Final Report: Center for Programming Models
for Scalable Parallel Computing
Towards Enhancing OpenMP for Manycore and
Heterogeneous Nodes

Barbara Chapman
chapman@cs.uh.edu

February 2012

Project Period: September 2010 - September 2011
University of Houston,
Computer Science Department
Philip G. Hoffman Hall 501
4800 Calhoun Rd
Houston, TX 77204-3010



1 Overview of Research at University of Houston

OpenMP was not well recognized at the beginning of the project, around year 2003,
because of its limited use in DoE production applications and the inmature hardware
support for an efficient implementation. Yet in the recent years, it has been graduately
adopted both in HPC applications, mostly in the form of MPI+OpenMP hybrid code,
and in mid-scale desktop applications for scientific and experimental studies. There
are at least two reasons behind it, the shift to spatial parallelism in the form of multi-
ple and many homogeneous and heterogeneous power-efficient cores, and the urgency
to have a programming model and support toolchains to enable productive develop-
ment of applications untilizing the large-degree of parallelism. We have observed this
trend and worked deligiently to improve our OpenMP compiler and runtimes, as well
as to work with the OpenMP standard organization to make sure OpenMP are evolved
in the direction close to DoE missions. In the Center for Programming Models for
Scalable Parallel Computing project, the HPCTools team at the University of Houston
(UH), directed by Dr. Barbara Chapman, has been working with project partners, exter-
nal collaborators and hardware vendors to increase the scalability and applicability of
OpenMP for multi-core (and future manycore) platforms and for distributed memory
systems by exploring different programming models, language extensions, compiler
optimizations, as well as runtime library support.

We are active participants in the activities of the OpenMP Architecture Review
Board (ARB), the standards organization that maintains and further develops the OpenMP
programming interface. Since joining the Multicore Association (MCA) in the last
project period, we have been actively involved in the development of low-level stan-
dards for programming heterogeneous systems that may serve as an implementation
vehicle for future OpenMP enhancements for nodes that have heterogeneous cores. The
technical exploration during this final project period consists of language extensions,
compiler and runtime enhancement, as well as application experiments with other pro-
gramming systems for the current and future computer platforms. These research and
development activities address multiple challenges in the context of OpenMP, such as
locality, compiler and runtime optimizations for memory accesses of parallel programs,
productivity and robustness of compilers etc. Our approaches are applicable to general
node-level programming model. We are also collaborating with our partners in the
PModels Project to explore OpenMP interoperability with other programming mod-
els and ensure that it can be deployed with each of the message passing libraries and
PGAS models. Our practical work is implemented within the robust OpenUH compiler
infrastructure which serves as an indispensable test bed for validating the results of our
research on real applications.

We have continued to explore language and compiler solutions to locality chal-
lenges of OpenMP programs by extending the “location” concepts introduced in the
previsous project year. Using locations, programmers will be able to control where
data is located as well as to manage tasks to be executed close to their associated
data [[L1]. With the concept, OpenMP user can specify a parallel region mapping with
a collection of locations, determine an OpenMP work-sharing construct to be executed
by a set of locations, and allocate an OpenMP task on a specific location. User can use
locations to further optimize their OpenMP code by specifying data and task affinity



within a location. Additionally, we introduced a mechanism to express data layout into
OpenMP, to allow OpenMP programmers to control and manage the data layout.

In our efforts to create an OpenMP 3.x compiler and runtime, we have implemented
a configurable task pool framework that allows the user to choose at runtime which
task pool organizations to employ [13]. We currently have four different task pools
implemented that utilize distributed, hierarchical, and hybrid queue organizations. We
have added to the OpenUH runtime a new synchronization mechanism similar to the
clock in X10 and the phaser in the X10 variant Habanero-Java. This would allow
point-to-point synchronizations and aid in the implementation of reduction operations
on task groups. This provides the ability to form implicit groupings of task as well as
more flexible synchronization.

OpenMP is under active growth thus a compiler should adapt itself to the rapid
change of OpenMP specifications. Based on PI’s previous work together with col-
leagues at the University of Stuttgart, Germany [15] [[18]], we developed an OpenMP
validation suite designed to validate the correctness of an OpenMP implementation.
It covers all feature tests of the latest OpenMP 3.1 directives and clauses as well as
stress tests to evaluate the robustness of OpenMP compiler implementations. Further-
more, we also developed an execution environment infrastructure that could manage
and automate validation tests easily as well as analyze and show the final results in a
user-friendly manner.

We also continued our work of creating a production-quality Co-Array Fortran
compiler, including improving our compiler to conform to the Fortran 2008 standard
for Co-Array handling, and enhancing both the compiler and runtime to perform op-
timizations for operations that access Co-Arrays. In a joint project between UH and
Total, we have investigated CAF as a viable programming model for production Oil
and Gas applications [7]. We also investigated optimizations to alleviate communi-
cation and synchronization costs during compilation and at runtime. In the course of
this work, we demonstrated the viability of CAF as a programming model that allows
for more intuitive and cleaner algorithms while delivering competitive performance
compared to MPL.

Writing a parallel shared memory application that achieves good performance and
scales well as the number of threads increases can be challenging. One of the reasons
is that as threads proliferate, the contention among shared resources increases and this
may cause performance degradation. The work in the runtime optimization research
focused on detecting performance bottlenecks caused by false sharing in OpenMP ap-
plications. We have introduced a dynamic framework [23]] to help application develop-
ers detect instances of false sharing as well as identify the data objects in an OpenMP
code that cause the problem. The framework that we have developed leverages features
of the OpenMP collector API to interact with the OpenMP compiler’s runtime library
and utilizes the information from hardware counters. We have demonstrated the use-
fulness of this framework on actual applications that exhibit poor scaling because of
false sharing.

Compiler approach to addressing the false sharing problems in an program has also
been studied [22]]. In this approach, we used a compile-time cost model to estimate the
performance impact of false sharing on parallel loops. With the help of cost models, the
compiler is able to estimate whether the specific transformation is profitable in terms



of execution time and determine the optimal level of the transformation, if applied.
We validated our model by comparing the false sharing overhead percentages obtained
by measuring from the execution time against the ones computed by our model. The
modeling results are comparable to the real execution behavior from 2 to 48 threads
tested, showing the model can accurately quantify the false sharing impact at compile-
time. The false sharing cost model will be used by compilers to guide the parallel loop
transformations by providing more accurate timing estimation for parallel loops. These
modeling and estimation results could also be useful for programmers for performance
tuning and locality optimizations.

HPC systems now exploit GPUs within their compute nodes to accelerate program
performance. As a result, high-end application development has become extremely
complex at the node level. In addition to restructuring the node code to exploit the
cores and specialized devices, the programmer may need to choose a programming
model such as OpenMP or CPU threads in conjunction with an accelerator program-
ming model to share and manage the difference node resources. This comes at a time
when programmer productivity and the ability to produce portable code has been rec-
ognized as a major concern. In this work, we have evaluated the state of the art ac-
celerator directives to program several applications kernels, explore transformations
to achieve good performance, and examine the expressivity and performance penalty
of using high-level directives versus CUDA. We also compare our results to OpenMP
implementations to understand the benefits of running the kernels in the accelerator
versus CPU cores.

2 Technical Accomplishments

In this section, we describe our accomplishments in the PModels 2 project during this
final project period. We have further enhanced our OpenMP implementation with lo-
cality support, described in Section have created the OpenMP 3.x compiler and
runtime implementation in our OpenUH compiler, see Section [2.2] and also devel-
oped a validation suite for the latest OpenMP specification, illustrated in Section 2.3
We have made significant progress in the work of creating a Co-Array Fortran com-
piler and runtime, which will be reported in Section Our work in runtime and
compile to help optimize memory access and locality in OpenMP parallel codes are
described in Section and [2.8] We have also reported our evaluations of directive
based GPGPU programming model and compared it with other approaches, as pre-
sented in Section

2.1 Locality-Aware OpenMP

We have continued to explore language and compiler solutions to locality challenges
of OpenMP programs by extending the “location” [12] concepts introduced in the pre-
visous project year. Using locations, programmers will be able to control where data
is located as well as to manage tasks to be executed close to their associated data. Our
goal is to enhance OpenMP with explicit-locality programming constructs that will
scale to the demands of emerging petascale and future exascale architectures. Loca-



tions provides an additional logical layer between the current OpenMP programming
model and underlying hardware.

With the concept, OpenMP user can specify a parallel region mapping with a col-
lection of locations, determine an OpenMP work-sharing construct to be executed by
a set of locations, and allocate an OpenMP task on a specific location. By specifying
the locations in a program, user can control where a task is executed, bind threads with
hardware, and set data layout. User can use locations to further optimize their OpenMP
code by specifying data and task affinity within a location. The fundamental assump-
tion of the concept is that a task affinity will be able to access data at the same location
faster than data at other locations.

We introduce a new runtime environment variable OMP_NUM_LOCS that defines
the number of locations, similar to the number of threads in the current OpenMP speci-
fication. If the environment variable has not been set, the program assumes one location
by default. We introduce a parameter NLOCS as a pre-defined variable for the number
of locations in an OpenMP program. It is similar to the THREADS parameter defined
in the UPC language [8]. The parameter remains constant during an execution. The
parameter is necessary in the definition of data layout, as well as in compiler and run-
time implementation. Each location is uniquely identified with a number MYLOC in
the range of [0:NLOCS-1].

2.1.1 Syntax of Location

In our design, we limit the location usage as a clause associated with OpenMP par-
allel, OpenMP worksharing, and task directives. The syntax of location clause is
location(m][: n]) where m and n are two integer numbers ranging from 0 to NLOCS-1.
A single number “m” represents the id of the location where the associated OpenMP
construct will be executed. Two numbers separated with a colon, such as “m:n”, repre-
sent a range of locations where the associated OpenMP construct will be executed on.
m and n are the lower bound and upper bound of the range. We consider the location
clause as a hint, instead of a command for compiler implementation. It means that a
compiler may ignore the clause without introducing correctness issue. Error conditions
should be gracefully handled when the parameters of the clause are not in the range.
For example, if a location number specified by programmer does not exist during run-
time, e.g. location 4 is specified but there are only 2 locations for the execution, then
these tasks specified running on the location will still be executed on a location in a
round-robin fashion.

2.1.2 Threads and Locations Mapping

The default mechanism to map threads to locations is by block distribution. For ex-
ample, if we have 16 threads and 4 locations, then the first location holds threads 0-3,
the second location has threads 4-7, and so on. The block fashion maps threads with
locations compactly to increase the data access locality. We also define the cyclic
mechanism to map threads with locations, which distributes threads in a scatter fashion
that can be used in the case of increasing memory access bandwidth. A user can mod-
ify the mapping rule by calling the omp_location_policy ((BLOCK, CYCLIC]) runtime



routine. If CYCLIC is specified, the threads will be mapped with locations in a cyclic
fashion, i.e. threads 0, 4, 8 and 12 are placed on location 0, thread 1, 5, 9 and 13 are
placed on location 1, and so on in the above example. The location inheritance rule
for parallel regions and tasks without the ”location” clause is hierarchical, that is, it is
inherited from the parent in term of nested parallelism. In the beginning of a program
execution, the default location association is to the entire collection of locations. Thus,
when there is no location associated with a top-level parallel region, the parallel region
will be executed across all locations in a block distribution fashion for all threads if
possible. For nested parallelism, the inner parallel region will start by default at the
same location where its parent thread is associated. If a task has been assigned to a
particular location, all of its child tasks will be running on the same location if no other
location is specified. On the contrary, if a location is specified to one of its child tasks,
the task will be executed on the specified location.

2.1.3 Defining Data Layout

With the concept of location, we can further introduce a mechanism to express data
layout into OpenMP. The goal of this feature is to allow OpenMP programmers to
control and manage the data layout, and to map it with hierarchical memory systems.
We borrow the data distribution syntax from SGI to express data layout as a directive
in OpenMP as follows.

#pragma omp distribute (dist-type-list: variable-list) [location(m:n)]

“dist-type-list” is a comma-separated list of distribution types for the corresponding
array dimensions in the variable-list. Variables in the variable-list should have the same
dimension that matches with the number of distribution types listed. Possible distribu-
tion types include "BLOCK? for a block distribution across a list of locations given in
the location clause, and ”*” for non-distributed dimension. The symbol ”*” means that
the indicated dimension remains, while "BLOCK” indicates that the indicated dimen-
sion will be distributed across a set of locations. The location clause indicates a set of
locations for the data to be distributed. If location is not present, it means for the entire
set of locations. We only introduce the block data distribution at this time, and will
consider other types of data distribution and impacts in the future. The distributed data
still keeps its global address and is accessed in the same way as to other shared data.
If no data distribution is specified for a shared variable, it is allocated in the shared
memory space and it follows the current OpenMP implementation, mostly likely fol-
lowing the first-touch policy for data locality. The only difference between distributed
data and non-distributed shared data is that user controls the physical locations of the
distributed data so as to improve data locality in OpenMP programs.

