTRIBUTED MEMORY SYSTEMS

In this section, we briefly describe the high-level paral-
lelization strategy employed in our two distributed BFS schemes
with accompanying pseudo-code. Section 4 provides more
details about the parallel implementation of these algorithms.
The algorithms are seemingly straightforward to implement,
but eliciting high performance on current systems requires
careful data structure choices and low-level performance tun-
ing. Section 5.1 provides a rigorous analysis of both the
parallel implementations.

3.1 BFS with 1D Partitioning
A natural way of distributing the vertices and edges of a

graph on a distributed memory system is to let each proces-
sor own n/p vertices and all the outgoing edges from those
vertices. We refer to this partitioning of the graph as ‘1D
partitioning’, as it translates to the one-dimensional decom-
position of the incidence matrix corresponding to the graph.

The general schematic of the level-synchronous parallel
BFS algorithm can be modified to work in a distributed
scenario with 1D partitioning as well. Algorithm 2 gives
the pseudo-code for BFS on a cluster of multicore or multi-
threaded processors. The distance array is also distributed
among processes. Every process only maintains the status
of vertices it owns, and so the traversal loop just becomes
an edge aggregation phase. We can utilize multithreading
within a process to enumerate the adjacencies. However,
only the owner process of a vertex can identify whether it is
newly visited or not. All the adjacencies of the vertices in
the current frontier need to be sent to their corresponding
owner process, which happens in the All-to-all communi-
cation step (line 21) of the algorithm. Note that the only
thread-level synchronization required is due to the barriers.
The rest of the steps, buffer packing and unpacking, can be
performed by the threads in a data-parallel manner. Sec-
tions 4 and 5.1 provide more implementation details and a
rigorous analysis of the algorithm respectively. The key as-
pects to note in this algorithm, in comparison to the serial
level-synchronous algorithm (Algorithm 1), is the extrane-
ous computation (and communication) introduced due to
the distributed graph scenario: creating the message buffers
of cumulative size O(m) and the All-to-all communication
step.

3.2 BFS with 2D Partitioning
We next describe a parallel BFS approach that directly

works with the sparse adjacency matrix of the graph. Fac-
toring out the underlying algebra, each BFS iteration is
computationally equivalent to a sparse matrix-sparse vec-
tor multiplication (SpMSV). Let A denote the adjacency
matrix of the graph, represented in a sparse boolean for-
mat, xk denotes the kth frontier, represented as a sparse
vector with integer variables. It is easy to see that the ex-
ploration of level k in BFS is algebraically equivalent to

xk+1 ← AT ⊗ xk �
Sxi

i=1 (we will omit the transpose and
assume that the input is pre-transposed for the rest of this
section). The syntax ⊗ denotes the matrix-vector multipli-
cation operation on a special (select,max)-semiring, � de-
notes element-wise multiplication, and overline represents
the complement operation. In other words, vi = 0 for vi 6= 0
and vi = 1 for vi = 0. The algorithm does not have to store
the previous frontiers explicitly as multiple sparse vectors.
In practice, it keeps a dense parents =

Sxi
i=1 array, which is

more space efficient and easier to update.
Our sparse matrix approach uses the alternative 2D de-

composition of the adjacency matrix of the graph. Consider
the simple checkerboard partitioning, where processors are
logically organized on a square p = pr×pc mesh, indexed by
their row and column indices so that the (i, j)th processor is
denoted by P (i, j). Edges and vertices (sub-matrices) are as-
signed to processors according to a 2D block decomposition.
Each node stores a sub-matrix of dimensions (n/pr)×(n/pc)
in its local memory. For example, A can be partitioned as
shown below and Aij is assigned to processor P (i, j).

Algorithm 2 Hybrid parallel BFS with vertex partitioning.

Input: G(V, E), source vertex s.
Output: d[1..n], where d[v] gives the length of the shortest

path from s to v ∈ V .
1: for all v ∈ V do
2: d[v] ← ∞
3: d[s]← 0, level← 1, FS ← φ, NS ← φ
4: ops ← find owner(s)
5: if ops = rank then
6: push s→ FS
7: d[s]← 0

8: for 0 ≤ j < p do
9: SendBufj ← φ . p shared message buffers

10: RecvBufj ← φ . for MPI communication
11: tBufij ← φ . thread-local stack for thread i

12: while FS 6= φ do
13: for each u in FS in parallel do
14: for each neighbor v of u do
15: pv ← find owner(v)
16: push v → tBufipv

17: Thread Barrier
18: for 0 ≤ j < p do
19: Merge thread-local tBufij ’s in parallel,

form SendBufj

20: Thread Barrier
21: All-to-all collective step with the master thread:

Send data in SendBuf , aggregate
newly-visited vertices into RecvBuf

22: Thread Barrier
23: for each u in RecvBuf in parallel do
24: if d[u] =∞ then
25: d[u]← level
26: push u→ NSi

27: Thread Barrier
28: FS ←

S
NSi . thread-parallel

29: Thread Barrier

A =

0B@ A1,1 . . . A1,pc

...
. . .

...
Apr,1 . . . Apr,pc

1CA (1)

Algorithm 3 gives the high-level pseudocode of our parallel
algorithm for BFS on 2D-distributed graphs. This algorithm
implicitly computes the “breadth-first spanning tree” by re-
turning a dense parents array. The inner loop block starting
in line 4 performs a single level traversal. All vectors and the
input matrix are 2D-distributed as illustrated in Figure 1. f ,
which is initially an empty sparse vector, represents the cur-
rent frontier. t is an sparse vector that holds the temporary
parent information for that iteration only. For a distributed
vector v, the syntax vij denotes the local n/p sized piece of
the vector owned by the P (i, j)th processor. The syntax vi

denotes the hypothetical n/pr sized piece of the vector col-
lectively owned by all the processors along the ith processor
row P (i, :).

Each computational step can be efficiently parallelized
with multithreading. The multithreading of the SpMSV op-
eration in line 7 naturally follows the splitting of the local
sparse matrix data structure rowwise to t pieces. The vector

5

8

!

x
1

!

x
1,1

!

x
1,2

!

x
1,3

!

x
2,1

!

x
2,2

!

x
2,3

!

x
3,1

!

x
3,2

!

x
3,3

!

x
2

!

x
3

!

A
1,1

!

A
1,2

!

