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Abstract

We present an Extended Vector Space Model (EVSM) for information retrieval, endowed with
a new set of similarity functions. Our model considers records as multisets of tokens. A token
weight function maps records into a real vectors. Using this vector representation we define a
p-norm of a record and pairwise conjunction and disjunction operations on records. These oper-
ations prompt consistent extensions of published set-based similarity functions and yield new `p
distance-based similarities. We demonstrate that some well-known similarities form a subset of
the new functions resulting from particular choices of token weights and p-values. In so doing,
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we establish the equivalence of the corresponding information retrieval models with a properly
augmented vector space model. The performance of the extended similarity measures is com-
pared by solving an entity matching (EM) problem for two types of benchmark datasets. Among
other things, our results show that the new similarity functions perform particularly well on tasks
involving matching of records by keywords.

The EVSM served as foundation for mathematically rigorous definition of EM problem. We
developed a supervised EM framework that interprets the EM as the combinatorial optimization
problem of finding the maximum weight matching in a weighted bipartite graph connecting records
from two databases, also known as Linear Sum Assignment Problem (LSAP). Casting of EM prob-
lems into LSAP offers valuable practical and theoretical advantages. There are efficient algorithms
that solve LSAP in polynomial time. Availability of such algorithms reduces the task of solving the
EM problem to computing weights for the edges of the bipartite graph connecting the records from
the databases. This allowed focusing efforts on the development of robust and flexible method-
ologies for the estimation of the similarity between records and led to the notion of an optimal
similarity function (OSF) for MMIR problems. The OSF is sought as a linear combination of
similarity functions for the common relation attributes. Solution of a suitably defined quadratic
program using training data defines the weights in the linear combination. Computational studies
using the Abt-Buy e-commerce set and publication databases comprising of research articles in
cloud computing, antennas and information retrieval areas confirm the robustness of our approach.
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Nomenclature

EM: entity matching

EVSM: extended vector space model

LSAP: linear sum assignment problem

NWI: normalized weighted intersection
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VSM: vector space model
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Chapter 1

Introduction

Given a generating set of terms, and the associated term weights, the standard Vector Space
Model (VSM) [22, 26] for information retrieval encodes documents and queries as vectors of term
weights. A similarity function measuring the closeness between documents is an integral part of
the VSM. The normalized inner product between vectors defines the cosine similarity, which is
a standard similarity choice in the VSM. Utilization of the inner product by the cosine similarity
corresponds to viewing document vectors as elements of a Hilbert space. However, in the broader
context of information analysis other non-Hilbertian structures, including set-based approaches
[14], have demonstrated significant promise.

In this report we use set-theoretic and Banach space ideas to extend the VSM with several new
classes of similarity functions. In particular, we develop extensions of the Jaccard similarity, the
Normalized Weighted Intersection (NWI) similarity, and the Dice similarities, as well as a class
of `p norm-based similarities. We show that published set-based similarity functions [14, 15] and
the standard VSM cosine similarity form a subset of the new class of similarities, corresponding
to specific choices of the term weighting and the p-values.

In so doing we effectively demonstrate the equivalence of these approaches with a properly
augmented VSM. In other words, a vector representation of documents in conjunction with a suit-
ably defined closeness metric provides an abstraction for a broad class of information retrieval
approaches. For example, the extensions of the Jaccard, the NWI, and the Dice similarities devel-
oped in this work show that the set-based approach is equivalent to a vector space model in which
the closeness between documents is measured by the former. Such an equivalence opens up in-
teresting possibilities to both analyze existing approaches and seek new strategies for information
retrieval, which we plan to examine in future work.

Figure 1.1 shows the two dominant paradigms in the IR: VSM and set-based approaches. The
purple cloud represents the developed unifying architecture that bridges both approaches.

To further demonstrate the utility of the extended VSM we conduct an entity matching study
involving several different benchmark databases. In addition to the Abt-Buy e-commerce set [1] the
study utilizes publication databases comprising of research articles in cloud computing, antennas
and information retrieval. Among other things, our results show that the new similarity functions
perform particularly well on tasks involving matching of records by keywords.

To summarize, the main contributions of this work are as follows:
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Figure 1.1: Extended Vector Space Model for information retrieval.
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• Developed consistent extensions of similarity functions that bridge the standard vector space
model with other approaches such as the set-based similarity.

• In so doing, we show that a properly augmented VSM provides an abstraction for a broad
class of information retrieval approaches.

• The performance of a representative set of the extended similarity measures is compared and
contrasted by solving an entity matching problem for two types of benchmark datasets.

The report is organized as follows. Chapter 2 presents a formal definition of the vector space
model used in the work. Section 2.1 discusses token weights and vector representation of docu-
ments, Section 2.2 defines pairwise record operation, and Section 2.3 introduces the new similarity
functions.

Chapter 3 presents application of the extended VSM to entity matching. The chapter briefly
discusses the algorithmic solution of the corresponding mathematical formulation. Section 3.1
describes design of the study, Sections 3.2 and 3.3 present the results of the entity matching study
for the scientific publication databases and the Abt-Buy dataset respectively. Our findings are
summarized in Section 3.5.

Chapter 4 focuses on the formulation and development of entity matching through optimization-
based approximation of a canonical similarity function. Section 4.1 presents a formal statement of
the entity matching problem. Section 4.2 describes our approach for derivation of the approxima-
tion of an optimal similarity function. Section 4.3 presents results and discussions for case studies
of the the optimization-based entity matching approach using the Abt-Buy e-commerce set. Our
findings and conclusions are summarized in Section 4.4.
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Chapter 2

Extended Vector Space Model (EVSM) for
Information Retrieval

This chapter defines a formal VSM for Information Retrieval (IR), which provides the foundation
for our approach. Throughout the work lower case bold face symbols denote vectors in Euclidean
space RN , i.e., r = (r1, . . . ,rN). Upper case bold symbols are reserved for matrices in RN×M. The
point-wise q-th power of a vector is the vector rq = (rq

1, . . . ,r
q
N). The point-wise, or Hadamard

[17], product of r,s ∈ RN is the vector r ◦ s = (r1s1, . . . ,rNsN) ∈ RN . Recall that a multiset is a
pair (A,µ), where A is an underlying set, and µ is a multiplicity function mapping A to the natural
numbers. We will also use the notation [a1,a2, . . . ,an] with the understanding that the sequence
may have repeating elements. The symbol | · | denotes the cardinality of a multiset.

Let T = {t1, t2, . . . , tN} be a dictionary corresponding to a given class of IR problems, i.e., a set
of N distinct index terms or keywords, which form the relevant documents. We call the elements
of T “tokens.” The corpus C(T ) of the IR problem is the set of all token multisets r = [t1, t2, . . . , tn],
n > 0, and C2(T ) denotes the collection of all multisets of elements of C(T ). The elements of
C(T ) model documents and queries, i.e., a document or a query is a finite multiset of tokens. To
simplify the terminology, we do not explicitly differentiate between documents and queries and
use the term “record” in reference to both. The elements of C2(T ) model databases (collection of
records), i.e., a database is a finite multiset of records. To distinguish the multiplicity functions of
different records we write µr(t) for the number of times the token t is encountered in record r. In
particular, µr(t) = 0 if t /∈ r. The normalized multiplicity νr(t) = µr(t)/max{1,µr(t)} defines an
indicator function with the property that νr(t) = 1 if t ∈ r and νr(t) = 0 otherwise.