2.1.4 Mapping tasks with Locations

To achieve greater control of task-data affinity, we can map OpenMP implicit tasks
(from parallel region) and explicit tasks to locations based on either the location number
or the association with distributed data. In this section, we introduce the syntax of
mapping OpenMP work sharing and tasks with locations. To map a work sharing
construct or a task with a location, one can simply specify the location number using



the ”location” clause. However, it is much more intuitive to use a distributed data
element location to determine where to run a task, instead of using the location number
directly. For this purpose, we define the ”OnLoc” clause that maps a task with specified
data, i.e. it assigns a task to a location where the specified data is located. Only
distributed variables are allowed to be in the ”OnLoc” clause. The variable can be
either an entire array for the parallel construct or an array element for the task construct.
The following example illustrates how to use a distributed array A as an indication to
schedule a parallel loop by considering the data layout over the location. The implicit
tasks generated in the parallel loop will be executed on a list of locations where the
variable A is distributed to, and be scheduled according to where data is located. For
example, if A[0] is located on location #1, then the iteration i=0 will be executed on
location #1 too.

#pragma omp parallel for OnLoc(A[i])
for (1=0; 1<N; i++) {
foo(A[i])

Figure 1: Example: A code snippet using the proposed location feature

The ”OnLoc” clause changes the original OpenMP scheduling by introducing addi-
tional factor. The "OnLoc” clause determines how iterations are distributed to different
locations, while inside each location, the original OpenMP scheduling applies. For ex-
ample, in the above example, the iteration space is determined first for each location,
and these iterations will be further distributed to multiple threads (if any) bound to a
location using static scheduling. The following example illustrates how to map a task
to a location where A[i] is located. In this case, it is the programmer’s responsibility to
define where the task will be executed by specifying the location where A[i] is stored.

for (1=0; i<N; i++) {
#pragma omp task OnLoc (A[i])
foo(A[i])

Figure 2: Example: A code snippet using the proposed location feature

Compared to the location clause, ”OnLoc” maps a task or tasks to a location or
a set of locations based upon where a variable is located or distributed. The location
clause uses explicit location number(s), while the ”"OnLoc” clause derives location
information from the distribution of a variable, which is more closely related to the
task-data affinity.



NPB on the SGI Altix, Intel Compiler

T T T T T T T T T T T T T T T T
40 | | —4— data transposition L _
—o— loop affinity*
= | | —=— aggregate s 4
@
>
o
Q. L 4k 4
E
X ol JL |
I BT CLASS=C || SP CLASS=C |
20 | | | 1 1 | | | 1 | | | | | 1 |

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of Threads Number of Threads

Figure 3: Performance comparison on the SGI Altix using the Intel compiler

NPB on the SGI Altix, OpenUH Compiler

40 T T T T T T T T T T T T T T T T
| |—&— data transposition {L 4
—o— loop affinity
£ 20 | —=&— gggregate 4L i
9]
IS
S L 4t 4
>
(S
Q. - . -
£ 0
X L 1L i
20 H- _
BT CLASS=C SP CLASS=C
Il 1 | | | | Il L | | Il L | | | |
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of Threads Number of Threads

Figure 4: Performance comparison on the SGI Altix using the OpenUH compiler



NPB on the 48-Core AMD System, OpenUH Compiler
T

40 T T T T T T T T T T T T T
r BT CLASS=B 1r SP CLASS=B /l 7

30
< [ —A— data transposition / '
£ —o— loop affinity
3 F —a— gggregate 1
a5
£ 10
L L It S/_ i

0 —0—0 E S E ; 7
-10 | | | | | | | | | | | | | |

[ BT CLASS=C 1 SP CLASS=C

D [e:]
o o
I
.

5 I | /|
[
£ 40
(0]
Q
E 20
0 Wg\ﬁ/p
_20\ | | | | | | | | | | | | |

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of Threads Number of Threads

Figure 5: Performance comparison on the 48-core AMD system using the OpenUH
compiler



2.1.5 Performance Study

We have tested the implementation on an SGI Altix NUMA system (part of the NASA
Columbia supercomputer) and a 48-core AMD workstation for two selected NAS Par-
allel Benchmarks (NPB) (BT and SP). The OpenMP versions of NPB3.3 is used as a
baseline for performance comparison. We created two versions: the first one applied
the data transposing without the OnLoc clause (data-transposition), and the second one
applied the distribute + OnLoc as described (loop-affinity). The OpenUH compiler was
installed on both the SGI Altix and the 48-core AMD system. For additional compar-
ison we also manually created a loop-affinity version to mimic the scheduling of loop
iterations to threads based on where the data resides. Then use the Intel compiler to
compile the translated code.

Figures [3] @] [ show the percentage performance improvement of the new ver-
sions over the baseline version for the Class B and C problems at various thread counts.
The “aggregate” values in the figures are those accumulated from the two components.
Negative values indicate performance degradation. On the SGI Altix using the In-
tel compiler, we observe as much as 10% performance improvements at large thread
counts from loop affinity. Data transposition improves the BT performance by 10-20%,
but has variable effects on SP. This seems to be related to the balance between the cost
of extra data copies and the improvement from better data alignment and cache access
in the computation. The results using the OpenUH compiler (see Figure [d) show per-
formance improvement at large thread counts (32) from loop affinity. However, we
observe substantial performance degradation (20%) from data transposition for SP and
no improvement for BT.

On the 48-core AMD system (Figure[3)), there is no performance gain from applying
loop affinity; in fact, negative effects are observed for the Class C problem. Such results
are somewhat counter-intuitive. One possible explanation is that the current OpenUH
runtime is experimental and may not handle data and thread binding optimally. On the
other hand, we do observe performance improvement from applying data transposition
for both BT and SP. The improvement for BT is less than 5%, but for SP it increases
substantially when the number of threads is larger than 8. The larger problem (Class
C) exhibits close to 80% performance improvement over the baseline version at 48
threads.

From the experiments, we observe significant performance impact from different
data layouts on the NUMA system, especially for larger data sets. The notion of data
layouts via distribution and affinity with loop iterations via OnLoc allows a user to
carefully optimize data layout with the data access pattern and, thus, achieve perfor-
mance gain on large NUMA systems. We intend to carefully evaluate our language
enhancements and the end-to-end implementation of these features in the final project
year, in which we will also contribute our findings to the standardization effort that was
recently initiated.

2.2 OpenMP 3.0 Compiler Implementation

In order to fully and accurately support the OpenMP 3.1 specification, we have been
actively working on both the compiler support and runtime implementation. Specif-

10



Strassen
SGI Altix (1A-64)

B OpenUH - tied

B OpenUH - untied
[ Nanos - tied
H Nanos - untied
4 M Cilk
2
1 2 4 8 16

Number of Threads

Speedup

Figure 6: Speedup with tasking runtime on SGI Altix 350 system

ically, we have completed our translation of OpenMP tasks in the OpenUH compiler
and have focused on improvements to the task scheduler. Additionally, we have imple-
mented a configurable task pool framework that allows the user to choose at runtime
which various task pool organizations to employ. We developed a preliminary design
for an extension to OpenMP for grouping explicit tasks. We have added to the OpenUH
runtime a new synchronization mechanism similar to the clock in X10 and the “phaser”
in the X10 variant Habanero-Java.

We completed our translation of OpenMP tasks in the OpenUH compiler and have
focused on improvements to the task scheduler. The initial speedup results from our
tasking runtime were favorable. Figure [6] shows the results from the Strassen bench-
mark comparing our tasking runtime with the Nanos runtime and Cilk on an SGI Altix
350 consisting of eight nodes. Each node is an SMP with two Itanium?2 processors run-
ning at 1.6 GHz with 16GB of main memory (128 GB total). All implementations were
compiled with GCC 4.2.3 using -O2 optimization levels. In all of our tests, our run-
time performs as well as or better than Nanos, and in some cases it performs better than
Cilk. Recently, we added full support for nested parallel regions and also revamped the
task implementation after determining that the use of the Portable Coroutines Library
incurred more overhead than what is necessary. The use of coroutines provided more
scheduling flexibility since tasks can easily be switched from one thread to another.
Thus it provides a useful mechanism for supporting untied task migration, a feature
which to our knowledge is not well supported in the major vendor implementations.
The downside is that creating a coroutine with its own stack (64K by default) for ev-
ery task was very expensive, and this would more often than not offset its benefits.
Removing this overhead resulted in significant (often an order of magnitude) improve-
ments in execution times. We are currently investigating more efficient mechanisms
for migrating untied tasks.

Recent performance results for our tasking runtime are shown in Figure [7] using

11



Execution Speedup
400

300

Time (sec)
n
(=3
o
speedup

100

O 4 MW A OO N ® O

Serial 1 2 4 8 16 1 2 4 8 16
Threads Threads

M uhcc M gce suncc M pgcc M icc

Figure 7: Performance of NPB BT-MZ with tasking runtime on dual Nehalem E5520
machine

a version of the NAS Parallel Benchmarks BT-MZ implemented with OpenMP tasks.
Results are taken from a system with dual 2.27 GHz Nehalem E5520 and 32 GB mem-
ory capable of 16 threads. Each core has 32KB L1 and 256KB L2 caches with each
processor sharing 8MB L3 cache. The benchmark was compiled with both commer-
cial and open source compilers. The following optimization flags were used: for our
Open64-based uhcc compiler, -O2 -LNO; GNU C compiler gcc 4.6.1, -O3 -fargument-
noalias-global; Oracle’s suncc 5.11, -xO3; PGI’s pgce 11.7, -fast; and Intel’s icc 12.0.0,
-O3 -fno-alias.

Additionally, we have implemented a configurable task pool framework that al-
lows the user to choose at runtime which specific task pool organization to employ.
We currently have four different task pools implemented that utilize distributed, hier-
archical, and hybrid queue organizations. Each of these may impact task creation, task
scheduling, or both. This has provided a lighter weight tasking implementation and
easy experimentation of the impacts of using various the task pool organizations with
a given application. This framework also allows a quick implementation of new task
pool designs. Furthermore, the user may control the order in which tasks are removed
from a task queue for greater control over task scheduling. For most implementations
we reviewed, tasks are generally removed from queues in LIFO order (though when
“work-stealing” it occur in FIFO order). This results in what is effectively a depth-
first scheduler, and it appears to be a good default option as it works well for codes
exhibiting data locality. However, we found that for some codes (e.g. the Fibonacci,
Floorplan, and NQueens kernels) where data locality isn’t as much a concern, it is
best to employ a breadth-first scheduler (i.e. tasks are always removed in FIFO order).
Some of this work was presented and published in the proceedings of the 2011 Inter-
national Workshop on OpenMP (IWOMP) as A Runtime Implementation of OpenMP
Tasks”.

We developed a preliminary design for an extension to OpenMP for grouping ex-
plicit tasks. In the current report period, we changed the initial design to provide task-
to-task synchronization as a way of communicating among tasks rather than explicitly

12



grouping them. We have added to the OpenUH runtime a new synchronization mech-
anism similar to the clock in X10 and the “phaser” in the X10 variant Habanero-Java.
This would allow point-to-point synchronizations and aid in the implementation of re-
duction operations on task groups. This provides the ability to form implicit groupings
of task as well as more flexible synchronization. We will complete this work by using
this extension with NASA applications, including NASA’s NPB MT-LU, with pipelin-
ing and wavefront execution to test whether it is flexible and not error-prone.

We are collaborating with researchers at Tsinghua University to provide a complete
implementation of OpenMP 3.0 in the standard version of the Open64 compiler. Based
upon an evaluation of available runtime software as part of this effort, the OpenUH
support for tasking was determined to have the highest quality of those evaluated and
it is therefore being used as the basis for this compiler suite, which will be supplied
to a broad range of vendors (e.g. AMD, HP, Google, Absoft, Qualcomm) in addition
to research groups worldwide to form the basis for their OpenMP 3.0 implementations
and experimentation. We have merged recent improvements in our runtime (viz. nested
parallelism and improved tasking implementation) into the official OpenMP3.0 branch
in the Open64.net subversion repository. The OpenMP Architecture Review Board
updated the OpenMP specification in July 2011 to version 3.1 and we intend to begin
its implementation in the OpenUH compiler and runtime in the near future.

2.3 OpenMP Validation Suite

In this work, the goal is to build an efficient framework, i.e. a testing environment, that
will be used to validate the OpenMP implementations in OpenMP compilers. With
the introduction of new versions of OpenMP, there is an absolute need to check for
completeness and correctness of the OpenMP implementation. We need to create an
effective testing environment in order to achieve this goal. In prior work, we collab-
orated with colleagues at University of Stuttgart, to create validation methodologies
for OpenMP versions 2.0 and 2.5 reported in [16} [18] respectively. We have built our
current framework on top of the older one. We have improved the testing environment
and now the OpenMP validation testsuite covers all tests for the directives and clauses
in OpenMP 3.1. This testing interface is portable, flexible and offers an user-friendly
framework that can be tailored to accommodate specific testing requirements. Tests
could be easily added/removed adhering to the changes in the OpenMP specification in
the future. In our current work we have ensured that the bugs in the previous validation
testsuite have been fixed.

2.4 Design of OpenMP Validation Suite

The basic idea to design the OpenMP validation suite is to provide short unit tests wher-
ever possible and check if the directive being tested has been implemented correctly.
For instance, the parallel construct and its corresponding clauses such as shared
are tested for correctness. A test will fail if the corresponding feature has not been
implemented correctly. We defined such typical tests to be normal tests.