A
1,3

!

A
2,1

!

A
2,2

!

A
2,3

!

A
3,1

!

A
3,2

!

A
3,3

Figure 1: 2D vector distribution illustrated by in-
terleaving it with the matrix distribution.

operations in lines 9–10 is parallelized simply by exploiting
loop-level parallelism.

Algorithm 3 Parallel 2D BFS algorithm.

Input: A: undirected graph represented by a boolean
sparse adjacency matrix, s: source vertex id.

Output: π: dense vector, where π[v] is the predecessor ver-
tex on the shortest path from s to v, or −1 if v is un-
reachable.

1: procedure BFS 2D(A, s)
2: f(s)← s
3: for all processors P (i, j) in parallel do
4: while f 6= ∅ do
5: TransposeVector(fij)
6: fi ← Allgatherv(fij , P (:, j))
7: ti ← Aij ⊗ fi

8: tij ← Alltoallv(ti, P (i, :))
9: tij ← tij � πij

10: πij ← πij + tij

TransposeVector redistributes the vector so that the
subvector owned by the ith processor row is now owned by
the ith processor column. In the case of pr = pc =

√
p, the

operation is simply a pairwise exchange between P (i, j) and
P (j, i). In the more general case, it involves an all-to-all
exchange among processor groups of size pr + pc.

Allgather(fij , P (:, j)) syntax denotes that subvectors
fij for j = 1, .., pr is accumulated at all the processors on
the jth processor column. Similarly, Alltoallv(ti, P (i, :))
denotes that each processor scatters the corresponding piece
of its intermediate vector ti to its owner, along the ith pro-
cessor row.

There are two distinct communication phases in a BFS al-
gorithm with 2D partitioning: a pre-computation “expand”
phase over the processor column (with pr participants), and
a post-computation “fold” phase over the processor row (pc

processes).
In 1D decomposition, the partitioning of frontier vectors

naturally follows the vertices. In 2D decomposition, how-
ever, vertex ownerships are more flexible. One practice is
to distribute the vector entries only over one processor di-

mension (pr or pc) [22], for instance the diagonal proces-
sors if using a square grid (pr = pc), or the first processors
of each processor row. This approach is mostly adequate
for sparse matrix-dense vector multiplication (SpMV), since
no local computation is necessary for the “fold” phase after
the reduce step, to which all the processors contribute. For
SpMSV, however, distributing the vector to only a subset of
processors causes severe imbalance as we show in Section 4.3.

A more scalable and storage-efficient approach is to let
each processor have approximately the same number of ver-
tices. In this scheme, which we call the “2D vector dis-
tribution” in contrast to the “1D vector distribution”, we
still respect the two-dimensional processor grid. In other
words, the 2D vector distribution matches the matrix distri-
bution. Each processor row (except the last) is responsible
for t = bn/prc elements. The last processor row gets the
remaining n − bn/prc(pr − 1) elements Within the proces-
sor row, each processor (except the last) is responsible for
l = bt/pcc elements.

In that sense, all the processors on the ith processor row
contribute to the storage of the vertices that are numbered
from vipr+1 to v(i+1)pr . The only downside of the this ap-
proach is that the “expand”phase becomes an all-gather op-
eration (within the processor column) instead of the cheaper
broadcast. Another way to view the difference between
these two approaches is the following. Let xi be the ith
subvector of x once we divide it equally to pr pieces. In
other words, xi = x(ipr + 1 : (i + 1)pr) spans the vectors
vipr+1, vipr+2, . . . , v(i+1)pr . In both approaches, xi is owned
by some subset of the processors on the ith processor row.
In the first approach it is solely owned by a single P (i, j),
whereas in the second approach it is distributed among all
the processors P (i, j) for j = 1 . . . pc.

4. IMPLEMENTATION DETAILS

4.1 Graph Representation
For the graph-based BFS implementation, we use a ‘com-

pressed sparse row’ (CSR)-like representation for storing ad-
jacencies. All adjacencies of a vertex are sorted and com-
pactly stored in a contiguous chunk of memory, with ad-
jacencies of vertex i + 1 next to the adjacencies of i. For
directed graphs, we store only edges going out of vertices.
Each edge (rather the adjacency) is stored twice in case of
undirected graphs. An array of size n + 1 stores the start
of each contiguous vertex adjacency block. We use 64-bit
integers to represent vertex identifiers. This representation
is space-efficient in the sense that the aggregate storage for
the distributed data structure is on the same order as the
storage that would be needed to store the same data struc-
ture serially on a machine with large enough memory. Since
our graph is static, linked data structures such as adjacency
lists would incur more cache misses without providing any
additional benefits.

On the contrary, a CSR-like representation is too waste-
ful for storing sub-matrices after 2D partitioning. The ag-
gregate memory required to locally store each submatrix in
CSR format is O(n

√
p + m), while storing the whole ma-

trix in CSR format would only take O(n + m). Conse-
quently, a strictly O(m) data structure with fast indexing
support is required. The indexing requirement stems from
the need to provide near constant time access to individual
rows (or columns) during the SpMSV operation. One such

A =

0BBBBBBB@

0 1 2 3 4 5
0 × ×
1 × ×
2 × ×
3 × × ×
4 ×
5 ×

1CCCCCCCA

Figure 2: Nonzero structure of node-local matrix A

data structure, doubly-compressed sparse columns (DCSC),
has been introduced before [7] for hypersparse matrices that
arise after 2D decomposition. DCSC for BFS consists of an
array IR of row ids (size m), which is indexed by two parallel
arrays of column pointers (CP) and column ids (JC). The
size of these parallel arrays are on the order of the number
of columns that has at least one nonzero (nzc) in them.

For the hybrid 2D algorihm, we split the node local matrix
rowwise to t pieces, as shown in Figure 2 for two threads.
Each thread local n/(prt)× n/pc sparse matrix is stored in
DCSC format.

A compact representation of the frontier vector is also im-
portant. It should be represented in a sparse format, where
only the indices of the non-zeros are stored. We use a stack
in the 1D implementation and a sorted sparse vector in the
2D implementation. Any extra data that are piggybacked to
the frontier vectors adversely affect the performance, since
the communication volume of the BFS benchmark is directly
proportional to the size of this vector.