2.1 Token weights and vector representation

A token weight ω(t,r,D) is a map T ×C(T )×C2(T )→ R+∪{0}, which ranks the importance of
token t in record r = [t1, . . . , tn], relative to a database D = [r1, . . . ,rm]. We require that

ω(t,r,D) =

{
α > 0 if r ∈ D and t ∈ r

0 if r /∈ D or d ∈ D and t /∈ r
(2.1.1)
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We review two examples of token weights. The inverse document frequency [22]

idf(t,D) = 1+ log
(

|D|
1+ |D(t)|

)
, (2.1.2)

where D(t) = {r ∈ D | t ∈ r} is the multiset of all records in D containing a token t ∈ T , measures
whether or not t is common or rare among the records in D. The following variant of (2.1.2)
satisfies condition (2.1.1):

ωidf(t,r,D) = idf(t,D)νr(t) . (2.1.3)

In (2.1.3) νr(t) is the indicator function of r. The normalized term frequency [22]

ωtf(t,r,D) := tf(t,r) = µr(t)/|r| (2.1.4)

is a token weight that depends on t and r but not on D. The normalization by |r| prevents a bias
towards longer records (which may have a higher term count regardless of the actual importance
of that term in the record). The tf*idf measure is the product of (2.1.2) and (2.1.4) [22, §6.2.2]:

ωtf∗idf(t,r,D) = ωtf(t,r,D) · idf(t,D) (2.1.5)

The value of the tf*idf weight is high when t has high frequency in record r, but in overall is not
common in the database D [11]. We refer to [22, p.128] for additional variants of tf-idf measures.

In the vector space model every record is represented by an element of the Euclidean space
RN , where N = |T | is the size of the dictionary, i.e., the number of unique tokens in the particular
IR context. Formally, the encoding process, which translates records into vectors, is a mapping
w : C(T ) 7→ RN . It is easy to see that every token weight that satisfies assumption (2.1.1) induces
such a mapping viz.

C(T ) 3 r 7→ r ∈ RN ; r =
(
ω(t1,r,D), . . . ,ω(tN ,r,D)

)
.

In what follows we denote the action of this mapping by w(r), i.e., r = w(r).

2.2 Definitions of pairwise record operations

In this section we introduce and study functions mapping pairs of records into non-negative real
numbers. To this end we need the `p norm

‖ r ‖p:=

(
N

∑
i=1

rp
i

)1/p

of a vector r ∈ RN . The p-norm of a record r ∈ C(T ), relative to the token weight ω , is the
composition of ‖ · ‖p and the map ω:

‖ r ‖ω,p=‖ w(r) ‖p . (2.2.1)
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We define the conjunction norm, or simply the conjunction of two records s,r ∈ C(T ) as the
Hadamard product of their encodings:

‖ r∧s ‖ω,p:=
( N

∑
i=1

w(r)p/2 ◦w(s)p/2
)1/p

. (2.2.2)

Using (2.2.2) we define the disjunction norm or simply the disjunction of s,r ∈C(T ) by

‖ s∨r ‖ω,p:=‖ s ‖ω,p + ‖ r ‖ω,p − ‖ s∧r ‖ω,p , (2.2.3)

respectively. The conjunction (2.2.2) and the disjunction (2.2.3) are mappings C(T )×C(T ) 7→
R+∪{0}. The following proposition justifies the choice of names for these operations.

Proposition 1. For every r ∈C(T ) there holds

‖ r∧r ‖ω,p=‖ r ‖ω,p and ‖ r∨r ‖ω,p=‖ r ‖ω,p . (2.2.4)

If r,s ∈C(T ) have no common tokens, then

‖ r∧s ‖ω,p= 0 and ‖ r∨s ‖ω,p=‖ r ‖ω,p + ‖ s ‖ω,p . (2.2.5)

Proof. From (2.2.2) it follows that

‖ r∧r ‖ω,p=

(
N

∑
i=1

w(r)p/2 ◦w(r)p/2

)1/p

=‖ w(r) ‖p=‖ r ‖ω,p .

The rest of (2.2.4) follows from this identity and (2.2.3). The proof of (2.2.5) is analogous. 2

Our next results establishes connections between the pairwise record operations and some no-
tions of set-based similarity. To avoid confusion we use the bar accent to differentiate between sets
and multisets of tokens. Thus, r̄ denotes a set of tokens, i.e., a collection of non-repeating elements
of T . Clearly, r̄ is a subset of T . Note that we can view r̄ as a multiset for which µr(t) = 1 for all
t ∈ r̄.

The set-based similarities [14, 18] represent records as sets of tokens and estimates the simi-
larity of records by estimating the similarity of their token sets. Given two token sets s̄, r̄ ⊂ T we
can estimate their similarity by assigning values to s̄, r̄, s̄∪ r̄ and s̄∩ r̄, and then combining these
values into a final similarity score. The set values themselves can be derived from token weights
assigned to each token in T , i.e., by using suitable token weights.

However, representation of records as sets of tokens, and the subsequent set operations, dis-
associates the tokens from their parent records. Consequently, the token weights in a set-based
similarity cannot depend on a record argument. For instance, the tokens in s̄ and s̄∩ r̄ are not aware
of their multiplicity in the original record(s), whereas the tokens in s̄∪ r̄ are not aware of who
their parent record was. This rules out application of token weights such as the tf measure (2.1.4)
because the values of µs̄, µs̄∪r̄, coincide with the values of the corresponding indicator functions
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νs̄, νs̄∪r̄, which do not reflect the true frequencies of tokens in their parent records. As a result, the
set-based approach typically uses token weights such as idf.

Assuming that ω(t,D) does not depend on r, we can extend the `1 and `2 set-norms of r̄ ⊂ T ,
defined in [14], to a general `p set-norm

‖ r̄ ‖ω,p=
(
∑
t∈r̄

ω(t,D)p
)1/p

.

The following proposition establishes that the conjunction (2.2.2) and the disjunction (2.2.3) of
records provide consistent extensions of set-based norms of intersections and unions of sets, re-
spectively, to the vector space model.

Proposition 2. Given multisets r,s ∈C(T ), let r̄, s̄⊂ T denote the sets of unique tokens in r and s,
respectively. Assume that ω̄ does not depend on r ∈C(T ) and define ω(t,r,D) := ω̄(t,D) ·νr(t).
Then,

‖ r∧s ‖ω,p=‖ r̄∩ s̄ ‖ω̄,p ; ‖ r∨s ‖ω,p=‖ r∪ s ‖ω̄,p

and ‖ r ‖ω,p=‖ r̄ ‖ω̄,p .
(2.2.6)

Proof. The assertion easily follows from definition (2.2.1) and by using the fact that ω(t,r,D) =
ω̄(t,D) whenever t ∈ D. 2

Proposition 2 enables consistent extension of set-based similarity measures to the vector space
model. The significance of this fact is that it allows us to conclude that the set-based similarity
is equivalent to a particular instance of the vector space model endowed with the definition of
the document `p norm (2.2.1), the conjunction (2.2.2), the disjunction (2.2.3) and the similarity
extensions defined in the next section.

2.3 Generalized similarity functions

A similarity measure is a mapping S : C(T )×C(T ) 7→ [0,1]. In this report we restrict attention to
a class of measures defined by the composition of the mapping w, induced by a token measure ω ,
with a vector similarity s. Succinctly, we consider

S(r,s) = s(w(r),w(s)) ∀r,s ∈C(T ) , (2.3.1)

where w : C(T ) 7→ RN and s : RN×RN 7→ [0,1].

In this section we introduce two new classes of similarity functions for the vector space model.
The first class exploits the connection between set operations and the conjunction and disjunction
functions in Proposition 2 to obtain consistent extensions of set-similarity measures, such as Jac-
card or Dice, to the vector space model. We refer to, e.g., [18] or [14] for the set-based definitions
of these measures.The second class uses the p-norm of a record to define distance-based similarity
functions.
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Extended Jaccard similarity. The Jaccard index, also known as the Jaccard similarity coeffi-
cient, is a statistic used for comparing the similarity and diversity of sample sets. Using (2.2.2),
and (2.2.3) we extend the Jaccard’s set-based definition to

Jp(r,s) :=
‖ r∧ s ‖ω,p

||r∨ s||ω,p
; p≥ 1 . (2.3.2)

Extended Normalized Weighted Intersection similarity. This similarity function is related to
the Jaccard coefficient but uses different normalization of the set intersection. Using (2.2.2), and
(2.2.3) we obtain the extension

Np(r,s) =
‖ r∧ s ‖ω,p

max{‖ r ‖ω,p;‖ s ‖ω,p}
; p≥ 1 . (2.3.3)

Extended Dice similarity. Dice’s similarity is named after Lee Raymond Dice, and is also
related to the Jaccard coefficient and the normalized weighted similarity. The difference between
the two is again in the normalization of the intersection term. The corresponding Dice’s extension
is

Dp(r,s) =
2 ‖ r∧ s ‖ω,p

‖ r ‖ω,p + ‖ s ‖ω,p
; p≥ 1 . (2.3.4)

Normalized distance similarity. This similarity is defined using the normalized `p distance
between r and s:

∆p(r,s) = 1−
‖ r− s ‖ω,p

2max{‖ r ‖ω,p,‖ s ‖ω,p}
; p≥ 1 . (2.3.5)

The `p-distances corresponding to p = 1, p = 2 and p = ∞ are often called City Block, Euclidean
and Chebyshev distance, respectively [24]. Thus, we may call ∆1(r,s), ∆2(r,s), and ∆∞(r,s), City
Block, Euclidean and Chebyshev similarity functions, respectively.