In a given code base, there might be more than a few directives being used at a
given time. However, it is a challenge to check for correctness for a particular directive

13



|
} Unit Test

Dispatch a
testing
directive

Fail
Normal Test

|

|

|

|

|

| Result

} Cross Test H QOrphan Test %—
|

|

OpenMP
testing
directive
pool

Figure 8: The OpenMP Validation Suite Framework.

of interest, for instance 1oop, among several others. To solve this issue, we perform
another test methodology called cross fest, to validate only the directive under consid-
eration. If this directive is removed from the code base, the output of the code will be
incorrect.

Besides, we also need to ensure that the directive is serving its purpose. For in-
stance lets consider a variable declared as shared. We also know that the variable is
shared by default irrespective of explicitly declaring it as shared. Let us replace
the shared with a private clause or any other clause which does not contain the
functionality of the directive being tested, which in this case is shared. As a result,
the cross test will check for the output result, which has to be incorrect because the
variable is no longer being shared.

Moreover, in order to determine if the directive being tested is capable of correct
execution when ”orphaned” from the main function, we created a new test methodology
named as orphan test. In the orphan test, the directive being tested is placed into a
children procedure which is called by the main function.

All test results will be statistically analyzed. Each test will be repeated multiple
times. The purpose of this is to ensure that the test fails if the directive being tested
does not function as required. In order to estimate the probability that a test is passed
accidentally we take the following approach: if ny is the number of failed cross tests
and M the total number of iterations, the probability of that test will fail is p = %
Thus the probability that an incorrect implementation passes the test is p, = (1 —p)*?,
and the certainty of test is p. = 1 — p,, which means the probability that a directive is
validated.

Currently the validation suite contains more than 70 unit tests covering all of the
clauses in the OpenMP version 3.1 release. Each of the unit tests has three types of
tests: normal, cross, and orphan test. One challenge is, however, if we implement each
of them separately, the whole suite will be ad-hoc and error-prone. It would be also
challenging to manage and analyze the results generated out of so many tests. So we
created an execution environment that will manage these several tests methodically.

Figure [§] shows the proposed framework i.e. the execution environment of the
OpenMP validation suite. In this framework, we create a testing directive pool that will
consist of templates for the unit tests for each of the OpenMP directive that is being
tested. This framework has been developed mainly using the Perl scripting language.
We use this framework to parse through the several templates that have been written
for each of the OpenMP directive. Executing this framework will deliver the source

14



code for the three types of tests, namely normal, cross and orphan tests. The normal
tests will be the first test to be performed in this process. If this particular test fails then
there is no need to perform the cross and orphan tests. As a result, the corresponding
source codes for cross and orphan tests will not be generated. This has been carefully
crafted into our framework. If the normal test passes successfully, the framework will
automatically generate source codes for the other two tests. Note that we had to create
only one template in order to generate source codes for all the three types of tests. As
aresult we emphasize that the framework adopts an automatic approach while creating
the different kinds of tests necessary to check the correctness of the directives. There
is very little manual labor involved. Once these different tests have been created, our
framework will compile and execute them as and when necessary. There is also a result
analyzer component as part of the framework that will collect the results from each of
the unit tests once all of them have completed execution. These results will be in the
form of log files and the analyzer component will help in generating a complete report
in a user-friendly manner.
The advantages that the execution environment offers are as follows:

e Creates one template for each test that suffices to automatically generate source
codes for the three types of tests, i.e normal, cross and orphan tests.

e Creates bug reports that consist of adequate information about the compiler be-
ing used for testing purposes. The report will consist of version number of the
compiler, build and configuration options, optimization flags used, and so on.

e Launches all the tests automatically, although individual tests will be performed
only for those directives that are being tested.

e Generates reports that are easy to read and understand. These user-friendly re-
ports will contain information about the bugs identified. The details of the com-
pilation and execution are also provided.

The framework is easy to use and maintain. It is quite flexible enough to accommodate
changes as and when OpenMP specification gets updated with newer features.

2.5 Implementations

In this section we discuss the basic idea of each unit test OpenMP directive and clause.
The previous publications [[15,[18]] presented the unit tests for the constructs in OpenMP
version 2.5. Hence we restrict the discussions to the unit tests for the newer features in
OpenMP version 3.1. We have inserted code snippets for only few of the directive and
clauses due to space constraints.

2.5.1 Directives and Clauses

Task is a new construct in OpenMP 3.0. It provides a mechanism to create explicit
tasks. Tasks could be executed immediately or delayed by any assigned thread. Fig-
ure [9] shows the test for OpenMP task construct. The basic idea is to generate a set
of tasks by a single thread and execute them in a parallel region. The tasks should be

15



executed on more than one threads. In the cross test, the t ask pragma is removed. As
a result, every task is executed only by one thread since the tasks are in the single
region hence giving incorrect output.

int test_omp_taskwait(){
int test_omp_task (){ int i, result = 0;
int tids [NUM_.TASKS]; int array [NUM_.TASKS];/* omit init x/
int i, result=0;
#pragma omp parallel
#pragma omp parallel
#pragma omp single
#pragma omp single
for (i = 0; i < NUMTASKS; i++){
for (i = 0; i < NUM.TASKS; i++){ int myi = i;
int myi = i; #pragma omp task
#pragma omp task array [myi] = 1;
} /%« end of for x/
sleep (SLEEPTIME);
tids [myi]=omp_get_thread_num ();#pragma omp taskwait
}}/:*esgdo?ff?)r?p*;ask * /+check for all tasks finish x/
for (i = 0; i < NUM.TASKS; i++){

} /x end of single x/ if (arrayli] /= 1)

} /xend of parallel x/

result++;
/+now check for results x/ } /xend of f9r*/
for (i = 0; i < NUM.TASKS; i++){ } /* end of single x/
if (tids[0] != tids[i]) } /«xend of parallel x/
result = 1; /*xcheck result is correctx/
} return (result == 0);
return result; }/xend of test*/

} /% end of test x/

Figure 10: Test for taskwait con-
Figure 9: Test for task construct. struct.

The taskwait construct specifies a synchronization point where the current task
is suspended until all children tasks have completed. Figure [I0]shows the code listing
for testing the taskwait construct. A flag is set to each element of an array when
a set of tasks are generated. If taskwait executes successfully, all elements in the
array should be 1; otherwise, the elements should have some other values. In the cross
test, we remove the taskwait construct and check the value of elements in the array.
Obviously, the value will be arbitrary if there is no ”barrier” at the completion of tasks.
Consequently, it is able to validate the t askwaitconstruct.

The shared clause defines a set of variables that could be shared by threads in
parallel construct or shared by tasks in task construct. The basic idea to test it is
to update a shared variable i.e. i by a set of tasks and check whether it could be shared
by all tasks. If this is the case, the value of the shared variable should be equal to
number of tasks. In the cross test, we check if the result is wrong without the shared
clause. Shared is replaced by the firstprivate clause, i.e., the attribute of i is
changed to firstprivate. As a result, the value of i should be incorrect.

As opposed to shared clause, the private clause defines that variables are
private to each task or thread. The idea of testing for the private clause is first to

16



generate a set of tasks as before and each task update a private variable, e.g., local_sum.
We compare the value with the known_sum which is calculated in prior. In the cross
test, we remove the private clause from task construct. Thus the private variable
now becomes shared by default. As a result, we see that the value of local_sum
should be incorrect.

The firstprivate clauseis similar with private except that the new item list
has been initialized prior to the t ask construct encountered. As a result, in contrast to
private clause, we do not need to initialize variables declared as firstprivate
attribute. The initialized value follows immediately prior to the task construct. Con-
sequently, test for the firstprivate is similar as the test for private clause
except that variable 1ocal_sum do not need to be initialized to zero in the task re-
gion. In the cross test, the firstprivate is removed thus the variable 1ocal_sum
becomes shared again.

The default clause determines the data-sharing attributes of variables implicitly.
In C language, the variables declared as default is shared, while in Fortran from
OpenMP 3.0, it allows variables declared as private or firstprivate by de-
fault. In addition, OpenMP 3.0 also allows variables does not have any predetermined
data-sharing attribute declared as none. As a result, the idea of testing for default
clause is actually the same as the test for shared clause in C and firstprivate,
private in Fortran. The if clause controls the t ask implementation as shown in

int test_omp_task_if (){ int omp_for_collapse (){
int count, result=0; int is_larger = 1;
int cond_false=0; #pragma omp parallel
#pragma omp parallel int i,j,my_islarger = 1;
#pragma omp for schedule(static ,1)
#pragma omp single collapse (2) ordered

for (i = 1; 1 < 100; i++)
#pragma omp task if (cond_false) for (j =1; j <100; j++)
{

sleep (SLEEPTIME_LONG); #pragma omp ordered
result = (0 == count); my_islarger = my_islarger &&
} /x end of omp task =/ check_i_islarger (i);
} /+ end of for =/
count = 1; #pragma omp critical
#pragma omp flush (count) is_larger=is_larger &&
} /+ end of single x/ my_islarger;
} /xend of parallel x/ } /xend of parallel %/
return result; return (is_larger);
} /xend of testx/ } /xend of testx/
Figure 11: Test for if clause. Figure 12: Test for collapse clause.

Figure If the if is evaluated as false then the encountering task will be suspended
and a new task is executed immediately. The suspended task will be resumed until the
generated task is finished. The idea of testing the i f clause is to generate a set tasks by
a single thread and pause it immediately. The parent thread shall set a counter variable
that the paused task will consider when the thread wakes up. If the if clause is eval-
uated to false, the task region will be suspended and the counter variable count will

17



be assigned to 1. When the t ask region resumes, we evaluate the value of the counter
variable count. In the cross test, we removed 1 £ clause from the t ask construct, since
if is evaluated to true by default, the task region will be executed immediately and
the counter variable count will still 0.

In OpenMP 3.0, task is executed by a thread of the team generated it and is tied
by default,i.e., tied tasks are executed by the same thread after the suspension. If the
untied clause is presented, any thread could resume the task after the suspension.
Thus, the idea of testing the unt ied clause is shown as in figure First we create
a set of tasks in parallel region and save the thread id executed each task. Then we
suspend all the tasks by taskwait. We send half of the threads into a busy loop
so that at least half of the other idle threads could be rescheduled to the suspended
tasks. We compare the thread number before and after the suspension. Since task is
untied, tasks could be rescheduled by different threads after the suspension. In the cross
test, the untied clause is removed so that tasks are tied with the execution thread by
default. As a result, the thread number before and after the task suspension should be
the same leading to incorrect result.

Besides the tasking model, OpenMP 3.0 defines a new collapse clause for
the 1oop construct that handles perfectly nested multi-dimensional loops. This clause
collapses the loops, it is associated with, into one single loop. and controls the number
of loops associated with one larger loop. The order of iterations in the collapsed loop is
determined by the order of iterations in all loops before the collapse. If no collapse
clause specified, the only loop that is immediately followed by the 1oop construct is
associated.

Figure|12|shows the basic idea of testing for the collapse clause which binds the
two loops together. With the ordered clause, both i and j loops should be executed
in order, thus the variable my_islarger should be TRUE. In the cross test, since the
collapse clause is removed, the only loop that is associated with the 1 oop construct
is the 7 loop, the one that immediately follows the construct which should be executed
in parallel and the only j loop will be executed in order. Consequently, the result will
be incorrect.

2.5.2 Support for OpenMP 3.1

OpenMP version 3.1 was released in July 2011, a refined and extended version of
OpenMP 3.0. The taskyield construct defines an explicit scheduling point that the
current task is suspended and switched to a different task in the team. The test for
the taskyield construct is similar to the test for untied clause, except for the
taskwait begin replaced by taskyield.

The OpenMP 3.1 also provides a new feature to reduce the task generation overhead
by final and mergeable clause. If the expression in final clause is evaluated
to true, the task that is generated will be the final task and no further tasks will be
generated. Consequently, it reduces the overheads of generating new tasks, especially
in recursive computations such as in Fibonacci series when the Fibonacci numbers are
too small. Test for the final clause is showed in Figure [[4] The idea is to set a
threshold that if task number is larger to the threshold, the task will be the final task.
We save the rask id to check whether the task larger than the threshold is executed by

18



. . int test_omp_task (){
int omp_task_untied (){ 1 ; .
int init_tid [NUM.TASKS]; int tids [INUMAASKS 3
int curr_tid [NUM.TASKS]; mnt 1, error=0;

int i, count=0;

#pragma omp parallel #pragma omp parallel

#pragma omp single #pragma omp single

for (i = 0: i < NUMTASKS: i++){ f?;t(:ny:i 03 1 < NUMTASKS: i+

;B:a;g; ;m;),task untied #pragma omp task final (myi>=THRESH)
(s>leep (SLEEPTIME ) ;

tids [myi]=

omp_get_thread_num ();

} /+ end of omp task =/
end of for =/
nd of single x/
} /«xend of parallel =/

init_tid [myi]J=omp_get_thread_num
#pragma omp taskwait
if ((init_tid [myi]%2) == 0){
sleep (SLEEPTIME);
curr_tid [myi]J=omp_get_thread_ 1}1}1}1* e
} /+xend of ifx/
} /+x end of omp task x/

} /% end of for x/ /+*check tid beyond thresh x/
} /x end of single x/ for (i =THRESH;i < NUM.TASKS:i++)
} /%« end of parallel =/ {
for (i=0;i<NUM.TASKS; i ++){ if (tids[THRESH] /= tids[i])
if(curr_tid[i]/=init_tid[i]) error ++;
count++;
} /+«end of forx/
return count; return (error==0);
} /xend of testx/ } /% end of code x/
Figure 13: Test for unt ied clause. Figure 14: Test for final clause.

the same task. Test for the final clause is showed in The idea is to set a threshold
that if task number is larger to the threshold, the task will be the final task. We save the
task id to check whether task larger than the threshold is executed by the same task.