4.2 Local Computation
There are two potential bottlenecks to multithreaded par-

allel scaling in Algorithm 2 on our target architectural plat-
forms (multicore systems with modest levels of thread-level
parallelism). Consider pushes of newly-visited vertices to
the stack NS. A shared stack for all threads would involve
thread contention for every insertion. An alternative would
be to use thread-local stacks (indicated as NSi in the algo-
rithm) for storing these vertices, and merging them at the
end of each iteration to form FS, the frontier stack. Note
that the total number of queue pushes is bounded by n,
the number of vertices in the graph. Hence, the cumulative
memory requirement for these stacks is bounded as well, and
the additional computation performed due to merging would
be O(n). Our choice is different from the approaches taken
in prior work (such as specialized set data structures [24]
or a shared queue with atomic increments [1]). For mul-
tithreaded experiments conducted in this study, we found
that our choice does not limit performance, and the copying
step constitutes a very minor overhead.

Next, consider the distance checks (lines 24-25) and up-
dates in Algorithm 2. This is typically made atomic to en-
sure that a new vertex is added only once to the stack NS.
However, the BFS algorithm is still correct even if a vertex
is added multiple times, as the distance value is guaranteed
to be written correctly after the thread barrier and mem-
ory fence at the end of a level of exploration. Cache coher-
ence further ensures that the correct value may propagate to
other cores once it is updated. We observe that we actually
perform a very small percentage of additional insertions (less
than 0.5%) for all the graphs we experimented with at six-

!"#$$%&

"#$$%&

'"#$$%&

("#$$%&

)"#$$%&

'(("& ("$$& "$*'& '$$$$& ($'+*& *$$$$&
!"#$%&'()'*(&%+'

,-%%."-'()',/0'(1%&'2%3-'

Figure 3: The speedup of using the SPA for lo-
cal SpMSV operation over using a heap (priority
queue) data structure. We see that after 10K pro-
cessors, the difference becomes marginal and heap
option becomes preferable due to its lower memory
consumption. The experiment is run on Hopper.

way threading. This lets us avert the issue of non-scaling
atomics across multi-socket configurations [1]. This opti-
mization was also considered by Leiserson et al. [24] (termed
“benign races”) for insertions to their bag data structure.

For the 2D algorithm, the computation time is dominated
by the sequential SpMSV operation in line 7 of Algorithm 3.
This corresponds to selection, scaling and finally merging
columns of the local adjacency matrix that are indexed by
the nonzeros in the sparse vector. Computationally, we form
the union

S
Aij(:, k) for all k where fi(k) exists.

We explored multiple methods of forming this union. The
first option is to use a priority-queue of size nnz (fi) and per-
form a unbalanced multiway merging. While this option has
the advantage of being memory-efficient and automatically
creating a sorted output, the extra logarithmic factor hurts
the performance at small concurrencies, even after using a
highly optimized cache-efficient heap. The cumulative re-
quirement for these heaps are O(m). The second option is
to use a sparse accumulator (SPA) [17] which is composed
of a dense vector of values, a bit mask representing the “oc-
cupied” flags, and a list that keeps the indices of existing
elements in the output vector. The SPA approach proved
to be faster for lower concurrencies, although it has disad-
vantages such as increasing the memory footprint due to
the temporary dense vectors, and having to explicitly sort
the indices at the end of the iteration. The cumulative re-
quirement for the sparse accumulators are O(n pc). Figure 3
shows the results of a microbenchmark that revealed a tran-
sition point around 10000 cores (for flat MPI version) after
which the priority-queue approach is more efficient, both in
terms of speed and memory footprint. For a run on 10000
cores, the per core memory footprint of the SPA approach
on a 100 × 100 processor grid, running a scale 33 graph, is
9 · 233/100 bytes, over 750MB. Our final algorithm is there-
fore a polyalgorithm depending on the concurrency.

4.3 Distributed-memory parallelism
We use the MPI message-passing library to express the

inter-node communication steps. In particular, we exten-
sively utilize the collective communication routines Alltoallv,
Allreduce, and Allgatherv.

Our 2D implementation relies on the linear-algebraic prim-
itives of the Combinatorial BLAS framework [8], with cer-

Figure 4: The time spent in MPI calls for a loop
that performs BFS iterations followed by a globally
synchronizing Allreduce. The sparse x and y vec-
tors are distributed to diagonal processors only. The
numbers are in percentages, normalized to the max-
imum across all processors. The idling times of the
waiting processors account for the higher MPI time
spent on off-diagonal processors. Experiment is per-
formed on 256 processors logically forming a 16× 16
processor grid.

tain BFS specific optimizations enabled.
We chose to distribute the vectors over all processors in-

stead of only a subset (the diagonal processors in this case)
of processors. In SpMSV, the accumulation of sparse con-
tributions require the diagonal processor to go through an
additional local merging phase, during which all other pro-
cessors on the processor row sit idle. The severe load imbal-
ance that results is shown in Figure 4, which shows the time
spent in MPI calls (normalized to 100% across all proces-
sors). In this experiment, the SpMSV calls are immediately
followed by a global Allreduce. The waiting time for this
blocking collective is accounted for the total MPI time. We
see that the time spent idling is approximately 3-4 times of
the time spent in communication.

Distributing the vectors over all processors (2D vector dis-
tribution) remedies this problem and we observe almost no
load imbalance in that case.

4.4 Load-balancing traversal
We achieve a reasonable load-balanced graph traversal by

randomly shuffling all the vertex identifiers prior to parti-
tioning. This leads to each process getting roughly the same
number of vertices and edges, regardless of the degree distri-
bution. An identical strategy is also employed in the Graph
500 BFS benchmark. The downside is that the edge cut
is potentially as high as an average random balanced cut,
which can be O(m) for several random graph families [33].

5. ALGORITHM ANALYSIS
Note that the RAM and PRAM models, capturing asymp-

totic work and parallel execution time complexity with ex-
tremely simple underlying assumptions of the machine model,
are inadequate to analyze and contrast parallel BFS algo-
rithmic variants on current parallel systems. For instance,
the PRAM asymptotic time complexity for a level-synchronous
parallel BFS is O(D) (where D is the diameter of the graph),

and the work complexity is O(m + n). These terms do not
provide any realistic estimate of performance on current par-
allel systems.