Proposition 3. Assume that r,s∈C(T ), r̄, s̄⊂ T , and ω̄ are as in Proposition 2 and let ω(t,r,D) :=
ω̄(t,D) ·νr(t). Then,

Jp(r,s) =
‖ r̄∩ s̄ ‖ω̄,p

||r̄∪ s̄||ω̄,p
,

Np(r,s) =
‖ r̄∩ s̄ ‖ω̄,p

max{‖ r̄ ‖ω̄,p,‖ s̄ ‖ω̄,p}
,

Dp(r,s) =
2 ‖ r̄∩ s̄ ‖ω̄,p

‖ r̄ ‖ω̄,p + ‖ s̄ ‖ω̄,p
.

(2.3.6)

Proof. The proof follows directly from Proposition 2. 2

This proposition confirms that (2.3.2)–(2.3.4) are consistent extensions of set-based similarity
functions to both a general p and the vector space model context. In particular, for p = 1 the
extended Jaccard, normalized weighted intersection and Dice similarities recover the functions in
[14], while for p = 2 the extended Jaccard similarity (2.3.2) recovers the Jaccard coefficient used
in [15].
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Chapter 3

Application of EVSM to Entity Matching
Problems

In this section we examine the performance of the extended VSM using two different types of
benchmark databases. In both cases we apply the extended VSM to solve an EM, or a record
linkage problem for the documents in these databases. We choose this setting because it lends itself
to a mathematically precise decision rule based on linear programming [16]. This deterministic
setting enables reproducible results, therefore reducing the ambiguities in the assessment of the
extended VSM.

Section 3.1 explains the design of the study. There, the adopted formal EM definition and the
corresponding solution strategy employed in the study are is provided. Sections 3.2–3.3 define the
benchmark databases and present the results from the EM problem for each dataset. The results
are discussed in Section 3.4.

3.1 Design of the study

In our study we adopt a formal EM definition and a solution strategy that follow the approach
of [16]. It is beyond the scope of this chapter to provide a thorough review of the existing EM
literature. Instead, we refer to the comprehensive reviews and studies in [5, 11, 25, 20, 19] and
[13] among others. Chapter 4 provides more detailed review and information.

To explain the main ideas consider two databases D1 and D2 containing records that describe
the same real world entities E using different attributes. The task is to link the records from D1 and
D2 corresponding to the same real world entity from E . The set T is the union of all unique terms
in D1 and D2. For simplicity we assume that |D1| = |D2| = M, although this is not required for
the application of the linear program approach below. Furthermore, we assume that ω is a token
weight that fulfills (2.1.1) and that S(·, ·) is a similarity function defined as in (2.3.1).

The vector space encoding of the records in D1 and D2, induced by the mapping w, is given by
the rows of the corresponding term-to-document matrices D1 and D2 with elements

D1
i j = ω(t j,ai,D2) and D2

i j = ω(t j,bi,D1) ,
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respectively, where t j ∈ T , ai ∈ D1, and bi ∈ D2. Using a similarity function S(·, ·) we define the
M×M similarity matrix S with element

Si j = S(ai,b j) ; ai ∈ D1 , b j ∈ D2 . (3.1.1)

This matrix gives the pairwise similarity between the records in D1 and and D2.

The decision rule Following [16] we match the records using a linear program. Specifically, the
records are linked by solving the following optimization problem

max
xi j

M

∑
i=1

M

∑
j=1

Si jxi j such that

xi j ∈ {0,1}, and
M

∑
j=1

xi j =
M

∑
i=1

xi j = 1; i, j = 1,2, . . . ,M.

(3.1.2)

The unit elements of the solution define the decision rule:

ai 7→ b j ∀xi j = 1 .

The program (3.1.2) is Linear Sum Assignment Problem (LSAP) [6, p.74]. The solution of (3.1.2)
maximizes the “total similarity” of the assignments between the records in D1 and D2. The paper
[16] is the first example of using (3.1.2) for record linkage. For more recent applications to entity
matching we refer to [10] or [8]. In our study we solve (3.1.2) using the classical Hungarian
algorithm [21]. We refer to [4] for another possible ways to solve the LSAP.

Evaluation of the performance To evaluate the performance of the decision rule we assume that
D1 and D2 describe the same set of M distinct entities, i.e., there exists a perfect assignment rule
ai 7→ b j between the records, which is a bijection D1 7→ D2. Suppose that {xi j} is the assignment
rule defined by the solution of the LSAP. The unit elements xi j = 1 of this rule correspond to two
possible outcomes: true positive (TP), or false positive (FP). The precision of the assignment is
then defined as

P =
|T P|

|T P|+ |FP|
,

where | · | denotes the number of outcomes of each type. In our study we report the error of the
assignment, in percent, defined as

E[%] = (1−P)×100 . (3.1.3)

Note that because we use a setting that admits only two possible outcomes, the precision P is
identical with the accuracy

A =
|T P|+ |T N|

|T P|+ |T N|+ |FP|+ |FN|
,

where TN and FN stand for true negative and false negative respectively.
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Title Keywords Abstract Doc ID

Antennas and propagation

Simplified Cross-
Polarized Multi-
Antenna System for
Radio Relay Trans-
mission in Wireless
Backhaul

“Cross-polarized
array antenna; Adap-
tive antenna control;
Radio relay trans-
mission; Wireless
backhaul; Direc-
tional intermittent
packet transmit (lPT)
forwarding”

Wireless backhaul systems have been considered as a promising candidate of be-
yond 3G wireless broadband system for mobile communications. The achievable
transmission performance over radio relay channel depends on antenna directiv-
ity and radiation patterns of each antenna element. . . . In this report, we pro-
pose a simple method to extend the existing single antenna relay node based on
IEEES02.11a to multi-antenna system, where a cross polarized multi-antenna is
applied to the existing relay nodes as external equipment. . . . Simulation results
ensure that the proposed multiantenna system with highly efficient packet for-
warding protocol, called Intermittent Periodic Transmit (IPT), improves through-
put performance of the radio relay transmission in wireless backhaul as compared
with conventional omni-directional antenna system.

06206211

Cloud computing

The Security of
Cloud Computing
System enabled by
Trusted Computing
Technology

cloud computing;
trusted computing
platform; trusted
computing; trusted
service

Cloud computing provides people the way to share distributed resources and ser-
vices that belong to different organizations or sites. . . . We propose a model
system in which cloud computing system is combined with trusted computing
platform with trusted platform module. In this model, some important security
services, including authentication, confidentiality and integrity, are provided in
cloud computing system.

05555234

Data mining

Toward Intelligent
Assistance for a
Data Mining Pro-
cess: An Ontology-
Based Approach
for Cost-Sensitive
Classification

cost-sensitive learn-
ing, data mining,
data mining process,
intelligent assis-
tants, knowledge
discovery, knowledge
discovery process,
machine learning,
metalearning

A data mining (DM) process involves multiple stages. A simple, but typical,
process might include preprocessing data, applying a data mining algorithm, and
post processing the mining results. There are many possible choices for each
stage, and only some combinations are valid. ....We use the prototype to show
that an IDA can indeed provide useful enumerations and effective rankings in the
context of simple classification processes. We discuss how an IDA could be an
important tool for knowledge sharing among a team of data miners. Finally, we
illustrate the claims with a demonstration of cost-sensitive classification using a
more complicated process and data from the 1998 KDDCUP competition.