In OpenMP 3.1, the at omi c is refined to include the read, write, update,
and capture clauses. The read with the construct at omic guarantee an atomic
read operation in the region. For instance x is read atomically if v=x. Similarly, the
write forces an atomic write operation. It is much more lightweight using read or
write separately than just using critical. The update clause forces an atomic
update of an variable, such as i++, i—. If no clause is presented at the atomic con-
struct, the semantics are equivalent to atomic update. The capture clause ensures
an atomic update of an variable that also captures the intermediate or final value of the
variable. For example, if capture clause is present thenin v = x++, x is atomically
updated while the value is captured by v.

OpenMP 3.1 also extends the reduct ion clause to add two more operators: max
and min, which is to find the largest and smallest values in the reduction list respec-
tively. Since the algorithms to find maximum or minimum number is quite straightfor-
ward, we do not discuss it here.

19



2.5.3 Evaluations

In this section, we will evaluate the OpenMP validation suite on several open source

and vendor compilers, including OpenUH, GNU C and Intel C/C++.

task_shared
task_private

task_if
task_untied
task_default
for_collapse

task_firstprivate

100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100

100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
0o - 0 -

OpenUH GNU Intel
Directive N C O OC||IN C O OC|IN C O oC
task 100 100 100 100{| 100 100 100 100|| 100 100 100 100
taskwait 100 100 100 100(| 100 100 100 100|| 100 100 100 100

100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100
100 100 100 100

Table 1: Experimental results fragment on various compilers.

The first experiment is to evaluate the OpenMP validation suite using our in-house
OpenUH compiler [20, [14]], testing the implementation correctness on OpenMP. As of
now OpenUH supports OpenMP version 3.0, we did not evaluate the tests for OpenMP
3.1. OpenUH compiler is a branch of the open-source Open64 compiler suite for C,
C++, Fortran 95/2003, with support for a variety of targets including x86 64, IA-64, and
[A-32. Tt is able to translate OpenMP 3.0, Co-array Fortran, UPC, and also translates
CUDA into PTX format. An OpenMP implementation translates OpenMP directives
into corresponding POSIX thread code with the support of runtime libraries.

The experiments were performed on a Quad dual-core Opteron-880 machine and
we used eight threads during the evaluations. We also disabled all the optimizations
flags in order to avoid any potential uncertainties, e.g.code reconstruction while com-
piling the unit tests. The version of GNU compiler is 4.6.2, Intel C/C++ is 12.0.

Table[T|shows the experimental results on several compilers. For each sub-column,
N is normal test, C is cross test, O is orphan test while OC is orphan cross test (the cross
test within orphan test). Each row is the tested directive which is namely straightfor-
ward. For instance, the para_shared is to test the shared clause in the parallel
construct. The certainty of each directive passed the test is calculated according to the
statistics explained earlier. 100% means that directive is verified with 100% certainty.

From the experiment results it is not a surprise to see that most of tests passed with
100% certainty, which is because compilers need to be under strict tests before release.
However, we could still see that the GNU C compiler fails the collapse test.

2.6 Co-Array Fortran Implementation and Experiments

Coarray Fortran (CAF) is a PGAS Fortran extension which has been incorporated into
the Fortran 2008 standard. It enables parallel programming in Fortran with minimal
change to the language syntax. In a joint project between UH and Total, we have inves-

20



tigated CAF as a viable programming model for production Oil and Gas applications.
In contrast to other open-source implementation efforts [6} |3, [17]], our approach is to
use a single, unified compiler infrastructure to translate, optimize and generate binaries
from CAF codes. CAF support in OpenUH [[7] comprises three areas: (1) an extended
front-end accept the coarray syntax and related intrinsic functions, (2) back-end opti-
mization and translation, and (3) a portable runtime library (Figure [I3).

CAF

CRAYF90
Source

Fortran Front End OpenUH

Code i n@AF S Communication
Runtime
(ARMCI, GASNet)
OpenUH Coarray
Middle-End Lowering
and Back-End T
F90to F77 Executable
Lowering Binary
b

LNO—-WOPT -CG

Figure 15: Framework of OpenUH CAF Compiler/Runtime System

2.6.1 Co-Array Fortran Compiler

Front-end We modified the Cray Fortran 95 front-end that comes with OpenUH to
support our coarray implementation. Cray had provided some support for CAF syntax,
but its approach was to perform the translation to the underlying runtime library in the
front-end. It accepted the [] syntax in the parser, recognized certain CAF intrinsics,
and it targeted a SHMEM-based runtime with a global address space. In order to
take advantage of the analysis and optimizing capabilities in the OpenUH back-end,
we needed to preserve the coarray semantics into the back-end. To accomplish this, we
adopted a similar approach to that used in Open64/SL Fortran front-end from [6]], where
co-subscripts are preserved in the IR as extra array subscripts. We also added support
for CAF intrinsic functions such as this_image, num_images, image_index,
and more as defined in the Fortran 2008 standard.

Back-end We have in place a basic implementation for coarray lowering in our back-
end and are in the midst of adding an analysis/optimization phase. The current imple-
mentation will generate communication based on remote coarray references. Suppose
the Coarray Lowering phase encounters the following statement:

A(i, §,1:n)[gl =B(1,4,1: n)p] (1)
+C(1, 4,1 :n)[p] + D[p]

21



This means that array sections from coarrays B and C and the coarray scalar D are
brought in from image p. They are added together, following the normal rules for array
addition under Fortran 90. Then, the resulting array is written to an array section of
coarray A on process . To store all the intermediate values used for communication,
temporary buffers must be made available. Our translation creates 4 buffers tl, t2, t3,
and t4 for the above statement. We can represent this statement in the following way:

A, j,1:n)|q] < t1 =t2 < B(1,7,1: n)[p] 2)
+t3 «+ C(i,75,1: n)[p]
+t4 + D[p]

For each expression of the form ¢ < R(...)[...], the compiler generates an allocation
for a local communicatio buffer (LCB) t of the same size as the array section R(...).
The compiler then generates a GET runtime call. This call will retrieve the data into the
buffer ¢ using an underlying communication subsystem (either ARMCI or GASNet, as
specified by the user). The final step is for the compiler to generate a deallocation for
buffer . An expression of the form L(...)[...] +— t follows a similar pattern, except the
compiler generates a PUT runtime call.

! omitted creation and
! initialization of dope vectors
GET( t2, B(1l, j, 1:n), [p] )

GET( t3, C(i, 3, 1l:n), I[p]l )
GET ( t4, D, I[p]l )
tl = t2 + t3 + t4
PUT( tl1, A(i, 3j, 1l:n), I[gl )

The above pseudo-code depicts the communication pattern generated for the state-
ment representation given in (2). Currently, all generated communication is blocking,
and we have not yet implemented optimizations for the buffering.

Fairly early in the back-end processing, a FOO lowering phase is carried out in
which F90-supported elemental array operations are translated into loops. We make
use of the higher-level F90 array operations, supported by the very high WHIRL IR in
our compiler, for generating block communication in our translation. The implemented
translation strategy is as follows:

1. Lower CAF Intrinsics: Calls to this_image and num_images are replaced
with loads of external symbols representing the runtime-initialized variables _this_image
and _num_images, respectively.

2. Lower Co-indexed References: A co-indexed coarray variable signifies a re-
mote access. ARRAY and ARRAYSECTION nodes in the compiler IR are pro-
cessed to determine if they represent a co-indexed array reference. A temporary
local communication buffer (LCB) is allocated for either sending (if its a write)
or receiving (if its read) the accessed elements.

22



3. Symbol Table Cleanup: After coarrays are lowered, their corresponding fype in
the WHIRL symbol tables are adjusted so that they only contain the local array
dimensions.

One of the key benefits of the CAF programming model is that programs are
amenable to aggressive compiler optimizations. The back-end also consists of a prelow-
ering phase which normalizes the IR emitted from the front-end to facilitate depen-
dence analysis. This will enable many optimizations, including hoisting potentially
expensive coarray accesses out of loops and generating non-blocking communication
calls where it is feasible and profitable.

2.6.2 Co-Array Fortran Runtime

The implementation of our supporting runtime system relies on an underlying com-
munication subsystems provided by ARMCI [19] or GASNet [4]. We have adopted
both the ARMCI and GASNet libraries for most communication and synchronization
operations required by the CAF execution model. This work entails memory manage-
ment for coarray data, communication facilities provided by the runtime, and support
for synchronizations specified in the CAF language. We have also added preliminary
implementation of reductions in the runtime.

CAF lacks many of the features provided by MPI such as non-blocking communi-
cation. Since remote communication is a major performance bottleneck on distributed
memory systems, the implementation is responsible for hiding latency by reducing
communication or overlapping it with computation. We have implemented optimiza-
tions in the CAF runtime to address this. A get-cache is used to reduce the number
of remote reads, and non-blocking prefetching is used to increase communication-
computation overlap. To improve remote write performance, we make all remote writes
automatically non-blocking.

2.6.3 Experiments and Preliminary Results

TOTAL performs seismic exploration to find oil both on land and beneath the sea.
Sound energy waves are created on the surface using dynamites. Sound waves travel
at different velocity in different kind of materials. The timings of the reflected waves
are recorded using geophones and hydrophones. The timings are processed to create
seismic profiles using different mathematical models. The programs that are used to
evaluate our implementation’s performance are part of this process.

The experiments are performed on a cluster of 330 compute nodes (2640 cores)
which have a peak performance of 29.5 TFLOPS. Each node has 2 Intel Nehalem
quad-core CPUs, with each core operating at a frequency of 2.8 GHz. The nodes are
diskless and have 24GB memory. The interconnect is QDR Infiniband on 8X PCle
2.0 in a fat tree topology. The upload and download bandwidth of the interconnect is
40Gbps. It uses a shared parallel file system.

The MPI version of the program are executed using Intel MPI version 12. MPI
uses 2-sided non-blocking send and receive calls, MPI.ISEND and MPI_IRECV. The
compiler flag ‘-fp-model precise’ is used to ensure that floating point operations con-
form to IEEE standard. Compiler optimization level -O3 is used for both UHCAF and

23



MPI. The experiments do not evaluate performance on SMP, as only 1 process is run
on 1 node. Evaluating SMP performance is out of the scope of these experiments as
several other factors (like location of data in memory) have to be considered. Time is
measured using the C function gettimeofday. All measurements are an average of 100
iterations. Only the GASNet version of UHCAF is used because ARMCI has some
limitations (about 2GB) on the amount of memory that can be registered when using
the Infiniband native API. Since the domain size of the programs are mostly greater
than 2GB, ARMCI cannot be used.

Isotropic Forward Wave Equation This is the simplest case of the wave equa-
tion as the velocity of sound does not change in the isotropic medium. In this program,
two 3-D matrices are used to calculate 2-way wave equation using scalar acoustic wave
equation.

Table 2] shows the time taken (seconds) to execute the isotropic forward wave equa-
tion solver on 8 nodes. The computation timings are only for the kernel code, which
does not include file I/O. The Intel MPI version is 12 and UHCAF uses GASNET. Both
use optimization level O3. The buffer size is the total size of the data that is being com-
municated by each process. The domain size is the total size of the 3-D matrix. The
‘compute’ column contains the average of the computation time among all processes.
The ‘comm’ column contains the average of the communication time among all pro-
cesses. The “Total’ column contains the total time, which is same on all processes due
to synchronization.

Table 2: Isotropic forward wave equation solver timings (sec) with 8 processes

Buffer Domain Intel MPI UHCAF
Size Size Compute Comm Total Compute Comm Total
0.75M 64M 1.55 0.24 1.84 1.81 0.14 2.09
1.25M 128M 3.09 0.52 3.65 3.45 0.28 4.03
2M 256M 6.18 1.12 7.34 6.91 0.48 7.78
3M 512M 11.21 1.40 12.87 13.70 0.68 16.2
M 1G 22.14 1.75 2429 30.23 1.15  34.23
8M 2G 49.66 333 5349 64.56 1.85 72.33
12M 4G 96.78 6.25 10595 135.07 326 145.02
20M 8G 184.46 7.37 201.71 254.27 2.87  285.7
32M 16G 410.53 33.64 45240 492.63 10.41 544.66

Even though the total execution time of the UHCAF version is more than the Intel
MPI version (Figure[I6), the communication time is significantly less as shown in the
Figure

Figure[I8]shows the increase in performance more clearly. For 32M buffer UHCAF
is three times faster than Intel MPI. This shows that UHCAF makes better utilization of
one-sided RDMA capabilities provided by the Infiniband interconnect. Another inter-
esting point is that MPI uses non-blocking communication while CAF uses blocking.