We propose a simple linear model to capture the cost
of regular (unit stride or fixed-stride) and irregular mem-
ory references to various levels of the memory hierarchy,
as well as to succinctly express inter-processor MPI com-
munication costs. We use the terms α and β to account
for the latency of memory accesses and the transfer time
per memory word (i.e., inverse of bandwidth) respectively.
Further, we use αL to indicate memory references to local
memory, and αN to denote message latency over the net-
work (remote memory accesses). The bandwidth terms can
also be similarly defined. To account for the differing access
times to various levels of the memory hierarchy, we addi-
tionally qualify the α term to indicate the size of the data
structure (in memory words) that is being accessed. αL,x,
for instance, would indicate the latency of memory access
to a memory word in a logically-contiguous memory chunk
of size x words. Similarly, to differentiate between various
inter-node collective patterns and algorithms, we qualify the
network bandwidth terms with the communication pattern.
For instance, βN,p2p would indicate the sustained memory
bandwidth for point-to-point communication, βN,a2a would
indicate the sustained memory bandwidth per node in case
of an all-to-all communication scenario, and βN,ag would
indicate the sustained memory bandwidth per node for an
allgather operation.

Using synthetic benchmarks, the values of α and β de-
fined above can be calculated offline for a particular parallel
system and software configuration. The programming model
employed, the messaging implementation used, the compiler
optimizations employed are some software factors that de-
termine the various α and β values.

5.1 Analysis of the 1D Algorithm
Consider the locality characteristics of memory references

in the level-synchronous BFS algorithm. Memory traffic
comprises touching every edge once (i.e., accesses to the ad-
jacency arrays, cumulatively m), reads and writes from/to
the frontier stacks (n), distance array checks (m irregular
accesses to an array of size n) and writes (n accesses to d).
The complexity of the 1D BFS algorithm in our model is thus
mβL (cumulative adjacency accesses) + nαn (accesses to ad-
jacency array pointers) + mαn (distance checks/writes).

In the parallel case with 1D vertex and edge partition-
ing, the number of local vertices nloc is approximately n/p
and the number of local edges is m/p. The local memory
reference cost is given by m

p
βL + n

p
αL,n/p + m

p
αL,n/p. The

distance array checks thus constitute the substantial fraction
of the execution time, since the αL,n/p term is significantly
higher than the βL term. One benefit of the distributed ap-
proach is the array size for random accesses reduces from n
to n/p, and so the cache working set of the algorithm is sub-
stantially lower. Multithreading within a node (say, t-way
threading) has the effect of reducing the number of processes
and increasing the increasing the process-local vertex count
by a factor of t.

The remote memory access costs are given by the All-to-all
step, which involves a cumulative data volume of m(p−1)/p
words sent on the network. For a random graph with a
uniform degree distribution, each process would send ev-
ery other process roughly m/p2 words. This value is typ-

ically large enough that the bandwidth component domi-
nates over the latency term. Since we randomly shuffle the
vertex identifiers prior to execution of BFS, these commu-
nication bounds hold true in case of the synthetic random
networks we experimented with in this paper. Thus, the
per-node communication cost is given by pαN + m

p
βN,a2a(p).

βN,a2a(p) is a function of the processor count, and several
factors, including the interconnection topology, node injec-
tion bandwidth, the routing protocol, network contention,
etc. determine the sustained per-node bandwidth. For in-
stance, if nodes are connected in a 3D torus, it can be shown
that bisection bandwidth scales as p2/3. Assuming all-to-
all communication scales similarly, the communication cost
can be revised to pαN + m

p
p1/3βN,a2a. If processors are con-

nected via a ring, then pαN + m
p

pβN,a2a would be an estimate
for the all-to-all communication cost, essentially meaning no
parallel speedup.

5.2 Analysis of the 2D Algorithm
Consider the general 2D case processor grid of pr×pc. The

size of the local adjacency matrix is n/pr ×n/pc. The num-
ber of memory references is the same as the 1D case, cumula-
tively over all processors. However, the cache working set is
bigger, because the sizes of the local input (frontier) and out-
put vectors are n/pr and n/pc, respectively. The local mem-
ory reference cost is given by m

p
βL + n

p
αL,n/pc + m

p
αL,n/pr .

The higher number of cache misses associated with larger
working sets is perhaps the primary reason for the relatively
higher computation costs of the 2D algorithm.

Most of the costs due to remote memory accesses is con-
centrated in two operations. The expand phase is character-
ized by an Allgatherv operation over the processor column
(of size pr) and the fold phase is characterized by an All-
toallv operation over the processor row (of size pc).

The aggregate input to the Allgatherv step is O(n) over
all iterations. However, each processor receives a 1/pc por-
tion of it, meaning that frontier subvector gets replicated
along the processor column. Hence, the per node commu-
nication cost is prαN + n

pc
βN,ag(pr). This replication can

be partially avoided by performing an extra round of com-
munication where each processor individually examines its
columns and broadcasts the indices of its nonempty columns.
However, this extra step does not decrease the asymptotic
complexity for RMAT graphs, neither did it gave any per-
formance increase in our experiments.

The aggregate input to the Alltoallv step can be as high
as O(m), although the number is lower in practice due to
in-node aggregation of newly discovered vertices that takes
place before the communication. Since each processor re-
ceives only a 1/p portion of this data, the remote costs due
to this step are at most pcαN + m

p
βN,a2a(pc).

We see that for large p, the expand phase is likely to be
more expensive than the fold phase. In fact, Table 1 exper-
imentally confirms the findings of our analysis. We see that
Allgatherv always consumes a higher percentage of the BFS
time than the Alltoallv operation, with the gap widening as
the matrix gets sparser. This is because for fixed number
of edges, increased sparsity only affects the Allgatherv per-
formance, to a first degree approximation. In practice, it
slightly slows down the Alltoallv performance as well, be-
cause the in-node aggregation is less effective for sparser
graphs.

Our analysis successfully captures that the relatively lower

Table 1: Decomposition of communication times for
the flat (MPI only) 2D algorithm on Franklin, using
the R-MAT graphs. Allgatherv takes place during
the expand phase and Alltoallv takes place during
the fold phase. The edge counts are kept constant.

Core Problem Edge BFS time Allgatherv Alltoallv
count scale factor (secs) (percent.) (percent.)