01401890

Table 3.1: Representative records from the antennas, cloud computing and data mining databases.

3.2 Application to scientific publication databases

In the first part of our study we apply the methodology presented in Section 3.1 to solve the EM
problem for three different sets of scientific publications. We construct the databases D1 and D2

as follows. A set of M randomly selected published papers from a given scientific area defines
the set of the “real world” entities E . The database D1 is defined by extracting the “keywords”
attribute from the papers, whereas D2 contains the “abstract” attribute. Thus, the objective of the
EM problem is to match the keywords and the abstract belonging to the same article. Note, that this
setting can be also interpreted as a search by keyword and so, our study provides some information
about the performance of the VSM in an information retrieval context. In this context D1 represents
a set of queries and D2 is a set of documents represented by their abstracts.

Using the IEEE Xplore Digital Library we obtained three sets1 of 100 articles each, in the
areas of cloud computing, antennas and propagation and information retrieval. From each article
we generated a record comprising of 4 attributes: title, keywords, abstract and document ID. Table
3.1 shows representative records obtained from the first two sets of papers. Because the records
identify the papers uniquely, they represent a proxy for the set E of real world entities. For each set
we define E , D1 and D2 by first taking a subset of 50 articles and then taking all 100 articles. Thus,

1The datasets for this study, except for the full text articles, are available upon request from the authors.
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Dataset Set 1 (M=50) Set 2 (M=100)
S(·, ·) ω → tf*idf idf tf*idf idf
cos 6 8 3 4
J1 4 10 2 7
N1 4 10 2 7
D1 4 10 2 7
J2 6 8 3 4
N2 6 8 3 4
D2 6 8 3 4
∆1 8 8 28 4
∆2 12 8 6 6
∆5 30 14 25 18

Table 3.2: Error in [%] in the solution of the entity matching problem for the extended set-based
similarity functions comparing the tf*idf with idf token weights for the antenna database. Errors
corresponding to the standard cosine similarity are in boldface. Errors corresponding to standard
set-based similarity are in italics.

we obtain two databases per subject area, corresponding to M = 50 and M = 100, respectively. We
refer to these databases as Set 1 and Set 2, respectively.

The study uses a total of 18 different similarities S(·, ·) corresponding to the Jaccard (2.3.2),
NWI (2.3.3), and Dice (2.3.4) with p = 1,2 and the token weight (2.1.3) and (2.1.5), and the
Normalized distance (2.3.5) with p = 1,2,5 with the same two token weights. For every S(·, ·)
we compute the similarity matrix (3.1.1) for Set 1 and Set 2 and solve the corresponding LSAP.
The errors are estimated according to (3.1.3). The cosine similarity with token measures (2.1.3)
and (2.1.5) provides the corresponding reference error. Note that the Jaccard (2.3.2), NWI (2.3.3)
and Dice (2.3.4) similarities with p = 1 and the token weight (2.1.3) are equivalent to the set
based similarities [14], which enables comparison between the extended VSM and the set-based
approach.

Tables 3.2, 3.3, and 3.4 summarize the error data for each dataset and similarity. Section 3.4
compares and contrasts these results with the results obtained using the Abt-Buy database, and
draws conclusions.

3.3 Application to the Abt-Buy e-commerce database

The second part of the study applies the methodology in Section 3.1 to the Abt-Buy benchmark
dataset [1]. This e-commerce dataset uses two different relations, “Abt” and “Buy”, respectively,
to describe the “real world” entities E . The entities are specific consumer products.

The “Abt” and “Buy” relations include attributes for a name, description, price, identification
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Dataset Set 1 (M=50) Set 2 (M=100)
S(·, ·) ω → tf*idf idf tf*idf idf
cos 24 26 15 24
J1 26 34 17 26
N1 22 34 19 29
D1 26 30 17 26
J2 22 30 17 26
N2 22 24 16 25
D2 26 30 17 24
∆1 46 26 46 26
∆2 22 28 19 25
∆5 22 32 31 31

Table 3.3: Error in [%] in the solution of the entity matching problem for the extended set-based
similarity functions comparing the tf*idf with idf token weights for the cloud computing database.
Errors corresponding to the standard cosine similarity are in boldface. Errors corresponding to
standard set-based similarity are in italics.

number and a manufacturer; see Table 4.1. The Abt-Buy provides the exact matches between the
record pairs, which makes it appropriate for entity matching studies. We base the entity matching
on the “name” attribute, which gives a capsule summary of the consumer product (entity). The
records from “Abt” define D1 and the records from “Buy” define D2. The set T is the union of all
unique terms in the “name” field of “Abt” and “Buy”.

In the study we use four nested subsets of the Abt-Buy database. These sets, termed Set 1, 2,3
and 4 comprise of 50, 100, 150 and 200 randomly selected records. To ensure that the sets are
nested, we define them recursively by first selecting 200 random records for Set 4, then selecting
randomly 150 of these records for Set 3 and so on. For each set we proceed to compute the
similarity matrix using the same 18 similarities as in Section 3.2, then solve the LSAP problem
and compute the error. As before, the cosine similarity with token measures (2.1.3) and (2.1.5)
provides the corresponding reference error, while the Jaccard (2.3.2), NWI (2.3.3) and Dice (2.3.4)
similarities with p = 1 and the token weight (2.1.3) provide for a comparison with the set-based
approach. The results from the study are presented and Table 3.6 and discussed in the next section.

3.4 Discussion of results

In this section we present our observations by data sets and then proceed to draw the conclusions.

Scientific publications domain: antenna database The results in Table 3.2 show that the best-
performing similarities for this database are Jaccard (2.3.2), NWI (2.3.3), and Dice (2.3.4) with
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Dataset Set 1 (M=50) Set 2 (M=100)
S(·, ·) ω → tf*idf idf tf*idf idf
cos 4 4 10 5
J1 4 8 4 4
N1 4 8 5 4
D1 4 8 4 7
J2 4 4 8 7
N2 4 4 8 7
D2 4 4 8 7
∆1 24 0 27 0
∆2 4 0 8 4
∆5 12 0 14 14

Table 3.4: Error in [%] in the solution of the entity matching problem for the extended set-based
similarity functions comparing the tf*idf with idf token weights for the data mining databases. Errors
corresponding to the standard cosine similarity are in boldface. Errors corresponding to standard
set-based similarity are in italics.

Relation Name Description Price ID Manuf.

BUY Bose Acoustimass 5 Series
III Speaker System - 21725

2.1-channel - Black 359.00 202812620 BOSE

ABT Bose Acoustimass 5 Se-
ries III Speaker System -
AM53BK

Bose Acoustimass 5 Series III Speaker System - AM53BK/
2 Dual Cube Speakers With Two 2-1/2’ Wide-range Drivers
In Each Speaker/ Powerful Bass Module With Two 5-1/2’
Woofers/ 200 Watts Max Power/ Black Finish

399.00 580 —

Table 3.5: Two records from the Abt-Buy e-commerce set corresponding to the same real world
entity.

p = 1 and the token weight (2.1.5). Changing the token weight from (2.1.5) to (2.1.3) increases
the error in the EM solution by a factor of 2.5 for the first dataset (M=50) and by a factor of 3.5
for the second dataset (M=100). Recall that the combination of J1, N1, and D1 with the token
measure (2.1.3) is equivalent to the set-based similarities [14]. Thus, for the antenna database, the
extensions of the set-based similarities do outperform significantly their prototypes, and the the
standard VSM cosine similarity.

Furthermore, the data for J2, N2, and D2 shows that changing the norm index from p = 1 to
p = 2 reduces the dependence on the token weight but also increases the minimal error in the EM
solution. The increase is less pronounced for the larger data set. We also note that the errors of J2,
N2, and D2 match the errors of the standard cosine similarity. This could be attributed to the fact
that all these measures employ Hilbertian metrics, whereas J1, N1, and D1 rely on a Banach space
norm.