24



-onds)

Total Execution Time (sec
8

—o—intel MPI

UHCAF

sam 128M  256M

s12m 16

26 G

Domain Size

£ 166

Figure 16: Kernel execution time (includes communication)

—e—ntel MPI

UHCAF

Figure 17: Communication time (seconds) with 8 processes

As discussed before, Infiniband buffers large messages and into smaller blocks. This

reduces the performance benefit of using non-blocking for larger message sizes.

Table [3] shows the timing (seconds) when the program is executed using a fixed
problem size of 16GB. This is used to measure the speed-up. Four processes are used
for the first run and increased to 128 processes. The buffer size is not uniformly dis-
tributed among all processes for some cases. The computation and communication
times are the average of all processes. Figure[T9]shows the speed-up when the number
of process gets doubled. The speed-up is more than 2 is some cases.

Table 3: Timing (seconds) for domain size 16GB

Buffer Num Intel MPI UHCAF
Size Process Compute Comm Total Compute Comm  Total
32M 4 892.35 21.44 92347 1356.79 212 135892
32M 8 410.53 33.64 45240 492.63 1041  544.66
20M-28M 16 194.19  11-12 208.05 26123 5473 27491
12M-20M 32 100.07 6-10 110.66 141.26 3-57  148.08
8-16M 64 45.68 6-7 5572 61.45 3-74 70.93
5-10M 128 21-23 3-3.6 2734 27-30 1.5-3.6 34.79

25



35

25

2

5

4

MPI/UHCAF Comm Time Ratio

05
0
0.75M  1.25M M 3M 5M &M 12m 20M 32M

Communication Buffer Size

Figure 18: Communication time ratio (MPI/UHCAF) with 8 processes

@intelMPl B UHCAF

39.06

SpeedUpwrt 4 procs

Number of Processes

Figure 19: Speedup over 4 processes using fixed domain size of 16GB

26



Tilted Transverse Isotropic (TTI) Wave Equation This program is much more
complex than the Isotropic program as it models an-isotropic media, which has a lot
more parameters to consider. This program requires six 3-D matrices to store the tim-
ing data, which is subdivided to be processed by each image. After each iteration the
ghost cells is exchanged. Due to huge memory requirement, the program cannot be
executed with less than 16 images. The OpenMPI version uses traditional assumed
shape array declarations instead of dynamic allocation (to prevent performance im-
pact). The program is executed twice with Intel MPI, with and without the xhost flag.
The xhost flag tells the compiler to optimize for the specific hardware. Table ] and
Figure 20| compares the communication time between UHCAF and MPI using 16GB
domain size. The matrix dimensions are 1024x2048x2048 with 4 ghost points. The
buffer size in the table is the sum of all the communication buffer of all processes.

Table 4: Communication time (seconds) for TTI

Buffer (GB) #Processes UHCAF OpenMPI Intel MPI Intel MPI xhost

75.54 16 23.17 34.67 34.13 27.28
101.03 32 13.22 17.45 19.48 19.23
152.20 64 17.87 20.60 18.84 14.14
203.96 128 8.84 9.18 9.41 9.12

B UHCAF § OpenMPI Clintel MPI B Intel MPI xhost

{ B}

Figure 20: Communication time (seconds) for TTI

ssssssssss

Table [5|and Figure 21| compares the total execution time of the TTI program. Note
that it does not include file I0. The buffer size in the table is the sum of all the com-
munication buffer of all processes. Figure 22] shows the speedup with respect to 16
processes.

2.7 Runtime Optimization For Memory Access

Multi-threaded applications, including OpenMP, are rather sensitive to the memory
accesses of the executing threads, both at the cache level as well as at the page level.
At the cache level, a performance problem called false sharing may occur on multi-
core platforms because blocks of data are fetched into cache on per-line basis. When

27



Table 5: Total execution time (seconds) for 16 GB domain size

UHCAF OpenMPI Intel MPI Intel MPI xhost

#Processes

Buffer (GB)

2128.65
1172.55

2248.07

3149.93
1559.49

2084.81

16
32
64
128

2.08
1.15
0.61
0.26

1247.73

1094.02

528.76

866.08 622.67

519.54

271.15

449.17 328.40

276.01

BUHCAF §OpenMPI Clintel MPI B Intel MPI xhost

(spuodas) awiy feroL

2 62
Number of Processes

Figure 21: Total time (seconds) for TTI

ZAUHCAF S 0penMPI Dintel MPI 8 Intel MPI xhost

g

1

oo

59553301 9T 14m dnpaads

T

Number of processes

Figure 22: Speedup over 16 processes

28



one thread accesses data that happens to be on the same line as the data simultaneously
accessed by another thread, both need up-to-date copies of the same cache line. In
order to maintain the consistency of the shared data, the processor may then generate
additional cache misses that degrade performance.

At page level, data locality can be a significant performance factor since data is allo-
cated to physical memory bank on per-page basis. This problem can occur particularly
on a cache coherent Non-Uniform Memory Access (ccNUMA) system, where differ-
ent memory banks are connected to different multi-core processors. In such system,
a processor has to use the system interconnect to access the memory banks connected
to the other processors. This remote memory access has a longer latency and can be a
major bottleneck if it happens frequently.

Many novice OpenMP developers are not aware of memory bottlenecks caused by
the false sharing effect and the ccNUMA behavior. Even with this awareness, It can
be very hard for the developers to correctly identify the source of such performance
problems, as it requires some amount of understanding of the underlying system. Fur-
thermore, they may not know how to adapt an application in order to fix the problem.

To address these issues, we have developed a dynamic optimization framework
called DARWIN, that is based on the open-source OpenUH [20] compiler. The core
feature of this framework is its usage of the OpenMP collector API [9] to interact with
a running OpenMP program. The collector API can track various OpenMP states on a
per-thread basis, such as whether a thread is in a parallel region. DARWIN also utilizes
hardware counters to obtain detailed information about the programs execution. When
combined with its other capabilities, such as relating the performance data to the data
structures in the source code, DARWIN is able to help the application developer to
gain insights about dynamic code behavior, particularly in the hot-spots of a parallel
program.

2.7.1 Components of DARWIN

i
Apply optimization

strategy

Retrieve data allocation, Data allocation

information

OpenMP
Runtime

- Create data-centric
information
- Save collected data

into persistent storage Utilities
Persistent

Data - Export to TAU profiles
management | - Analyze data allocation information
| - Save analysis result

|
|
|
|
Even\ natification
|
|
|
|
|

|

|

|

I

|

Capture information Performance ‘
>| Collector tool o pmu monitoring [
|

|

|

I

|

|

Figure 23: The DARWIN Framework

Figure [23] illustrates the main modules of the DARWIN framework. These mod-

29



ules are responsible for catching OpenMP collector event notifications, performance
monitoring, capturing data allocations, data management, optimization, and utilities
for supporting performance data analysis.

The collector tool is the central part of the DARWIN framework since it coor-
dinates the profiling and optimization activity. This component utilizes the OpenMP
Collector API to communicate with the OpenMP runtime and thus gain insight about a
program’s execution. In a common scenario, we configure the collector tool to catch the
events associated with the beginning and the end of an OpenMP parallel region. The
parallel region, most of the time, is the basis for finding the hot spots in an OpenMP
program.

The performance monitoring module abstracts access to the processor-specific
hardware counter(s). In the work we have performed here, an appropriate counter is
used to pinpoint the data structure that is causing the performance problem under inves-
tigation. The DARWIN framework has been implemented on the Itanium 2 platform
that provides the Data Event Address Register (DEAR) suitable for this purpose. The
DEAR can track load instructions and capture instruction and data addresses, as well
as the latency of data cache misses. We can use this information to help programmers
optimize the memory behavior of the program, as described further in Section [2.7.2]
and Section We use the libpfin library to implement this module.

The data allocation module is used to capture information on the placement of
global, static, and dynamically allocated data. The information recorded includes the
starting virtual memory address, allocation size, and an identifier. For global and static
data, it uses the variable name as the identifier. For dynamic data, it uses the function
name that calls malloc and the line number in the source code as the identifier. We use
libelf, libpsx, and intercept the calls to memory allocation routines (malloc, calloc, etc)
with an interposition library to implement its functionality. Information about the allo-
cated data is required for relating the captured performance data with the corresponding
data structure in the source code.

The data management module is responsible for relating the captured perfor-
mance data to the appropriate data structure in the source code and thus for producing
data-centric information that is comprehensible by the application developer. It is also
used to store all of the captured information and analysis results into persistent storage.
Currently the SQLite portable database is used to implement this persistent data storage.
It has an in-memory database feature to reduce disk access for improved performance.
Its support for the SQL language offers a convenient way to access the data.

The optimizer module provides an implementation of several optimization strate-
gies that use input from the analysis result. Two kinds of optimization strategies, high
level and low level, are distinguished. The high level optimizations essentially utilize
OS routines, such as those for setting thread affinity, memory page migration, or mak-
ing calls to other library routines; e.g. for modifying the number of threads, adjusting
core frequency, or accessing a specialized malloc library. The low level optimizations
are applied by transforming the source code or modifying instructions in the binary.
We have implemented a high level optimization strategy for distributing data on a cc-
NUMA platform.

The utilities module provides support for offline data analysis. One tool is used to
read the collected performance data from the persistent data storage, aggregate them,

30



and write the result into text files that follow the Tuning and Analysis Utilities (TAU)
profile format. A second tool can be used to insert analysis results into the framework’s
persistent data storage.

The DARWIN framework is used as a feedback-based dynamic optimization sys-
tem that has two execution phases, the monitoring phase and the subsequent optimiza-
tion phase. The monitoring phase collects the performance data required for analysis,
the results of which will be used during the optimization phase in a subsequent run.

2.7.2 Optimizing data distribution on ccNUMA platforms

The placement in memory of the pages holding a program data can have a major im-
pact on the performance of an application program. The effects of data placement are
more evident on ccNUMA systems than those with symmetric memory access. On
such platforms, each processor can directly access the local main memory, but has to
use the system interconnect to access the memory banks of the other processors (re-
mote memory). Remote memory accesses become a major bottleneck if the data is not
carefully placed. The traditional "first-touch” policy implemented within the operating
system is sometimes very effective, but can also lead to an inefficient page placement,
especially if the programmer is not aware of this policy. With knowledge of the mem-
ory access patterns, one can devise an efficient memory placement strategy and reduce
the number of remote memory accesses.

We have used the DARWIN framework to help the application developer find vari-
ables that have a data distribution problem, i.e. whose placement leads to many remote
memory accesses, and also to perform the necessary optimization to reduce the num-
ber of remote memory accesses. In the monitoring phase of DARWIN, we collect the
memory reference information in every parallel region. The collector tool module is
responsible for starting and stopping the performance monitoring module when the
thread reaches the beginning and the end of a parallel region respectively. By using
the data allocation information, we create data-centric information by associating the
memory address on each of the references with its corresponding variable name. The
generated data-centric information is delivered to TAU ParaProf for offline analysis.
TAU ParaProf can provide a visualization that helps the application developer to clas-
sify the data access pattern type of each variable and to identify the variables that have
unoptimized data placement.

Figure [24(a) and 24{b) show the memory reference visualization supplied by TAU
ParaProf. The vertical axis gives the total amount of references on each page. The
horizontal axis contains the page numbers of the variable. The depth axis provides the
thread ID that accesses the variable. The application developer can identify the access
pattern type of a variable by inspecting this visualization.

Figure [25]a) and 25|b) present examples of the latency visualization. The vertical
axis provides the average latency of the accesses to a page. The horizontal axis contains
the page number starting from the left. The depth axis shows the thread id. With this
visualization, the application developer can determine whether a variable has a latency
imbalance and if it is worthwhile optimizing the accesses.

During the optimization phase, the optimizer module calculates the page numbers
of a variable that need to be redistributed and maps them to the destination memory

31



<l

(@) (b)

Figure 24: Memory reference visualization: (a) block access pattern for colidx on CG.
(b) cyclic access pattern for ris on SP.

1043

<l

(a) (b)

Figure 25: Memory access latency visualization: (a) colidx in CG has a latency imbal-
ance. (b) rhs in SP is already optimized for ccNUMA platform.

node based on the variable’s access pattern type. After the mapping is obtained, this
module performs the optimization by using the first-touch method for initial placement
and next-touch method on dynamic data or data that has multiple access pattern types
across different parallel regions. Optimization based on the data access pattern is flexi-
ble in the sense that it is not sensitive to the runtime configuration, such as the data size
and the number of threads. We do not need to repeat the monitoring phase even if the
runtime configuration is changed. This is very useful for monitoring the applicaiton
on a reduced data set and subsequently optimizing the application in the production
environment, which typically will require a larger data size and more threads.

We tested our method on seven programs from the OpenMP C version of the NPB-
2.3 benchmark: CG, BT, MT, FT, IS, LU, and MG. All programs were compiled with
the OpenUH compiler with optimization level O2 and class A data size. The experi-
ments were performed on an SGI Altix 3700 consisting of 32 nodes with dual 1.3 GHz
Intel Itanium?2 processors per node running the SUSE 10 operating system.