1024
27 64 2.67 7.0% 6.8%
29 16 4.39 11.5% 7.7%
31 4 7.18 16.6% 9.1%

2025
27 64 1.56 10.4% 7.6%
29 16 2.87 19.4% 9.2%
31 4 4.41 24.3% 9.0%

4096
27 64 1.31 13.1% 7.8%
29 16 2.23 20.8% 9.0%
31 4 3.15 30.9% 7.7%

communication costs of the 2D algorithm by representing
βN,x as a function of the processor count.

6. EXPERIMENTAL STUDIES
We provide an apples-to-apples comparison of our four

different BFS implementations. For both 1D and 2D dis-
tributions, we experimented with flat MPI as well as hy-
brid MPI+Threading versions. We use synthetic graphs
based on the R-MAT random graph model [9], as well as
a big real world graph that represents a web crawl of the
UK domain [6] (uk-union). The R-MAT generator creates
networks with skewed degree distributions and a very low
graph diameter. We set the R-MAT parameters a, b, c, and
d to 0.59, 0.19, 0.19, 0.05 respectively. These parameters are
identical to the ones used for generating synthetic instances
in the Graph 500 BFS benchmark. R-MAT graphs make for
interesting test instances: traversal load-balancing is non-
trivial due to the skewed degree distribution, the graphs
lack good separators, and common vertex relabeling strate-
gies are also expected to have a minimal effect on cache
performance. The diameter of the uk-union graph is signifi-
cantly higher (≈ 140) than R-MAT’s (less than 10), allowing
us to access the sensitivity of our algorithms with respect to
the number of synchronizations. We use undirected graphs
for all our experiments, but the BFS approaches can work
with directed graphs as well.

To compare performance across multiple systems using a
rate analogous to the commonly-used floating point oper-
ations/second, we normalize the serial and parallel execu-
tion times by the number of edges visited in a BFS traver-
sal and present a ‘Traversed Edges Per Second’ (TEPS)
rate. For a graph with a single connected component (or
one strongly connected component in case of directed net-
works), the baseline BFS algorithm would visit every edge
twice (once in case of directed graphs). We only consider
traversal execution times from vertices that appear in the
large component, compute the average time using at least 16
randomly-chosen sources vertices for each benchmark graph,
and normalize the time by the cumulative number of edges
visited to get the TEPS rate. As suggested by the Graph 500
benchmark, we first symmetrize the input to model undi-
rected graphs. For TEPS calculation, we only count the

number of edges in the original directed graph, despite visit-
ing symmetric edges as well. For R-MAT graphs, the default
edge count to vertex ratio is set to 16 (which again corre-
sponds to the Graph 500 default setting), but we also vary
the ratio of edge to vertex counts in some of our experiments.

We collect performance results on ‘Franklin’, a 9660-node
Cray XT4 and ‘Hopper’, a 6392-node Cray XE6. Both su-
percomputers are located at NERSC, Lawrence Berkeley
National Laboratory. Each XT4 node contains a quad-core
2.3 GHz AMD Opteron processor, which is tightly integrated
to the XT4 interconnect via a Cray SeaStar2 ASIC through
a HyperTransport (HT) 2 interface capable of 6.4 GB/s.
The SeaStar routing chips are interconnected in a 3D torus
topology, and each link is capable of 7.6 GB/s peak bidi-
rectional bandwidth. The 3D torus topology implies that
each node has a direct link to its six nearest neighbors.
Typical MPI latencies will range from 4.5 - 8.5 µs, depend-
ing on the size of the system and the job placement. The
Opteron Budapest processor is a superscalar out-of-order
core that may complete both a single instruction-multiple
data (SIMD) floating-point add and a SIMD floating-point
multiply per cycle, the peak double-precision floating-point
performance (assuming balance between adds and multi-
plies) is 36.8 GFlop/s. Each core has both a private 64 KB
L1 data cache and a 512 KB L2 victim cache. The four cores
on a socket share a 2 MB L3 cache. The Opteron integrates
the memory controllers on-chip and provides an inter-socket
network (via HT) to provide cache coherency as well as di-
rect access to remote memory. This machine uses DDR2-800
DIMMs providing a DRAM pin bandwidth of 12.8 GB/s.

Each XE6 node contains two twelve-core 2.1 GHz AMD
Opteron processors, integrated to the Cray Gemini intercon-
nect through HT 3 interfaces. Each Gemini chip is capable
of 9.8 GB/s bandwidth. Two Hopper nodes share a Gem-
ini chip as opposed to the one-to-one relationship on Hop-
per. The effective bisection bandwidth of Hopper is slightly
(ranging from 1-20%, depending on the bisection dimension)
lower than Franklin’s. Each twelve-core ‘MagnyCours’ die
is essentially composed of two 6-core NUMA nodes. Conse-
quently, we apply 6-way multithreaded for our hybrid codes
in order to decouple the NUMA effects.

We used the gcc 4.5 for compiling both codes. The 1D
codes are implemented in C, whereas the 2D codes are im-
plemented in C++. We use Cray’s MPI implementation,
which is based on MPICH2. For intra-node threading, we
use the GNU C compiler’s OpenMP library. For all 2D ex-
periments, we used the closest square processor grid. For
hybrid codes, we applied 4-way multithreading on Franklin
and 6-way multithreading on Hopper.

Figure 5 shows ‘strong scaling’ of our algorithms’ perfor-
mance (higher is better) on Franklin. We see that the flat
1D algorithms are about 1.5−1.8× faster than the 2D algo-
rithms on this architecture. The 1D hybrid algorithm, albeit
slower than the flat 1D algorithm for smaller concurrencies,
starts to perform significantly faster in larger concurrencies.
We attribute this effect partially to bisection bandwidth sat-
uration and partially to the saturation of the network inter-
face card when using more cores (hence more outstanding
communication requests) per node. The 2D hybrid algo-
rithm, tends to outperform the flat 2D algorithm but can
not cope with the 1D algorithms on this architecture as it
spends significantly more time in computation due to rela-
tively larger cache working sizes, as captured by our model

in Section 5.
The communication costs, however, tell a different story

about the relative competitiveness of our algorithms, Fig-
ure 6 shows strong scaling of the communication time of our
algorithms (lower is better). The communication times also
include waiting at synchronization barriers. 2D algorithms
consistently spend less time (30-60% for scale 32) in com-
munication, compared to their relative 1D algorithms. This
is also expected by our analysis, as smaller number of par-
ticipating processors in collective operations tend to result
in faster communication times, with the same amount of
data. The hybrid 1D algorithm catches up with the flat 2D
algorithm on large concurrencies with the smaller (scale 29)
dataset, even though it lags behind the hybrid 2D algorithm.