Finally, we observe that for this particular database performance of the normalized distance
similarities varies widely. Nonetheless, there are two noticeable trends: the errors tend to increase
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Dataset Set 1 (M=50) Set 2 (M=100) Set 3 (M=150) Set 4 (M=200)
S(·, ·) ω → tf*idf idf tf*idf idf tf*idf idf tf*idf idf

cos 0 0 7 7 7.33 8.66 7.50 8.00
J1 0 0 9 9 8.67 7.33 8.5 8.00
N1 0 0 7 9 7.33 7.33 8.50 8.50
D1 0 0 9 9 8.67 7.33 8.00 8.00
J2 0 0 7 7 7.33 7 7.50 8.00
N2 0 0 6 7 7.33 7 7.50 8.50
D2 0 0 7 7 7.33 7 7.50 7.00
∆1 0 0 10 9 8 10.67 6.50 10.00
∆2 0 0 12 10 12.67 11.30 13.00 12.50
∆5 12 0 39 24 38 22.66 38 22.50

Table 3.6: Error in [%] in the solution of the entity matching problem for the extended set-based
similarity functions comparing the tf*idf with idf token weights for the Abt-Buy database. Errors
corresponding to the standard cosine similarity are in boldface. Errors corresponding to standard
set-based similarity are in italics.

with the norm index p, and the errors with the (2.1.3) token weight tend to be better than the errors
with the (2.1.5) token weight. Note that the latter is opposite to what we observe with the rest of
the similarities.

Scientific publications domain: cloud computing database The errors in Table 3.3 reveal that
for this database all similarities, except for the normalized distance ones, perform in a similar
fashion. As in the antenna database case, an overall improvement in the errors is observed when
using the (2.1.5) token weight. While the improvement factors are not as large as in the antenna
database, they remain significant. We also observe that for this data set the extended similarities
perform comparably to the standard cosine similarity. They yield slightly better results for the first
set (M=50) and slightly worse results for the second set (M=100).

The performance of the normalized distance similarities varies quite widely in this case and
the trends in their behavior are less obvious. Nonetheless, we see a smaller variation in the error
values when these similarities are used with the (2.1.3) token weight. We can view this behavior
as a different manifestation of the second trend observed with the antenna database.

Scientific publications domain: data mining database The results in Table 3.4 show that, to
a degree, the similarities reprise their performance from the antenna set. In the case M = 50 the
error with the J1, N1, and D1 doubles when the tf*idf token weight (2.1.5) is replaced by idf (2.1.3).
For the same case J2, N2, D2 show no dependence on the token weight.

Moving on to the second case (M=100) we see that both J1, N1, and D1 and J2, N2, D2 are

29



essentially insensitive to the token weight. In contrast, the error with the cosine similarity increases
by a factor of 2 when the token weight is switched from idf to tf*idf. Note that this pattern is opposite
to what we have so far consistently observed with all but the normalized distance similarities.

The error data for the normalized distance similarities shows the emergence of the trend already
observed in the antenna and the cloud computing databases, namely, the improved performance of
these functions with the (2.1.3) token weight. For instance, using ∆1, ∆2, and ∆5 with the (2.1.3)
token weight allows the LSAP solution to recover the perfect assignment in the case of the first
set (M=50). For M=100 the perfect assignment is recovered by ∆1 with the same token weight. In
contrast, using the (2.1.5) token weight, the errors of ∆1 and ∆5 significantly exceed those of the
rest of the similarities.

E-commerce domain: Abt-Buy database Compared with the scientific publication databases,
the results in Table 4.1 reveal a substantially different pattern of behavior for all but the normalized
distance similarities. Most notably, for all four sets derived from the Abt-Buy database, the perfor-
mance of the Jaccard (2.3.2), NWI (2.3.3) and Dice (2.3.4) similarities is essentially independent
from the norm index p and the choice of token weight. Moreover, the errors of these similarities
are close to or identical to the cosine errors.

Insofar as the normalized distance similarities are concerned, the trend for the error to increase
with the norm index, observed in the antenna database, emerges here as well with ∆1 yielding the
smallest and ∆5 - the largest error in all four cases. However, the second trend, namely, better
performance of ∆p with the (2.1.3) token weight, is not strongly present in this study. Below we
we evaluate these observations and draw some summary conclusions.

Summary The first conclusion that can be drawn from the study analysis is that the error in the
solution of the EM problem for all three scientific publication databases correlates with the choice
of token weight, whereas the error in the EM solution for the Abt-Buy e-commerce database does
not correlate significantly with this choice.

In particular, for the Jaccard (2.3.2), NWI (2.3.3), and Dice (2.3.4) similarities the trend is for
the error to increase when (2.1.5) is replaced by (2.1.3). This trend can be explained by comparing
the structure of the records in the scientific publication databases on the one hand and the Abt-
Buy database on the other hand. In particular, the “keyword” attribute in the former tends to
include a large number of records with repeating terms. For example, the record cloud computing,
trusted computing platform; trusted computing; trusted service; see Table 3.1, contains multiple
repetitions of the terms “computing,” and “trusted,” which appear in stable combinations such as
“trusted computing” and “trusted service.” The abstract record of the article will likely contain the
same combinations of terms, and so, the term frequency becomes an important characteristic of
the record, which is not accounted for by the idf token weight.

Remark 1. We note that this reasoning does not apply to the ∆p similarities, which generally
exhibit the opposite trend of decreasing errors with the idf token weight for the three scientific
publication databases. While at this stage of our study an explanation of this behavior remains an
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open question, it is clear that the larger errors and the more erratic behavior of these similarities
requires extra caution in their practical application.

Consider now the Abt-Buy database. The “name” attribute in the Abt-Buy contains records
whose structure resembles that of natural language sentences. As a rule, such records contain much
fewer repeating words and their lengths do not vary widely. For such records the term frequency
tends to have less discriminating power because the tf values are close. As a result, for such records
the token weight (2.1.5) differs from (2.1.3) by an almost constant factor. Consequently, both token
weights will generate essentially equivalent similarity matrices, which in turn would lead to almost
identical solutions of the EM problem. The results in Table 3.6 corroborate this conclusion.

3.5 Conclusions

In this chapter we formulated a systematic approach for extension of the VSM for information
retrieval by new classes of similarity measures. The resulting EVSM provides an abstraction that
includes other approaches such as set-based similarity.

We investigated the EVSM in the context of an entity matching problem using two different
types of databases. Comparative error analysis of a representative set of similarity measures re-
veals that the extensions of the set-based similarities, obtained by using the tf*idf token weight,
generally outperform their prototypes for records that exhibit the characteristics of “keywords,”
i.e., records with multiple repeating terms. Our analysis shows that the extended similarities and
their prototypes are essentially equivalent for records whose structure resembles that of natural
language sentences.

Our studies show that the performance of a given similarity measure varies with the structure of
the records, the token weight and the underlying metric structure of the vector space. Availability of
a systematic approach to the construction of similarities opens up a possibility to seek a similarity
that is optimized, in a suitable sense, for a given dataset. Next chapter of the report focusses on
approaches for defining optimal superposition similarity function.

31



32



Chapter 4

Entity Matching through an
Optimization-based Approximation of a
Canonical Similarity Function

In this chapter we focus on EM instances that map into a Linear Sum Assignment Problem (LSAP).
Transformation of such EM problems into LSAP requires computation of pairwise weights be-
tween relations. Typically, conditional probabilities for match between relations attributes define
these weights. Training-based EM frameworks use the training data to estimate the probabilities.
However, because construction of training sets often requires manual record linking, their size may
not be large enough for accurate probability estimates. To mitigate this problem, we use the train-
ing data to approximate an optimal similarity function for the given relation pair. We seek this
function as a linear combination of similarity functions for the common relation attributes. Solu-
tion of a suitably defined quadratic program (QP) defines the weights in the linear combination.
Computational studies using the ABT-Buy database confirm the robustness of our approach.

Databases represent real-world entities as records with flat or hierarchical data structure. The
record generating process maps the characteristics of a real-world entity into attributes that can be
represented and stored on digital computers. The mapping of entities into records can introduce
errors, depends on the application context and can differ from database to database. As a result,
the same real-world entity can generate non-identical records.