Figure[26]a) gives the increase in time of the monitoring phase with a sampling pe-
riod of 100 cache misses. The sampling period determines how many cache misses will
be skipped by the hardware counter before it captures a cache miss. The monitoring
overhead consists of the time taken to capture the data allocation, create data-centric

32



information, and collect performance data. Based on the experimental results, most of
the overhead came from the time required to create the data-centric information. This
overhead is related to the amount of captured information. Figure 26(b) shows that a
higher sampling period, which produces less performance data, can reduce the time
required to generate data-centric information.

160% 160%

140% Sampling Period
120% (cache misses):
100%

80%

n i [ ]
GE) 60% generate_data_centric 60% 15820
= 40% = 40%
': ou ¥ capture_data_allocation ’
£ 20% I | 20% I
0% B oo e e [
CG S FT BT

CG SP FT BT LU MG IS

cache_miss_sampling
5100

% Time increase

W M6 IS
(a) (b)

Figure 26: Monitoring phase overhead: (a) overhead breakdown with 100 cache misses
for the sampling period. (b) overhead with higher sampling period

Figure 27)(a) shows the speedup on the overall wall clock execution time and the
exclusive computation time of the optimization phase in the subsequent run. The wall
clock execution time includes the overhead, initialization, and the computation time.
The optimization attempt had a positive impact on the wall clock and computation time
of 4 of the programs, with up to 1.72x speedup. However, with this small problem size,
that was not the case for LU, MG, and IS. The result for LU was expected because
we did not find any variables that need to be optimized. MG did not experience an
improvement of its wall clock time because the overhead of performing the optimiza-
tion with the next-touch method and capturing the dynamic data allocation exceeded
the optimization benefit, as shown by the overhead breakdown in Figure 27(b). We
can reduce the overhead significantly by removing the requirement of capturing the
data allocation information if the data size is consistent, e.g. in a production environ-
ment. IS did not experience much improvement of its wall clock time because 80%
of its execution time is spent in the initialization stage, and that is carried out in serial
mode. Adjusting the data distribution actually increased the number of remote memory
accesses during the initialization of IS, which also reduced the optimization benefit.

To show the flexibility of the optimization method, i.e. that the monitoring results
can be applied to different runtime configurations, we performed another optimization
attempt on these benchmark programs with a larger data size and with more threads. In
this case, MG and IS also benefit from our optimization. The optimization experiment
was performed on class B data size with four compute nodes, eight physical CPUs, and
eight OpenMP threads. We reused the same optimization strategy as on the class A
programs. Figure 28] shows the speedup of this run. It clearly shows that all programs,
except for LU, gained a higher speedup if compared to the experiment on the class A
data size.

33



2.00 100.00%

14.00%

10.00%

1.50 -
g B Wall clock t S L 12 Next-touch
3 pss 204 all docfime < ' W First-touch
$ 100 speedup g _
& . . 0 0.10% Page calculation
i ¥ Computation time L P
0.50 - Persistent storage access
: speedup ]
001% ¥ Data allocation
0.00 0.00%
CG SP FT BT LU MG IS G SP FT BT W MG IS
(a) (b)

Figure 27: Optimization result on class A with 4 threads : (a) performance speedup.
(b) overhead.

2.00 Wall clock time speedup
1 Computation time speedup
150
N A 2.50 513
3 o3 1.04 B Wall clock time 200 24
9 1.00 speedup g 1.33
g 3 1.50 11 128
@ B Computation time 100 | o 198 095 1 101108
050 - speedup &
0.50 T — I — R — - — R — I —
0.00 0.00 : : T T
CG SP FT BT LU MG IS CG SP FT BT LU MG IS
(a) (b)

Figure 28: Performance speedup : (a) class A with 4 threads. (b) class B with § threads.

2.7.3 Detecting false sharing

False sharing is an unnecessary condition that may arise as a consequence of the cache
coherence mechanism working at cache line granularity. It does not imply that there is
any error in the code. This condition may occur when multiple processor cores access
different data elements that reside in the same cache line. A write operation to a data
element in the cache line will invalidate all the data in all copies of the cache line stored
in other cores. A successive read by another core will incur a cache miss, and it will
need to fetch the entire cache line from either the main memory or the updating core’s
private cache to make sure that it has the up-to-date version of the cache line. Poor
scalability of multi-threaded programs can occur if the invalidation and subsequent
read to the same cache line happen very frequently.

Our approach for determining the data that exhibits false sharing consists of two
stages. The first stage checks whether cache coherence misses contribute to a major
bottleneck in the program. If they do, then the second stage isolates the data structures
that cause the false sharing.

In the first stage, we use DARWIN to count the number of cache line inval-
idations. Modern processors provide Performance Monitoring Unit (PMU) sup-
port for this purpose. For example, the Intel Core I7 family supports an event
called MEM_UNCORE_RETIRED.OTHER_CORE_L2_HITM that indicates the num-

34



ber of retired memory load instructions that hit dirty data in sibling cores. In-
tel’s Itanium 2 processor, the platform where DARWIN is currently implemented,
can count the number of cache line invalidation transactions represented by the
BUS_MEM_READ_BRIL_SELF event. If a large number of these events is detected
during a program’s execution, it indicates that a serious cache coherence problem can
occur when the program is executed with multiple threads.

We move on to the second stage after we determine that an application exhibits
a significant cache coherence problem. This part is traditionally done by tracing the
memory operations, and analyzing the sequence of the read and write operation. But
this method can produce very high overheads, significantly reducing its applicability.
To alleviate the overhead, DARWIN captures the memory reference information that
is used to identify those data structures that have a significant false sharing problem.
Only the high level symptoms are observed, namely the high memory access latency
and the large number of references. In contrast to the method discussed in Section[2.7.2]
that works at page level, here we analyze the memory reference information at cache
line granularity.

We examine the data allocation information to determine if the identified data struc-
tures suffer from false sharing. If some or all parts of a data structure share the same
cache line with another data structure, we conclude that the problem is due to false
sharing. We also look at the data access pattern type when the data structures are
shared among threads. False sharing can exist on an array that is accessed by multiple
threads, where each thread only accesses a portion of the array. It is possible that some
elements near the boundary of two disjoint data portions are in the same cache line. If
the array size is small, e.g. it takes up about as many bytes as there are in a cache line,
most of the array might be contained in the same cache line, causing an increased risk
of false sharing.

The results of our false sharing detection are validated by performing manual op-
timization to the source code that adjust this, without making other changes. We use
the aligned variable attribute and posix_memalign function to allocate data on different
cache lines. The result of the detection is considered to be valid when the performance
of the optimized code is substantially better.

We tested our method on the Phoenix suite that implements MapReduce for shared
memory systems. All programs were compiled with the OpenUH compiler with opti-
mization level O2. The experiments were performed on an SGI Altix 3700 consisting
of 32 nodes with dual 1.3 GHz Intel Itanium?2 processors per node running the SUSE
10 operating system.

Table [6] depicts the results of the cache invalidation event measurement. It shows
that histogram, linear_regression, reverse_index, string_match, and word_count all had
a very large number of cache invalidation events when using higher numbers of threads.
This is an indication that these programs suffer from a cache coherence problem. We
then focused on these programs in order to identify the variables that give rise to false
sharing.

Figures 29(a)|and 29(b)|show the TAU Paraprof visualization of the average latency
and the number of references to each cache line for the string_match program. We iden-
tified two distinct data regions with different access patterns. Both figures clearly show
that the accesses to data structures in data region 2 were causing the major bottleneck

35



Program Name Total Cache Invalidation Count
1-thread 2-threads 4-threads 8-threads
histogram 13 7,820,000 16,532,800 5,959,190
kmeans 383 28,590 47,541 54,345
linear_regression | 9 417,225,000 254,442,000 154,970,000
matrix_multiply | 31,139 31,152 84,227 101,094
pca 44,517 46,757 80,373 122,288
reverse_index 4,284 89,466 217,884 590,013
string_match 82 82,503,000 73,178,800 221,882,000
word_count 4,877 6,531,793 18,071,086 68,801,742

Table 6: Cache invalidation event measurement result.

Data region 2

Data region 2

8650 References T
Hsre 293e __ T
27625 203 .+ Tl

s AT,
T3a s X

P\
> p 37N\
Thread id © Thread id © \

(a) Average memory latency (b) Memory reference count

Figure 29: String_match memory access visualization

of this program. Data region 2 contained the memory accesses to variable key! _final,
key2_final, key3_final, key4_final, and string_match_map_253_3. The first four variables
were global variables allocated in the same cache line. string_match_-map_253_3 is a
dynamic data stracture that has one of its cache lines shared with another dynamic
data object allocated by other threads. Table [7] presents information on several data
structures captured by DARWIN.

Parallel Thread id Variable name Starting cache | Last cache line | Size
region id line (bytes)
0 0 key_1_final 0x4c00 0x4c00 8

0 0 key_2_final 0x4¢00 0x4c00 8

0 0 key_3_final 0x4c00 0x4c00 8

0 0 key_4_final 0x4c00 0x4c00 8

1 0 string_match_map_253_0 0x14049d80 0x1404a180 1024
1 1 string_match_map_253_1 0x45400 0x45800 1024
1 3 string_match_map_253_2 0x18000880 0x18000c80 1024
1 2 string_match_map_253_3 0x1404a580 0x1404a980 1024
1 0 string_match_map_254_0 0x1404a180 0x1404a580 1024

Table 7: Data allocation information for several variables in string_match.

36




Figure [30{a) presents our attempt to adjust the alignment of the variables that were
suspected to be the major cause of false sharing. Figure[30|(b) shows the speedup after
we performed adjustments to the source code. The speedup is defined as the execution
time of the original program divided by the execution time of the modified one. The
number of cache invalidation events in reverse_index was successfully reduced by 50%,
even though it did not experience a significant improvement.

W 1-thread M2-threads I 4-threads M 8-threads

100.00
Ca 30.82 2856
char xkeyl_final;
__attribute_ ((aligned (128)))
char xkey2_final;
__attribute_ ((aligned (128)))
char xkey3_final;
__attribute__ ((aligned (128)))
char xkey4_final;
__attribute__ ((aligned (128)))
posix_memalign (&cur_word, 256, MAX_REC_IEN) ; & & e+ S &
20° & & & &
x;\‘} @é Aef’e/ g\“"/ ~‘p‘e’/
&7 & &

()

(b)

Figure 30: (a) Adjusting data alignment in figures/string_match. (b) The speedup after
adjusting the memory alignment.

Figure 31 shows the slowdown of the monitoring phase, defined as the monitoring
execution time divided by the original program execution time. The monitoring phase
generated a slowdown ranging from 1.15x to 1.70x, with the average around 1.36x.
This overhead is actually pretty low compared to the traditional methods, which can
produce a slowdown from 5x to 10x or more.

Slowdown

Figure 31: The slowdown of the monitoring phase relative to the original program.

2.8 Cost Model and Compile-time Optimization

Existing Open64’s cache model analyzes the spatial and temporal locality of single
thread execution, while Open64’s parallel model focuses on the worksharing benefits

37



from concurrent execution of threads. However, neither of them, nor their combina-
tion takes into account the performance impact from the interference or contention for
resources between parallel threads such as the false sharing effects, the competition to
use shared cache or memory bus. With increasing number of cores and the decrease
of average memory and bus bandwidth per cores, such interference and contention will
have significant performance impacts for applications.

We have studied one of these interferences, false sharing, and enhanced the Open64’s
cost model to include false sharing effects for it to output more accurate performance
estimations. Our false sharing cost model estimates the number of false sharing cases
in a parallel loop at compile-time, and computes the overhead cost incurred by the
problem to the whole execution of the loop. For wide applicability, we use OpenMP
parallel loops in this model. Given an OpenMP parallel loop, there are four steps to
analyze the cost incurred by false sharing:

1. Obtain array references made in the innermost loop of a loop nest
2. Generate a cache line ownership list for each thread

3. Apply a stack distance analysis to each cache line ownership list
4. Detect false sharing

The false sharing is only revealed at runtime and is sensitive to lots of details about
how the program is being executed, e.g. the alignment of allocated memory, the number
of threads working on the victim data, and other background applications that may
compete for the cache resources. It is necessary to supply enough runtime information
to the compiler when estimating the false sharing effects. In this model, the compiler
needs information about the number of threads executing the loop, loop boundaries,
step sizes, index variables and the chunk size if specified for the OpenMP parallel loop.
The chunk size is the number of iterations of a loop that are distributed to each thread.
In this work, we assume that chunks of a loop are distributed to threads in a round-
robin fashion. If the loop boundaries are not known at compile-time, the model only
outputs the false sharing rate estimated per full cycle of iterations executed by all of the
threads. One full cycle of iterations executed by the thread team is the sum of iterations
executed by each thread in one chunk size.