Strong scaling results on Hopper are shown in Figure 7.
By contrast to Franklin results, the 2D algorithms score
higher than their 1D counterparts. The more sophisticated
Magny-Cours chips of Hopper are clearly faster in integer
calculations, while the overall bisection bandwidth has not
kept pace. The relative communication times of the algo-
rithms are shown in Figure 8. We did not run the flat 1D
algorithm on 40K cores as the communication times already
started to increase when going from 10K to 20K cores, con-
suming more than 90% of the overall execution time. By
contrast, the percentage of time spent in communication for
the 2D hybrid algorithm was less than 50% on 20K cores.

The weak scaling results on Franklin are shown in Fig-
ure 9 where we fix the edges per processor to a constant
value. To be consistent with the literature, we present weak
scaling results in terms of the time it takes to complete the
BFS iterations, with ideal curve being a flat line. Interest-
ingly, in this regime, the flat 1D algorithm performs better
than the hybrid 1D algorithm, both in terms of overall per-
formance and communication costs. The 2D algorithms, al-
though performing much less communication than their 1D
counterparts, come later in terms of overall performance on
this architecture, due to their higher computation overheads.

Figure 10 shows the sensitivity of our algorithms to vary-
ing graph densities. In this experiment, we kept the number
of edges per processor constant by varying the number of
vertices as the average degree varies. One important finding
of this experiment is that the flat 2D algorithm beats the
flat 1D algorithm (for the first time) with relatively denser
(average degree 64) graphs. The trend is obvious in that the
performance margin between the 1D algorithm and the 2D
algorithm increases in favor of the 1D algorithm as the graph
gets sparser. The empirical data supports our analysis in
Section 5, which stated that the 2D algorithm performance
was limited by the local memory accesses to its relatively
larger vectors. For a fixed number of edges, the matrix di-
mensions (hence the length of intermediate vectors) shrink
as the graph gets denser, partially nullifying the cost of local
cache misses.

We show the performance of our 2D algorithms on the
real uk-union data set in Figure 11. We see that commu-
nication takes a very small fraction of the overall execution
time, even on 4K cores. This is a notable result because
the uk-union dataset has a relatively high-diameter and the
BFS takes approximately 140 iterations to complete. Since
communication is not the most important factor, the hybrid
algorithm is slower than flat MPI, as it has more intra-node
parallelization overheads.

To compare our approaches with prior and reference dis-

2

4

6

8

10

512 1024 2048 4096

G
TE

PS

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(a) n = 229, m = 233

3

6

9

12

15

4096 6400 8192

G
TE

PS

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(b) n = 232, m = 236

Figure 5: BFS ‘strong scaling’ results on Franklin for Graph 500 R-MAT graphs: Performance rate achieved
(in GTEPS) on increasing the number of processors.

1

2

3

4

512 1024 2048 4096

Co
m

m
.

ti
m

e
(s

ec
on

ds
)

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(a) n = 229, m = 233

2

4

6

8

4096 6400 8192

Co
m

m
.

ti
m

e
(s

ec
on

ds
)

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(b) n = 232, m = 236

Figure 6: BFS inter-node MPI communication time (in seconds) on Franklin for Graph 500 R-MAT graphs.

2

4

6

8

10

1224 2500 5040 10008

G
TE

PS

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(a) n = 230, m = 234

4

8

12

16

20

5040 10008 20000 40000

G
TE

PS

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(b) n = 232, m = 236

Figure 7: BFS ‘strong scaling’ results on Hopper for Graph 500 R-MAT graphs: Performance rate achieved
(in GTEPS) on increasing the number of processors.

1

2

3

4

5

1224 2500 5040 10008

Co
m

m
.

ti
m

e
(s

ec
on

ds
)

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(a) n = 230, m = 234

2

4

6

8

10

12

5040 10008 20000 40000

Co
m

m
.

ti
m

e
(s

ec
on

ds
)

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(b) n = 232, m = 236

Figure 8: BFS inter-node MPI communication time (in seconds) on Hopper for Graph 500 R-MAT graphs.

3

6

9

12

15

512 1024 2048 4096

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(a) Mean search time

1

2

3

4

5

6

7

512 1024 2048 4096

Co
m

m
.

ti
m

e
(s

ec
on

ds
)

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

(b) Communication time

Figure 9: BFS ‘weak scaling’ results on Franklin for Graph 500 R-MAT graphs: Mean search time (left, in
seconds) and MPI communication time (right, seconds) on fixed problem size per core (each core has ≈ 17M
edges) For both mean search time and communication, lower is better.

0

1

2

3

4

5

SCALE 31, degree 4 SCALE 29, degree 16 SCALE 27, degree 64

G
TE

PS

1D Flat MPI 1D Hybrid 2D Flat MPI 2D Hybrid

(a) p = 1024

0

2

4

6

8

10

SCALE 31, degree 4 SCALE 29, degree 16 SCALE 27, degree 64

G
TE

PS

1D Flat MPI 1D Hybrid 2D Flat MPI 2D Hybrid

(b) p = 4096

Figure 10: BFS GTEPS performance rate achieved on varying the average graph degree, for R-MAT graphs
and two different parallel concurrencies.

tributed memory implementations, we experimented with
the Parallel Boost Graph Library’s (PBGL) BFS implemen-
tation [20] (Version 1.45 of the Boost library) and the ref-
erence MPI implementation (Version 1.2) of the Graph 500
benchmark [19]. PBGL, being one of the few Boost libraries
that is not header only, failed to compile on the Cray ma-
chines. Therefore, we ran comparison tests on Carver, an
IBM iDataPlex system with 400 compute nodes, each node
having two quad-core Intel Nehalem processors. Both codes
suffer from severe memory bottlenecks in graph construction
that hinder scalable creation of large graphs. Our results,
for smaller graphs that ran to completion, are summarized
in Table 2. We are 1.97× faster than the reference Graph
500 implementation at 64-way process concurrency.