Deciding whether or not non-identical records refer to the same real-world entity is an essential
task for information management in a wide spectrum of applications ranging from health care to
law enforcement. It is telling that across disciplines the task itself is known under a multiplicity of
names such as entity matching, entity resolution, entity reconciliation, record linkage, and record
de-duplication, to name a few. In this work we adopt the term Entity Matching (EM) to refer both
to the broader class of problems in this field as well as to the specific instance that we study.

Generally, there’s a consensus that [23] is the first study of EM in a probabilistic setting,
whereas [12] abstracted that setting to a formal probabilistic model for record linkage. The abun-
dance of the current EM literature reflects the diversity of viewpoints and approaches coming from
different fields of study. On the one end of the spectrum are the probabilistic approaches, which
solve the EM problem by estimating the probability of a match between two records see, e.g.,
[23, 16, 12, 13, 10]. On the other end are approaches that abstract EM to a generic computation
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problem on a set of records in terms of abstract match, merge and link functions [2, 5]. For in-
stance, given “black-box” match and merge operations along with a partial order on records, [2]
defines EM as the task of finding the largest subset D′ of the merge closure D̄ of a document set D
that also dominates D̄.

However, a comprehensive review of all extant approaches is beyond the scope of this work.
Instead, we limit ourselves to a brief summary of the work relevant to this report and refer to the
excellent surveys [25, 19, 20, 13, 5, 11, 13], and the references therein for more information about
past and current EM research.

In what follows we focus on EM for relational records with flat data structures, comprised of
multiple attributes, i.e., the records are tuples of attribute values. Our main goal is the formulation
of robust and flexible algorithms for EM which can adapt to varied application contexts. To this
end, we adopt a mathematical abstraction of the EM problem which facilitates this objective by
narrowing down the algorithmic design space. Specifically, we interpret EM as the combinatorial
optimization problem of finding the maximum weight matching in a weighted bipartite graph con-
necting records from two databases1. In other words, we map EM to a Linear Sum Assignment
Problem (LSAP) [6]. This choice reflects our focus on matching rather than merging records. The
latter is an equally important and complex task, which is beyond the scope of this work.

Casting EM problems into LSAP offers valuable practical and theoretical advantages. There
are efficient algorithms that solve LSAP in polynomial time [7], such as the Auction algorithm
[3, 4] and the classical Hungarian algorithm [21]. Availability of such algorithms allows us to
reduce the task of solving the EM problem to the task of computing weights for the edges of the
bipartite graph connecting the records from the databases. This in turn allows us to focus efforts on
the development of robust and flexible methodologies for the estimation of the similarity between
records that work across multiple application domains. Last but not least, LSAP tends to perform
better than matching schemes based on greedy-type algorithms because it optimizes the assignment
globally over the complete set of records [25].

To the best of our knowledge, the first application of LSAP in the context of EM appears in
[16]. This work considers a two-stage matching algorithm which combines LSAP with the match-
ing techniques from [12]. Solution of an LSAP at the first stage provides an optimal assignment
between the two sets of records. The second stage uses the optimal decision procedure from [12]
to decide whether an assignment is a match. The paper defines the weights for the LSAP prob-
lem by summing up individual weights for agreement or disagreement of the record’s attributes.
Computation of the latter follows along the lines in [12].

The probabilistic decision model in [10] is another example of EM solution by LSAP. The
weights in this model account for the cost (to a decision maker) of a false negative (type-I error)
or a false positive (type-II error) result. This is different from [16] where the LSAP weights do not
include such costs. Another difference is that the model in [10] is a single stage procedure which
performs the match solely based on the LSAP solution. The distance-based approach in [8] uses
the same LSAP setting but defines the weights as a linear combination of the expected distances

1A practical example of such EM is the problem of record linkage between different versions of the same customer
or product lists, maintained by different departments of an organization.
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between the attribute values. Expert ranking of the predictive power of the attributes is converted
to coefficients for these expected distances. A further development of this approach appears in [9],
which uses logistic regression to estimate the probabilities required to compute the LSAP weights.

Accuracy of probabilistic EM models necessarily depends on the accuracy of the conditional
probability estimates involved in the model and by extension - on the size of the training sets
available for the estimation of these probabilities. Because construction of training sets typically
requires manual record linking, their size may not be large enough to achieve satisfactory results.
This observation is the primary motivation for the distance-based approach in [8]. However, esti-
mation of the expected distance in [8] relies on expert knowledge to asses the predictive power of
various attributes and is prone to subjective bias. In either case the robustness of the EM solution
can suffer.

The chapter is organized as follows. Section 4.1 presents a formal statement of the entity
matching problem. Section 4.2 describes our approach for derivation of the approximation of an
optimal similarity function. Section 4.3 presents results and discussions for case studies of the the
optimization-based entity matching approach using the Abt-Buy e-commerce set. Our findings are
summarized in Section 4.4.

4.1 Statement of the entity matching problem

A comprehensive entity matching process involves multiple steps, such as data preparation, data
blocking, and matching and merging of records [11]. This works focuses solely on the task of
matching records from two different relations, assuming that all necessary data preparation steps
have already been performed. In so doing we obtain simple, yet sufficiently representative mathe-
matical formalization of the EM problem which enables effective algorithm development.

We assume that there is a countable set E of real world entities el and a finite collection A =
{A1, . . . ,AK} of attribute spaces. The attribute values ai,l ∈ Ai encode distinct characteristics of the
entities el ∈ E. A relation is a pair {ρ,R}, where R = Ai1 ×Ai2 ×·· ·×AiM is a tensor product of
attribute spaces and ρ : E 7→ R is a mapping that represents the record-generating process. The
records are tuples of attribute values, i.e.,

R 3 rl = ρ(el) = (ai1,l, . . . ,aiM ,l) ∀el ∈ E .

In what follows {ρk,Rk}, k= 1,2 are two relations that share a non-empty set of attributes {A j1, . . . ,A jN},
N ≤ K. Our approach uses only the common attributes between the relations. Thus, without loss
of generality {A j1, . . . ,A jN}= {A1, . . . ,AN} and R1 = R2 = A1× . . .×AN . The record of el ∈ E in
relation {ρk,Rk} is the tuple

ρk(el) = (ak
1,l, . . . ,a

k
N,l) = rk,l ∈ Rk ∀el ∈ E .

We assume that rk,l contains all the information about el in the relation {ρk,Rk}. In other words,
there are no separate classes of records that describe relationships between entities [2].
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A similarity function S : R1 × R2 7→ [0,1] compares the records. The value of S(l,m) :=
S(r1,l,r2,m) gives the level of “similarity” between r1,l ∈ R1 and r2,m ∈ R2.

We formulate the EM problem for a subset D ⊂ E with a finite dimension L = |D|. The order
in which ρk maps the entities from D into records in Rk is a permutation of the index set IL =
{1,2, . . . ,L}. Without loss of generality this permutation is the identity for R1 and some non-trivial
σ for R2. Succinctly,

R1(D) = {r1,l = ρ1(el) |el ∈ D}
R2(D) = {r2,l = ρ2(eσ(l)) |eσ(l) ∈ D}

(4.1.1)

The subset Rk(D) ⊂ Rk contains the records corresponding to D in the relation {ρk,Rk}. An as-
signment function is bijection β : R1(D) 7→ R2(D). The map β (r1,l) = r2,m defines a permutation
β (l) of L, i.e., β (r1,l) = r2,β (l). Given a similarity function S, the total similarity between R1(D)
and R2(D) relative to β is

S(β ,D) =
L

∑
l=1

S(r1,l,β (r1,l)) =
L

∑
l=1

S(l,β (l)) .

Definition 1. (Entity Matching Problem) We are given a finite set of entities D ⊂ E and (4.1.1)
defines the corresponding records Rk(D)⊂ Rk, k = 1,2. Given a similarity function S, the solution
of the entity matching problem is an assignment function β : R1(D) 7→ R2(D), which maximizes the
total similarity S(β ,D) between the records.