We have implemented our false sharing cost model within the Open64 compilers
LNO phase. We have used OpenMP versions of loop kernels in heat diffusion [2] and
discrete fourier transform (DFT) [1] programs for our experiments. To evaluate the
accuracy of our false sharing cost model, we compare the percentages of measured
and computed false sharing overhead costs. We expect that the measured percentage
of false sharing overhead should be close to the percentage of false sharing overhead
computed by our false sharing cost model as follows:

Tfs,measured - Tnfs,measured ~ Nfs,pred - ans,pred

3

Tfs,measured N;s,pred

where T'rs measured 18 the measured time needed to execute a loop incurring false
sharing; T}, rs_measured 15 the measured time needed to execute the same, but optimized,

38



loop that does not incur any false sharing; N, preq is the number of false sharing cases
estimated by our model on a loop incurring false sharing; N, s preq 1S the number
of false sharing cases estimated by our model on an optimized loop; N, .., is a
normalized value for false sharing cases estimated by our model on a loop incurring
false sharing.

Results for our experiments given in Tables [§] and [9] show that the computed
FS overhead percentages estimated by our cost model are close to the measured FS
overheads, indicating that the results of our cost model are promising, and that by
modeling false sharing we can accurately estimate the false sharing overhead cost at
compile-time.

Table 8: Comparison of % of false sharing overheads incurred in Heat Diffusion kernel

# of | Measured Time | Measured Time | FS effect on | Computed FS
threads | with chunk | with chunk | execution cases effect
size=1 FS case | size=64 non-FS | time (%) (%)

(sec) case (sec)
2 0.3593 0.2901 19.2% 6.9%
4 0.2263 0.1646 27.2% 6.9%
8 0.1639 0.156 4.8% 6.9%
16 0.6586 0.6205 5.7% 7.0%
24 1.0049 0.9564 4.8% 7.1%
32 1.4671 1.3608 7.2% 7.2%
40 1.8455 1.6130 12.5% 7.2%
48 2.247 2.1501 4.3% 7.2%

Table 9: Comparison of % of false sharing overheads incurred in DFT kernel

# of | Measured Time | Measured Time | FS effect on | Computed FS
threads | with chunk | with chunk | execution cases effect
size=1 FS case | size=16 non-FS | time (%) (%)

(sec) case (sec)
2 2.0978 1.7624 15.9% 32.0%
4 1.762 0.9618 45.4% 31.6%
8 0.8976 0.6033 32.7% 31.5%
16 0.599 0.3688 38.4% 33.2%
24 0.5041 0.3163 37.2% 32.8%
32 0.4727 0.2827 40.1% 35.6%
40 0.4792 0.2669 44.3% 36.7%
48 0.4664 0.279 40.1% 35.8%

Possible optimizations that can be applied by the compiler based on our false shar-
ing cost model results are as follows:

e Determine the optimal chunk size value for OpenMP loops and the optimal num-

39



ber of threads to execute the loop.

e Guide traditional loop transformations to decide parameters suitable for execut-
ing parallel loops on multicore architecture.

e Decide whether software prefetching is profitable, and determine the best prefetch-
ing instruction.

2.9 Evaluations of HMPP for Programming GPGPUs

Directive-based interfaces already exist that can be used to program GPUs, although
they are proprietary. In order to understand the potential of this approach, to learn
what information must be supplied by such directives, and to evaluate their potential
to provide both performance and productivity, we have used them to create versions of
two application codes that exploit both CPUs and GPUs [21]].

Last year we studied the DoE High-Order Multi-scale Modeling Environment ap-
plication (HOMME) that is one of the highly promising frameworks for integrating the
atmospheric primitive equations in spherical geometry. In the study phase, we analyzed
the code in terms of its suitability for GPUs. We also studied the various directive-
based approaches and their execution and memory models, as well as compiler-based
optimization techniques to port the application onto GPU and CPU cores. HOMME
applies a spectral element method to conserve both mass and energy using an isotropic
hyper-viscosity term. To discretize the horizontal dimension, it uses a cubed-sphere
grid and in the radial direction a vertical dimension. The HOMME application consists
of several hundred Fortran 90 subroutines with the computations spread evenly across
them and whose relevance depends on the input problem. For each of the spherical
elements in the grid, HOMME maintains a global data structure that stores the state of
the element, including velocity, temperature, pressure, divergence and geo-potential.

This year we have performed experiments on the HOMME kernel using the directive-
based approaches from PGI and CAPS (HMPP). We have also used OpenMP and
CUDA to provide additional experimental data. We considered several optimization
strategies in order to best port this application on the GPU. While using the PGI-based
approach, we did a careful analysis and implemented a suitable data initialization i.e.
we initialized the computational arrays on the GPUs directly as far as possible to avoid
the expensive operation of transferring data from CPUs. For the HMPP-based ap-
proach, we used a loop collapsing technique i.e. fusing multiple loops into one loop.
Another technique we employed for the HMPP code version was to use their advanced-
load clause to reduce unnecessary transfer of data between the GPU and the CPU.

In [32] we list the HMPP and PGI implementation code snippets discussed below.
The ie loop iterates over the spherical elements, the q loop over the advected physics,
the k loop iterates over the vertical radial grid points and the j and i loops iterate over
the horizontal plane grid points.

With the PGI accelerator directives, it was necessary to do some code restructuring
to achieve good performance. We inlined the procedure divergence sphere and inserted
an acc region directive to accelerate the compute intensive ie loop. This was necessary
for the PGI directives since their approach cannot handle function calls inside an accel-
erated region. The next step was to specify how to parallelize the loop nest iterations

40



!§acc region !$hmppcg grid blocksize 4x4

'$acc do parallel(nete) !$hmppcg parallel
do ie=nets, nete do iZ=nets, netesnlev ! ie, q
'$acc do parallel(gsize) !$hmppcg parallel
do g=1,gsize do il=1, gsize*nv ! q, j
'$acc do vector(32) '$hmppcg set b2 = BlockId(i2)
do k=1,nlev '$hmppcg set t2 = RankInBlock(i2)
'$acc do vector(nv) '$hmppcg set bl = BlockId(ii)
do j=1,nv !$hmppcg set t1 = RankInBlock(il)
'$acc do vector(nv) private(dudx00,dvdy00i) ie=b2+1
do 1=1,nv q = bi+i
dudx00=0.0d0 k =t2 +1
dvdy00i=0.0d0 j =ti+i
do i=1,nv do 1=1, nw
dudx00 = dudx00 + Dvv(i,1 ) *= & dudx00=0.0d0

(metdet(i,j,ie)*(Dinv(i,1,i,j,ie)* & dvdy00i=0.0d0

grad(bda(i,j,k,q,1,ie) + & do i=1,nv

Dinv(1,2,i,j,ie)*gradlsdali,j,k,q,2,ie))) dudx00 = dudx00 + Dvw(i,1 ) * &

(metdet(1,j,ie)*(Dinv(l,1,1,j,ie)* &
dvdy00i = dvdy00i + Dvv(i,j ) * & gradQtda(i,j,k,q,1,ie) + &

(metdet(1,i,ie)*(Dinv(2,1,1,1i,ie)* & Dinv(1,2,i,j,ie)*gradl5da(i,j.k,q,2,1e)))

gradbda(l,i,k,q,1,ie) + &

Dinv(2,2,1,i,ie)*grad(bda(l,i,k,q,2,ie))) dvdy00i = dvdy00i + Dwv(i,j ) * k&
end do (metdet(l,i,ie)*(Dinv(2,1,1,i,ie)* &
divdpdda(l,j.k,q,ie)= & gradQ5da(l,i,k,q,1,ie) + &

rmetdetp(l,j,ie) * & Dinv(2,2,1,i,ie)*gradQsda(l,i,k,q,2,1ie)))
(rdx(ie) ) *dudx00+(rdy (ie) ) *dvdy00i end do
end do divdpdda(l,j.k,q,ie)= rmetdetp(l,j,ie)
end do * (rdx(ie)=dudx00+rdy(ie)=dvdy00i)
end do enddo
end do enddo
enddo enddo
'$acc end region end subroutine
(a) PGI Accelerator Directives (b) HMPP Implementation

Figure 32: The inlined and accelerated divergence sphere code snippet.

41



25

20

|HOMME/SE Timings (Miliseconds)‘

SERIAL 1366.37 &

HMPP Kernel 224.73 £,

PGI Kernel 137.43

CUDA 70.00 ®

OpenMP 4 Threads (best)|510.62 , I

(a)HOMME/SE Timing Table OpenMP PGl HMPP cuba

(b)HOMME/SE Divergence Sphere
Speedup

Figure 33: HOMME/SE Kernel Experiments.

across the GPU Symmetric Multi-processors (SM) and within the SMs efficiently. We
used the parallel and vector clauses to specify the grid size and vector size: in this
case we specified a block size of nv*nv*nv. To avoid non-coalesced memory accesses
we eliminated a temporary array gv and fused the inner loops. We also allocated and
initialized the data inside the GPU by using the PGI data region directive and copyout
directive. To obtain best results for the kernel, we allocated and initialized the twelve
spectral elements state on the GPU.

We used a similar code transformation to implement the kernel with HMPP direc-
tives. We used HMPP to outline the ie loop to a separate procedure creating a codelet.
In contrast to the strategy for the PGI directives, here we had to transform the loops by
collapsing the ie and the q loop with the i and the e loop, respectively, to provide enough
work for a two-dimensional thread block and get the desired performance. Our experi-
ments utilized HMPP 2.5.0 that only supported two dimensional thread blocks. [33{a)
shows the execution time for HOMME using the directives and OpenMP; [33]b) shows
the speedup of the kernel. The OpenMP version (on 4 threads) achieves a speedup of
2.67 over the serial version. Without counting the data transfer time, the GPU imple-
mentations achieve a speedup of 9.9x for the (ACC) PGI directives, 6.08 for HMPP
and 19.51 for the CUDA implementation.

2.1.2 S3D Parallel Combustion Application on Heterogeneous Platform

We also performed experiments on the S3D parallel combustion application using
the GPU-based directives. The S3D parallel combustion application is a flow solver
for the direct numerical simulation of turbulent combustion. S3D solves fully com-
pressible Navier-Stokes, total energy, species and mass conservation equations coupled
with detailed chemistry. The governing equations are supplemented with additional
constitutive relations, such as the ideal gas equation of state, models for chemical re-
action rates, molecular transport and thermodynamic properties. These relations and
detailed chemical properties are implemented as kernels or community-standard li-
braries that are amenable to acceleration through GPU computing. For this work, we
chose the thermodynamics kernel that evaluates the mixture-specific heat, enthalpy and
Gibbs functions as a temperature polynomial. The coefficients of the thermodynamic
polynomials and their relevant temperature ranges are obtained from thermodynamic
databases following the conventions used in the NASA Chemical Equilibrium code.

42



!$acc data region copyin(temp,...).k
copyout (enth)
do j =1, MR
!$acc region
'$acc do parallel{np)
do i =1, np
enth(i} = 0.0
do m = 1, nslvs
if{temp(i)<midtemp(m)} then
enth(i)=enth(i)+yspec(i,m)*k
Rsp(m)*(&

coefflow(5, m)*rp05}))))
else
enth(i)=enth(i)+yspec(i,m)*k
Rsp (m)* (&

coeffhig(E, m)*rp05))))))
end if
end do
end do

'$hmpp <cudagroup> group, target=CUDA

!$hmpp <cudagroup> resident, args[Rspl.io=in
real,parameter: :Rsp(l:nstts)=Ru/molwgt (1:nstts)
'$hmpp <cudagroup> resident, args[midtemp].ic=in
real,parameter: :midtemp(68)=(/ ... /)

'$hmpp <cudagroup> resident,args[coeffhig].ic=in
real,parameter: :coeffhig(7,68)=reshape(/.../)

subroutine calc_mixenth(np, ... ,cp)
implicit none

!$hmpp <cudagroup> allocate

!$hmpp <cudagroup> s3d_mixenth advancedload,&
args[::Rsp; ...; ::coeffhig]

!$hmpp <cudagroup> s3d_mixenth callsite

call hmpp_kerneli(np, ... , coeffhig)

'$hmpp <cudagroup> s3d_mixcp callsite, &
argl::Rsp; ...].advancedload=true

call hmpp_kernel2(np, temp, ... , coeffhig)

!$hmpp <cudagroup> release

. end subroutine calc_mixenth
'$acc end region

!$acc region
!$acc do parallel{mp)
de i =1, np
cpli) = 0.0
do m = 1, nslvs

'$hmpp <cudagroup> s3d_mixenth codelet, &
args[np;...;yspec] .io=in,args[enth].ic=out
subroutine hmpp_kernell(np,temp,...,coeffhig)

end subroutine hmpp_kernelil

enéléo '$hmpp <cudagroup> s3d_mixcp codelet, &

end do args[np;...;yspec] .io=in,args [cpl.io=out
I$acc end region subroutine hmpp_kernel2(np,...,coeffhig)
end do

'$acc end data region end subroutine hmpp_kernel2

Figure 34: S3D Thermodynamics Kernel Code snippet.

The thermodynamic kernel with small variations is applicable across a wide range of
reacting flow applications.