Extensive experimentation reveals that our single-node
multithreaded BFS version (i.e., without the inter-node com-
munication steps in Algorithm 2) is also extremely fast.
The source code for some of the best x86 multicore imple-
mentations (based on absolute performance) in recent lit-

erature [1, 24] are not publicly available, and implement-
ing these routines is non-trivial. More importantly, there
is no theoretical analysis or empirical evidence to suggest
these approaches would outperform ours. We compare the
Nehalem-EP performance results reported in the work by
Agarwal et al. [1] with the performance on a single node of
the Carver system (also Nehalem-EP), and notice that for
R-MAT graphs with average degree 16 and 32 million ver-
tices, our approach is nearly 1.30× faster. Our approach is
also faster than BFS results reported by Leiserson et al. [24]
on the KKt_power, Freescale1, and Cage14 test instances,
by up to 1.47×.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present a design-space exploration of

distributed-memory parallel BFS, discussing two fast“hybrid-
parallel” approaches for large-scale graphs. Our experimen-
tal study encompasses performance analysis on several large-

!"

#"

$"

%"

&"

'!"

(!!" '!!!" #!!!" $!!!"

)
*+
,"
-*
+.
/0
"1
23

*"
45
*/
56
"

7839*.":;"<:.*5"

<:33="4#>"?@9.2A6"

<:3B="4#>"?@9.2A6"

<:33="4#>"CD+E6"

<:3B="4#>"CD+E6"

Figure 11: Running times of the 2D algorithms on
the uk-union data set on Hopper (lower is better).
The running times translate into a maximum of 3
GTEPS performance, achieving a 4× speedup when
going from 500 to 4000 cores

Table 2: Performance comparison with other codes
on Carver. The reported numbers are in MTEPS
for R-MAT graphs with the same parameters as be-
fore. The graphs are undirected and edges are per-
muted for load balance. N.A. means graph genera-
tion failed.

Core count Code
Problem Size

Scale 22 Scale 24

64
PBGL 25.9 N.A.

Reference 298 336
Flat 2D 891 777

128
PBGL 28.5 N.A.

Reference 387 526
Flat 2D 848 1034

scale synthetic random graphs that are also used in the
recently announced Graph 500 benchmark. The absolute
performance numbers we achieve on the large-scale parallel
systems Hopper and Franklin at NERSC are significantly
higher than prior work. The performance results, coupled
with our analysis of communication and memory access costs
of the two algorithms, challenges conventional wisdom that
fine-grained communication is inherent in parallel graph al-
gorithms and necessary for achieving high performance [25].

We list below optimizations that we intend to explore in
future work, and some open questions related to design of
distributed-memory graph algorithms.
Exploiting symmetry in undirected graphs. If the
graph is undirected, then one can save 50% space by storing
only the upper (or lower) triangle of the sparse adjacency
matrix, effectively doubling the size of the maximum prob-
lem that can be solved in-memory on a particular system.
The algorithmic modifications needed to save a comparable
amount in communication costs for BFS iterations is not
well-studied.
Exploring alternate programming models. Partitioned
global address space (PGAS) languages can potentially sim-
plify expression of graph algorithms, as inter-processor com-
munication is implicit. In future work, we will investigate
whether our two new BFS approaches are amenable to ex-
pression using PGAS languages, and whether they can de-

liver comparable performance.
Reducing inter-processor communication volume with
graph partitioning. An alternative to randomization of
vertex identifiers is to use hypergraph partitioning software
to reduce communication. Although hypergraphs are capa-
ble of accurately modeling the communication costs of sparse
matrix-dense vector multiplication, SpMSV has not been
studied yet, which is potentially harder since the sparsity
pattern of the frontier matrix changes over BFS iterations.
Interprocessor collective communication optimiza-
tion. We conclude that even after alleviating the communi-
cation costs, the performance of distributed-memory parallel
BFS is heavily dependent on the inter-processor collective
communication routines All-to-all and Allgather. Under-
standing the bottlenecks in these routines at high process
concurrencies, and designing network topology-aware collec-
tive algorithms is an interesting avenue for future research.

Acknowledgments
Discussions with John R.Gilbert, Steve Reinhardt, and Adam
Lugowski greatly improved our understanding of casting BFS
iterations into sparse linear algebra. John Shalf and Nick
Wright provided generous technical and moral support dur-
ing the project.

8. REFERENCES
[1] V. Agarwal, F. Petrini, D. Pasetto, and D.A. Bader.

Scalable graph exploration on multicore processors. In
Proc. ACM/IEEE Conference on Supercomputing
(SC10), November 2010.

[2] D. Ajwani, R. Dementiev, and U. Meyer. A
computational study of external-memory BFS
algorithms. In Proc. 17th annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’06), pages
601–610, January 2006.

[3] D. Ajwani and U. Meyer. Design and engineering of
external memory traversal algorithms for general
graphs. In J. Lerner, D. Wagner, and K.A. Zweig,
editors, Algorithmics of Large and Complex Networks:
Design, Analysis, and Simulation, pages 1–33.
Springer, 2009.

[4] D.A. Bader and K. Madduri. Designing multithreaded
algorithms for breadth-first search and st-connectivity
on the Cray MTA-2. In Proc. 35th Int’l. Conf. on
Parallel Processing (ICPP 2006), pages 523–530,
August 2006.

[5] J. Barnat, L. Brim, and J. Chaloupka. Parallel
breadth-first search LTL model-checking. In Proc.
18th IEEE Int’l. Conf. on Automated Software
Engineering, pages 106–115, October 2003.

[6] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proc. 13th Int’l. World
Wide Web Conference (WWW 2004), pages 595–601,
2004.

[7] A. Buluç and J.R. Gilbert. On the representation and
multiplication of hypersparse matrices. In Proc. Int’l
Parallel and Distributed Processing Symp. (IPDPS
2008), pages 1–11. IEEE Computer Society, 2008.

[8] A. Buluç and J.R. Gilbert. The Combinatorial BLAS:
Design, implementation, and applications. The
International Journal of High Performance Computing
Applications, to appear, 2010.

[9] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In Proc. 4th
SIAM Intl. Conf. on Data Mining (SDM), Orlando,
FL, April 2004. SIAM.

[10] A. Chan, F. Dehne, and R. Taylor.
CGMGRAPH/CGMLIB: Implementing and testing
CGM graph algorithms on PC clusters and shared
memory machines. Int’l. Journal of High Performance
Comput. Appl., 19(1):81–97, 2005.