Dependence of the EM solution on a similarity function and the requirement to maximize the
total similarity between the records are the two key aspects of this definition. The former accounts
for the fact that the quality of the entity matching process depends on the quality of the measures,
which quantify the likeliness of the records. The latter reflects the interpretation of EM in this
work as a combinatorial optimization problem. Indeed, let S be the L×L matrix with element

Si j = S(i, j); r1,i ∈ R1(D); r2, j ∈ R2(D) . (4.1.2)

Then, Definition 1 is equivalent to the linear program

max
xi j

L

∑
i=1

L

∑
j=1

Si jxi j such that xi j ∈ {0,1}

L

∑
j=1

xi j =
L

∑
i=1

xi j = 1; i, j = 1,2, . . . ,L
(4.1.3)

The program (4.1.3) is Linear Sum Assignment Problem (LSAP) [6, p.74]. The unit elements
xil jl = 1 of an optimal solution {xi j} give the assignments r1,il → r2, jl that maximize the to-
tal similarity S(β ,D). The corresponding permutation β (il) = jl defines an assignment function
β (r1,il) = r2, jl , which solves the EM problem.

The record r2,l = ρ2(eσ(l)), which implies β (r1,l) = r2,β (l) = ρ2(eσ◦β (l)). From r1,l = ρ1(el),
it follows that r1,l and r2,β (l) correspond to the same entity iff β = σ−1. We call σ−1 the true
assignment function. Because the EM solution β depends on the similarity function S in general
β 6= σ−1. This prompts the following concept.
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Definition 2. A similarity function S : R1×R2 7→ [0,1] is optimal for an entity set D, |D|= L if for
any permutation σ of the index set IL, the LSAP (3.1.2) has a unique solution β = σ−1.

The precision, recall and accuracy of an EM solution β are

P(β ) =
tp

tp + fp
; R(β ) =

tp

tp + fn

and
A(β ) =

tp + tn
tp + fp + tn + fn

,

respectively. Where tp, tn, fp and fn are the numbers of true positive, true negative, false positive
and false negative links between the records.

Proposition 4.1.1. If S is an optimal similarity function for D, then P(β ) = R(β ) = A(β ) = 1.

This results justifies the term ”optimal” similarity function, and the next one provides a simple
sufficient condition for optimality of S.

Proposition 4.1.2. The condition

S(l,σ−1(l))> S(l,k) ; k 6= σ
−1(l) (4.1.4)

is sufficient for S : R1×R2 7→ [0,1] to be an optimal similarity function for D.

Proof. A similarity function S is optimal if and only if the objective of (3.1.2) has a strict
maximum at σ−1:

S(σ−1,D)> S(α,D) ∀α 6= σ
−1 . (4.1.5)

We prove that (4.1.4) implies (4.1.5). Let α 6= σ−1 be arbitrary permutation of IL. There exists at
least one pair of indices p,q ∈ IL such that p 6= q, α(p) = σ−1(q), α(q) = σ−1(p), and

S(α,D) =
L

∑
i=1,i6=p,q

S(i,α(i))+S(p,α(p))+S(q,α(q))

<
L

∑
i=1

S(i,σ−1(i)) = S(σ−1,D) .

This proves the proposition. 2

4.2 Approximation of an optimal similarity function

While in theory an optimal similarity function allows (3.1.2) to recover the true assignment β =
σ−1, it is unlikely that such a function will be readily available in practice. Accordingly, we
propose to develop an approximation using the canonical similarity function

S(ρ1(ep),ρ2(eq)) = S(r1,p,r2,σ−1(q)) = δp,q (4.2.1)
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where δp,q is the Kronecker delta, as a template.

To this end we assume that there is a finite set of entities Ē ⊂ E, |Ē|= L̄, with records Rk(Ē),
k = 1,2 for which we know the true assignment function σ̄−1. We refer to Rk(Ē) as the training
set. Furthermore, we assume that the common attribute spaces Ai have collections of similarity
functions

si j : Ai×Ai 7→ [0,1]; i = 1, ...,N; j = 1, ...,Ki .

which extend to maps R1×R2 7→ [0,1] viz.

Si j(r1,k,r2,l) := si j(a1
i,k,a

2
i,l)

We approximate (4.2.1) by a convex combination of these similarity functions:

S̄ =
N

∑
i=1

Ki

∑
j=1

yi jSi j; ∑
i, j

yi j = 1; 0≤ yi j ≤ 1. (4.2.2)

We use the training set {R1(Ē),R2(Ē)} to determine the coefficients yi j. The true assignment for
this set is σ̄−1. Consequently, to approximate (4.2.1) by (4.2.2) we require

S̄(p,q) =

{
1 for q = σ̄−1(p)

0 for q 6= σ̄−1(p)
(4.2.3)

for p,q = 1, . . . , L̄. Let K̄ = ∑
N
i=1 Ki, the number of attribute similarity functions. Conditions

(4.2.3) define a L̄2× K̄ system of algebraic equations S̄y = d where y ∈RK̄ is a vector of unknown
coefficients, d ∈ RL̄2

is the vector

di =

{
1 if i≤ L̄
0 if i > L̄

and S̄∈RL̄2×K̄ is a matrix of coefficients. We ask that L̄2 > K̄, which usually holds in most practical
cases. To find the coefficients we solve the constrained optimization problem

min
d
‖S̄y−d‖p subject to

K̄

∑
i=1

yi = 1; 0≤ yi ≤ 1.
(4.2.4)

In summary, the optimization-based approach for entity matching comprises of three steps. At the
first “training” step, we approximate the canonical similarity function using a given set of training
records. At the second step we use the approximate similarity function to compute the coefficients
Si j of the LSAP formulation (3.1.2). Solution of this combinatorial optimization problem at the
third step provides the solution of the entity matching problem.

4.3 Application to Abt-Buy e-commerce set

We test and study the optimization-based entity matching approach using the Abt-Buy e-commerce
set [1]. The relations in the Abt-Buy involve five attributes {A1,A2,A3,A4,A5}, where A1 is a name,

38



Table 4.1: Two records from the Abt-Buy e-commerce set corresponding to the same real world
entity.

Relation A1 A2 A3 A4 A5

BUY Bose Acoustimass 5 Series
III Speaker System - 21725

2.1-channel - Black 359.00 202812620 BOSE

ABT Bose Acoustimass 5 Se-
ries III Speaker System -
AM53BK

Bose Acoustimass 5 Series III Speaker System - AM53BK/
2 Dual Cube Speakers With Two 2-1/2’ Wide-range Drivers
In Each Speaker/ Powerful Bass Module With Two 5-1/2’
Woofers/ 200 Watts Max Power/ Black Finish

399.00 580 —

A2 is a description, A3 is a price. A4 is an identification number, and A5 is a manufacturer. The
attributes of the “Buy” and “Abt” relations are A1×A2×A3×A4×A5 and A1×A2×A3×A4,
respectively. Table 4.1 shows an example of ”Buy” and ”Abt” records corresponding to the same
real world entity.

For the application of the optimization-based EM approach we use only the first three attributes,
i.e., we set R1 = R2 = A1×A2×A3. Let C1 and C2 be the corpora of the name and description
fields in the Abt-Buy set and D1, D2 – the corresponding dictionaries, i.e, the sets of distinct words
occurring in each corpus. We identify the attribute spaces for the name and description fields in
Abt-Buy with the respective corpora, i.e., A1 =C1, and A2 =C2. An obvious choice for A4 is the
set of non-negative real numbers. Using the notation from Section 4.1 the records in Rk have the
form rk,l = {a1,l,a2,l,a3,l}, where a1,l and a2,l are “bags of words” and a3,l is a non-negative real
number.

Our approach consists of two sages: training and testing stages. In the training stage, we
use training sets to estimate the weights for the optimal superposition similarity measure. In the
testing stage the weights are applied to the same set of metrics used to estimate the weights and
the resulting optimal similarity superposition measure is applied to a testing set, and errors are
calculated. In the study we use the four nested subsets of the Abt-Buy database described in
Section 3.3 for training sets. These sets, termed Set 1, 2, 3 and 4 comprise of 50, 100, 150 and
200 randomly selected records respectively. To ensure that the sets are nested, we define them
recursively by first selecting 200 random records for Set 4, then selecting randomly 150 of these
records for Set 3 and so on.