Our first attempt to accelerate the code with PGI and HMPP directives, by insert-
ing an acc region directive and creating a HMPP codelet, respectively, for the main
computational loopnest yielded very little performance gain (2x speedup for PGI and
1.2 speedup for HMPP). By using the CUDA profiler from NVIDIA, we observed that
most of the time spent in the accelerated kernels was on data transfer between the
CPU and GPU. So we had to inline the main computational kernel loop (loop i) to
the procedure that was invoking it within its loop j. This transformation is shown in
[B4(a), which gives the code corresponding to the PGI implementation. It employs a
data region directive to define the data that resides in the GPU. For HMPP, we used
the group and resident directives to allocate data in the GPU and share data among
the codelets of the same group. In [34(b) we show the HMPP implementation, where
codelets s3d_mixenth and s3d_mixcp belong the same group named cudagroup. Arrays
Rsp, midtemp, coefthig and coefflow are declared as resident variables, which makes
them accessible by the two codelets defined in the HMPP group. In order to optimize
the data transfers, we used the advancedload directive to transfer the data required to
initialize the read only GPU variables one time before the first codelet calc_mixenth
is executed. We also used the advancedload clause of the HMPP callsite directive to
notify HMPP that the read only data is available in the GPU for the second codelet.

43



‘S.?»D Thermodynamics Timings (Seconds)‘

SERIAL 21.926 %0

HMPP 0.363 0

HMPP Kernel 0.3192948 w0

HMPP Data Transfer 0.042834 a.50

PGI 0.346305 $o

PCI Kernel 0.320225 “ 30

PGI Data Transfer 0.02608 20

CUDA 0.29 1

CUDA Kernel 0.269265 0 ]
CUDA Data Transfer 0.019952 AP ral CUDA_ OpeniP
OpenMP 12 Threads (best)|2.274 (b) S3D Thermodynamics Speedup

(a) S3D Thermodynamics Timing Table

Figure 35: S3D Thermodynamics Kernel Code snippet.

We compared the results of the different parallelization and acceleration methods
and we found that the HMPP and PGI implementations produced a 60 and 63 times
speedup, respectively. The native CUDA implementation produced a speedup of 76
times, while the OpenMP version using twelve threads produced a speedup of 10, as
shown in [33b). The timings of our experiments are shown in [35{a). Our results show
that by managing the data correctly we were able to obtain good performance with the
PGI and HMPP accelerator directives, within 80% of the native CUDA performance.

While porting these two applications to GPU as discussed above, we noted that
some of data structures used in the CPU had to be manually changed to meet certain
specific programming requirements, such as removing pointers that were defined in-
side a data structure. The HMPP and PGI implementations performed a variety of code
transformations during the transformation process: this is necessary for performance;
however the user is largely oblivious to what is happening under the hood. Moreover,
since even a powerful compiler cannot always perform the necessary restructuring,
many other code changes may be needed in order to be able to successfully employ
directives. We began to explore how we might be able to support the user by help-
ing them to re-apply successful code modifications, and to decide where to focus their
attention. It was challenging to identify a good order of adapting subroutines (or pro-
cedures) in a large scientific code and to decide on which of the available subroutines
to port first and what has to follow next.

In order to help solve this porting issue, we have proposed a methodology based on
compiler technology to address an important aspect of software porting that receives
little attention, namely planning support. We also explored how to redefine the notion
of similarity of code regions in a manner that helps re-use code modification strategies.
Unlike previous similarity-based approaches, our work adopts a bio-inspired view of
the program. We participated in the development of Klonos software to implement our
ideas (Klonos is under development at Oak Ridge National Laboratory and this work
was performed while UH student Wei Ding was a summer intern at this lab) and to
conduct experiments on the OpenMP porting of the NASA parallel benchmark suite.
We showed that the methodology is effective in providing planning support for the

44



porting of these scientific applications. In fact, we were able to use the methodology
to identify a possible optimization that the programmer missed for one of the codes,
which is beyond the scope of planning.

3 Future Work

This final project period has seen active discussion and development towards exascale
computing. Both hardware and software challenges posed from exascale computer
systems requires rethinking of the current evolutionary approach to addressing perfor-
mance, power and resilience bottleneck. The tasks accomplished in this final project
period have equipped us valuable experiences for building the next generation high per-
formance software development toolchains [S]]. This is exceptionally valuable as we
are entering into the exascale computing era which poses much challenging problems
and requires much more innovative solutions. To align the DoE vision for the research
and development of the programming model and tool chains to support exascale com-
puting, we intend to continue the following work:

1. We will continue working on the implementation of the PGAS languages UPC
and Co-Array Fortran. Our long term goal is to provide an industry-quality op-
timizing compiler to support CAF, including desired collectives and parallel I/O
support. We will also explore CAF implementations on alternative HPC systems,
and develop and evaluate hybrid programming models incorporating the use of
CAF with other languages/APIs (e.g. OpenMP). We will also work with our
partners and the larger community, in particular researchers at national laborato-
ries, to develop standard, benchmarks and validation suites. Another efforts that
we would like to involve is to foster community involvement through promoting
the use of CAF in the Oil/Gas industry and in the broader HPC arena.

2. We intend to continue our work to define, implement and evaluate novel fea-
tures to express code with high data and computational locality. Our work will
explore how such features may enable the utilization of large numbers of cores,
clusters of multicore nodes, and heterogeneous nodes. We will continue working
closely with the OpenMP ARB to help define new features for the next release
of OpenMP (4.0). We will continue to evaluate OpenMP 3.1 and later compilers
whenever it is available. We will collaborate with the community to evaluate
OpenMP on heterogeneous embedded systems. We will extend the OpenMP
validation suite to validate more programming models and platforms.

3. We will continue to implement compile-time cost models for modeling shared
cache contention and memory bus bandwidth, both of which are not considered
by existing Open64 cost models. Moreover, we will investigate to integrate use
of cost models for efficient task reordering and scheduling purposes. We will
further study runtime libraries for support of hybrid programming models, so
that we are able to use a single runtime layer to help in the execution of programs
that may span multiple nodes and be based on multiple programming interfaces.

45



4. We will participate in the standards activities of the OpenMP Architecture Re-
view Board and the Multicore Association. We will continue our research in
extending OpenMP to heterogeneous systems [[10].

4 Additional Information

During this project period, the PI, Professor Barbara Chapman was appointed to the
Advanced Scientific Computing Advisory Committee (ASCAC) at the Department of
Energy (DOE). This committee advises the DOE on a variety of complex scientific and
technical issues related to its Advanced Scientific Computing Research program.

4.1 Education

Three members, Besar Wicaksono, Debjyoti Majumder, and Amrita Banerjee com-
pleted their M.S. thesis during this project period. They contributed to the work of
OpenMP DARWIN dynamic optimization for memory accesses, and CAF runtime re-
search, and our OpenUH compiler tool support, respectively.

4.2 Employment

Table [10| lists the number of senior researchers and graduate students who have been
supported by this grant. The M.Sc. student supported our implementation efforts. In
addition to these, two Ph.D. students and one M.Sc. student received funding for two
months each to enable them to support the considerable implementation activities that
are part of this project.

Research Staff Number
Senior researcher 1

Ph.D. students 4

M.S. students 1

Table 10: research staff and students

4.3 Publications

During this project period, we have several publications in the proceedings of confer-
ence and workshops, and journals, which are included in the reference section.

References

[1] Discrete fourier transform. http://mathworld.wolfram.com/
DiscreteFourierTransform.html. Last accessed 29-February-2012.

46


http://mathworld.wolfram.com/DiscreteFourierTransform.html
http://mathworld.wolfram.com/DiscreteFourierTransform.html

(2]

(3]
[4]

[5]

[6]

(9]

(10]

(11]

[12]

[13]

[14]

Heat diffusion equation. http://ccl.northwestern.edu/papers/
ABMVisualizationGuidelines/palette/examples/Heat$
20Difussion/. Last accessed 29-February-2012.

Andrew Beddall. The g95 project. url:http://www.g95.org/coarray.shtml.

Dan Bonachea. GASNet specification, v1.1. Technical report, Computer Science
Department, University of California, Berkeley, 2002.

Barbara M. Chapman, William D. Gropp, Kalyan Kumaran, and Matthias S.
Miiller, editors. OpenMP in the Petascale Era - 7th International Workshop on
OpenMP, IWOMP2011, Lecture Notes in Computer Science. Springer, 2011.

Yuri Dotsenko, Cristian Coarfa, and John Mellor-Crummey. A multi-platform
co-array fortran compiler. In PACT ’04: Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques, pages 29-40,
Washington, DC, USA, 2004. IEEE Computer Society.

Deepak Eachempati, Hyoung Joon Jun, and Barbara Chapman. An Open-Source
Compiler and Runtime Implementation for Coarray Fortran. In PGAS’10, New
York, NY, USA, Oct 12-15 2010. ACM Press.

Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine Yelick.
UPC: Distributed Shared Memory Programming. John Wiley and Sons, May
2005.

Oscar Hernandez, Van Bui, Richard Kufrin, Ramachandra C. Nanjegowda, and
Barbara Chapman. Open source software support for the openmp runtime api
for profiling. In The Second International Workshop on Parallel Programming
Models and Systems Software for High-End Computing (P2S2), pages 130-137,
2009.

Lei Huang, Oscar Hernandez, Wei Ding, Barbara Chapman, and Richard Gra-
ham. Towards a High-Level GPU Programming Model (Submitted). Parallel
Computing Journal, 2010.

Lei Huang, Haoqiang Jin, Liqi Yi, and Barbara M. Chapman. Enabling locality-
aware computations in openmp. Scientific Programming, 18(3-4):169-181, 2010.

Haogiang Jin, Rupak Biswas, Dennis Jespersen, Piyush Mehrotra, Lei Huang,
and Barbara Chapman. High Performance Computing Using MPI and OpenMP
on Multi-core Parallel Systems (Submitted). Parallel Computing Journal, 2010.

James LaGrone, Ayodunni Aribuki, Cody Addison, and Barbara M. Chapman.
A runtime implementation of openmp tasks. In 7th International Workshop on
OpenMP, IWOMP2011, pages 165-178, 2011.

C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng. Openuh: An
optimizing, portable openmp compiler. Concurrency and Computation: Practice
and Experience, 19(18):2317-2332, 2007.

47


http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/examples/Heat%20Difussion/
http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/examples/Heat%20Difussion/
http://ccl.northwestern.edu/papers/ABMVisualizationGuidelines/palette/examples/Heat%20Difussion/

[15]

[16]

[17]

(18]

(19]

[20]
(21]

(22]

(23]

Pavel Neytchev Matthias S. Mller. An openmp validation suite. In in Fifth Euro-

pean Workshop on OpenMP, Aachen University, Germany, 2003.

Pavel Neytchev Matthias S. Mller. An openmp validation suite. In in Fifth Euro-

pean Workshop on OpenMP, Aachen University, Germany, 2003.

Toone Moene. Towards an implementation of Coarrays in GNU Fortran.
http://ols.fedoraproject.org/GCC/Reprints-2008/moene.reprint.pdf.

Matthias Mller, Christoph Niethammer, Barbara Chapman, Yi Wen, and Zheny-
ing Liu. Validating openmp 2.5 for fortran and c/c. In in Sixth European Workshop
on OpenMP, KTH Royal Institute of Technology, 2004.

Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote memory copy
library for distributed array libraries and compiler run-time systems. In Proceed-
ings of the 11 IPPS/SPDP’99 Workshops Held in Conjunction with the 13th In-
ternational Parallel Processing Symposium and 10th Symposium on Parallel and
Distributed Processing, pages 533-546. Springer-Verlag, 1999.

The OpenUH compiler project. http://www.cs.uh.edu/~openuh, 2005.

Barbara M. Chapman Ramanan Sankaran Richard Graham Oscar Hernandez,
Wei Ding and Christos Kartsaklis. Experiences with high-level programming
directives for porting applications to gpus. In In Proceedings of Facing the
Multicore-Challenge II, Karlsruhe Institute of Technology, Germany, 2011.

Munara Tolubaeva, Yonghong Yan, and Barbara M. Chapman. Compile-time
detection of false sharing via loop cost modeling. In Proceedings of 17th Inter-
national Workshop on High-Level Parallel Programming Models and Supportive
Environments, 2011, 2012.

Besar Wicaksono, Munara Tolubaeva, and Barbara M. Chapman. Detecting false
sharing in openmp applications using the darwin framework. In Proceedings of
24th International Workshop on Languages and Compilers for Parallel Comput-
ing, 2011, 2011.

48


http://www.cs.uh.edu/~openuh

	Overview of Research at University of Houston
	Technical Accomplishments
	Locality-Aware OpenMP
	Syntax of Location
	Threads and Locations Mapping
	Defining Data Layout
	Mapping tasks with Locations
	Performance Study

	OpenMP 3.0 Compiler Implementation
	OpenMP Validation Suite
	Design of OpenMP Validation Suite
	Implementations
	Directives and Clauses
	Support for OpenMP 3.1
	Evaluations

	Co-Array Fortran Implementation and Experiments
	Co-Array Fortran Compiler
	Co-Array Fortran Runtime
	Experiments and Preliminary Results

	Runtime Optimization For Memory Access
	Components of DARWIN
	Optimizing data distribution on ccNUMA platforms
	Detecting false sharing

	Cost Model and Compile-time Optimization
	Evaluations of HMPP for Programming GPGPUs

	Future Work 
	Additional Information
	Education
	Employment
	Publications