[11] G. Cong, G. Almasi, and V. Saraswat. Fast PGAS
implementation of distributed graph algorithms. In
Proc. ACM/IEEE Conference on Supercomputing
(SC10), November 2010.

[12] G. Cong and K. Makarychev. Improving memory
access locality for large-scale graph analysis
applications. In Proc. 22nd Intl. Parallel and
Distributed Computing and Communication Systems
(PDCCS 2009), pages 121–127, September 2009.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Inc.,
Cambridge, MA, 1990.

[14] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proc. 24th ACM
Annual Conf./Annual Meeting, pages 157–172, 1969.

[15] N. Edmonds, J. Willcock, T. Hoefler, and
A. Lumsdaine. Design of a large-scale hybrid-parallel
graph library. In International Conference on High
Performance Computing, Student Research
Symposium, Goa, India, December 2010. To appear.

[16] H. Gazit and G.L. Miller. An improved parallel
algorithm that computes the BFS numbering of a
directed graph. Information Processing Letters,
28(2):61–65, 1988.

[17] J.R. Gilbert, C. Moler, and R. Schreiber. Sparse
matrices in Matlab: Design and implementation.
SIAM Journal of Matrix Analysis and Applications,
13(1):333–356, 1992.

[18] J.R. Gilbert, S. Reinhardt, and V.B. Shah. A unified
framework for numerical and combinatorial
computing. Computing in Science and Engineering,
10(2):20–25, 2008.

[19] The Graph 500 List. http://www.graph500.org, last
accessed April 2011.

[20] D. Gregor and A. Lumsdaine. Lifting sequential graph
algorithms for distributed-memory parallel
computation. In Proc. 20th ACM SIGPLAN Conf. on
Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 423–437, October
2005.

[21] P. Harish and P.J. Narayanan. Accelerating large
graph algorithms on the GPU using CUDA. In Proc.
14th Int’l. Conf. on High-Performance Computing
(HiPC), pages 197–208, dec 2007.

[22] B. Hendrickson, R.W. Leland, and S. Plimpton. An
efficient parallel algorithm for matrix-vector
multiplication. International Journal of High Speed
Computing, 7(1):73–88, 1995.

[23] R.E. Korf and P. Schultze. Large-scale parallel
breadth-first search. In Proc. 20th National Conf. on
Artificial Intelligence (AAAI’05), pages 1380–1385,
July 2005.

[24] C.E. Leiserson and T.B. Schardl. A work-efficient

parallel breadth-first search algorithm (or how to cope
with the nondeterminism of reducers). In Proc. 22nd
ACM Symp. on Parallism in Algorithms and
Architectures (SPAA ’10), pages 303–314, June 2010.

[25] A. Lumsdaine, D. Gregor, B. Hendrickson, and J.W.
Berry. Challenges in parallel graph processing. Parallel
Processing Letters, 17:5–20, 2007.

[26] L. Luo, M. Wong, and W m. Hwu. An effective GPU
implementation of breadth-first search. In Proc. 47th
Design Automation Conference (DAC ’10), pages
52–55, June 2010.

[27] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proc. Int’l.
Conf. on Management of Data (SIGMOD ’10), pages
135–146, June 2010.

[28] D. Mizell and K. Maschhoff. Early experiences with
large-scale XMT systems. In Proc. Workshop on
Multithreaded Architectures and Applications
(MTAAP’09), May 2009.

[29] R. Pearce, M. Gokhale, and N.M. Amato.
Multithreaded asynchronous graph traversal for
in-memory and semi-external memory. In Proc. 2010
ACM/IEEE Int’l. Conf. for High Performance
Computing, Networking, Storage and Analysis
(SC’10), pages 1–11, 2010.

[30] M.J. Quinn and N. Deo. Parallel graph algorithms.
ACM Comput. Surv., 16(3):319–348, 1984.

[31] A.E. Reghbati and D.G. Corneil. Parallel
computations in graph theory. SIAM Journal of
Computing, 2(2):230–237, 1978.

[32] D.P. Scarpazza, O. Villa, and F. Petrini. Efficient
Breadth-First Search on the Cell/BE processor. IEEE
Transactions on Parallel and Distributed Systems,
19(10):1381–1395, 2008.

[33] G.R. Schreiber and O.C. Martin. Cut size statistics of
graph bisection heuristics. SIAM Journal on
Optimization, 10(1):231–251, 1999.

[34] J. Ullman and M. Yannakakis. High-probability
parallel transitive closure algorithms. In Proc. 2nd
Annual Symp. on Parallel Algorithms and
Architectures (SPAA 1990), pages 200–209, July 1990.

[35] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms.
Parallel Computing, 35(3):178–194, 2009.

[36] Y. Xia and V.K. Prasanna. Topologically adaptive
parallel breadth-first search on multicore processors.
In Proc. 21st Int’l. Conf. on Parallel and Distributed
Computing Systems (PDCS’09), November 2009.

[37] A. Yoo, E. Chow, K. Henderson, W. McLendon,
B. Hendrickson, and Ü. V. Çatalyürek. A scalable
distributed parallel breadth-first search algorithm on
BlueGene/L. In Proc. ACM/IEEE Conf. on High
Performance Computing (SC2005), November 2005.

[38] K. You, J. Chong, Y. Yi, E. Gonina, C. Hughes, Y-K.
Chen, W. Sung, and K. Kuetzer. Parallel scalability in
speech recognition: Inference engine in large
vocabulary continuous speech recognition. IEEE
Signal Processing Magazine, 26(6):124–135, 2009.

http://www.graph500.org

	1 Introduction
	2 Breadth-First Search Overview
	2.1 Preliminaries
	2.2 Parallel BFS: Prior Work

	3 Breadth-First Search on Distributed Memory Systems
	3.1 BFS with 1D Partitioning
	3.2 BFS with 2D Partitioning

	4 Implementation Details
	4.1 Graph Representation
	4.2 Local Computation
	4.3 Distributed-memory parallelism
	4.4 Load-balancing traversal

	5 Algorithm Analysis
	5.1 Analysis of the 1D Algorithm
	5.2 Analysis of the 2D Algorithm

	6 Experimental Studies
	7 Conclusions and Future Work
	8 References