For each set we proceed to compute the weights for the optimal similarity matrix using different
subsets of the generalized similarities metrics as defined in Section 3.2 . Then, we solve the LSAP
problem and compute the training error. In the testing stage, we apply the weights to define the
optimal superposition similarity measure and apply the measure to a testing set consisting of 500
randomly selected pairs of records. The solution the LSAP problem is then used to calculate the
accuracy with the EM performed for the testing set. The records in the testing set are selected
randomly but in a way such that they do not include elements from the training sets.

As in the previous studies, the cosine similarity with token measures (2.1.3) and (2.1.5) pro-
vides the corresponding reference error, while the Jaccard (2.3.2), NWI (2.3.3) and Dice (2.3.4)
similarities with p = 1 and the token weight (2.1.3) provide for a comparison with the set-based
approach.
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Dataset Set 1 (M=50) Set 2 (M=100) Set 3 (M=150) Set 4 (M=200)
S(·, ·) ω → tf*idf idf tf*idf idf tf*idf idf tf*idf idf

cos 44 52 52 54 59.33 60.67 59 62
J1 52 48 51 54 60.00 60.67 61.00 61.50
N1 48 50 50 54 59.33 62.67 60.00 64
D1 52 48 51 54 58.67 60.67 60.00 62
J2 46 48 52 56 58.67 60.67 59.50 62
N2 48 48 52 55 60.00 62 60 64.50
D2 46 52 52 56 60.00 60.67 60.00 63
∆1 64 52 64 56 70.67 64.67 71.50 64
∆2 48 52 52 56 62.00 64 62.50 64
∆5 48 50 53 56 64.00 62.67 62.50 62

Table 4.2: Error in [%] in the solution of the entity matching problem for the descriptor attribute,
using extended set-based similarity functions and comparing the tf*idf with idf token weights for the
Abt-Buy database. Errors corresponding to the standard cosine similarity are in boldface. Errors
corresponding to standard set-based similarity are in italics.

4.3.1 Approximation of a canonical similarity function

Because assignment of identification numbers is an ad hoc process, the attribute values in A4 and
A5 have limited value for comparing records. For this reason we do not consider A4−5 in the
approximation of the optimal similarity function. For the “price” attribute we use a single similarity
function defined as relative numerical error

s31(a3,k,a3,l) =
|a3,k−a3,l|

max{|a3,k|, |a3,l|}
.

To measure similarity of A1 and A2 we use the generalized similarity metrics from the extended
vector space model developed in the previous chapter.

Table 3.6 compares the the errors from application of individual similarity metrics to the
name attribute only in the Abt-Buy database. Table 4.2 compares the errors from application of
individual similarity metrics to the descriptor attribute only in the Abt-Buy database. In both cases,
the similarity metrics are applied to the four sets and and errors are calculated after solving the
LSAP. The tables also compares the errors between the similarity metrics using tf*idf with idf token
weights. The first observation is that the errors values for the descriptor attribute are much higher
compared to the error values for the name attribute as described in Table 3.6. For the set of fifty
documents, the error values given by some of the similarity metrics for the descriptor attribute
are lower than 50 [%]; however, as the size of the set increase to 200 the error values for all of
the similarity metrics vary in the range of 60–70 [%]. These results indicate that the descriptor
attribute has less discriminative power compared to the name attribute.

For the training sets 1–4, the EM with only price attribute performs poorly and gives errors of
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Testing Dataset
(M=500)

Name Descriptor

S(·, ·) ω → tf*idf idf tf*idf idf

cos 13 12.80 70.20 70.00
J1 11.60 12.00 72.40 71.40
N1 12.20 14.80 71.80 73.00
D1 11.40 12.40 72.20 70.80
J2 12.80 12.00 71 72
N2 13.20 15.20 71.40 73.20
D2 13.20 13.20 71.20 71.20
∆1 14.60 15.80 78.20 70.60
∆2 19.00 18.80 73.80 70
∆5 30.20 25.80 75.60 70.80

Table 4.3: Error in [%] in the solution of the entity matching problem for the testing set for name
and descriptor attributes extended set-based similarity functions comparing the tf*idf with idf token
weights for the Abt-Buy database.

96 [%], 97 [%], 97.30 [%] and 97 [%] for the four sets respectively.

This observation is confirmed by the results in table 4.3 that compares the errors for the name
and the descriptor attributes for the data set containing 500 pairs of documents. The results in
Table 4.3 show that on average the error values for the descriptor attribute are three to four times
higher compared to the name attribute. The lower error value for the name attribute is given by
the J1,2 similarity metrics with tf*idf weighting. The lower error value for the descriptor attribute
is given by the cosine and ∆2 similarity metrics with idf weighting; however, the error of 70 [%] is
very high and approximately six time higher than the lower error for the name attribute. The EM
with only price attribute gives again very high error of 98 [%] using similarity function defined as
relative numerical error.

4.3.2 Selection of optimal superposition similarity function from subset of
two similarities

Tables 4.2– 4.4 show the results for the weights selection that approximates the optimal superpo-
sition similarity function when two similarities are used in the selection process. The similarities
are selected in such way as to represent the three main classes of similarities: set-based, distance-
based, and the benchmark cosine. The tables compare the results for the four training sets (Sets
1–4) and the test set (Set 5), and when using `1, `2 and `∞ norms for the optimizations functional.

Table 4.4 shows the classification results and the weights selection for the optimal similarity
metric based on superposition of N1− idf and ∆5− tf ∗ idf similarities. N1− idf is selected as
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Weight Si j Attribute 50 100 150 200
`1 optimization

y11 N1− idf A1 1 1 1 1
y12 ∆5− tf ∗ idf A1 0 0 0 0

Training Error [%] 0 9 7.33 8.50
Testing Error [%] 14.80 14.80 14.80 14.80
`2 optimization

y11 N1− idf A1 0.67 0.67 0.71 0.72
y12 ∆5− tf ∗ idf A1 0.33 0.33 0.29 0.28

Training Error [%] 0.00 9.00 8.66 8.50
Testing Error [%] 12.80 12.80 13.40 13.60
`∞ optimization

y11 N1− idf A1 0 0 0 0
y12 ∆5− tf ∗ idf A1 1 1 1 1

Training Error [%] 6.00 22.00 24.00 27.00
Testing Error [%] 30.20 30.20 30.20 30.20

Table 4.4: Weight selection and training (1–4) and testing sets errors for `1, `2 and `∞ optimizations
using N1− idf and ∆5-tf*idf similarities for the name attribute in the Abt-Buy database.

representative of set-based similarity measures and ∆5− tf ∗ idf as a representative of the distance-
based similarity measures. The individual errors for these two similarities for the training and
testing sets can be found in Tables: 3.6 and 4.3 respectively. The results in Table 4.4 show that
the `1 norm of the optimization functional selects the better performing similarities of the two:
N1− idf for all four training sets. Conversely, the `∞ norm of the optimization functional always
selects the worst performing of the two: ∆5− tf ∗ idf resulting in a higher classification error for
the testing set compare to the `1 optimization. The results is consistent with the higher sensitivity
of the `1 norm to outliers.

It is important to note that these two norms of the optimization functional: `1 and `∞ are not
sensitive to the increase of the training set size and perform consistently even with limited number
of training samples. This fact indicates that a small numbers of labeled data may be sufficient for
good estimation of the weights.

The `2 norm of the optimization functional, however, estimates nonzero weights for the both
similarity metrics, assigning higher weight to the better performing metric N1− idf. Moreover,
for the training sets size of 50 and 100 samples, the optimal superposition metric gives better
results compared to the individual metric performance and the same as the benchmark cosine
metric. This result demonstrates that (1) a superposition of two similarities can achieve improved
performance compared to individual similarities performances and (2) superposition of similarities
can approximate results achieved by top performing similarities or could perform better.

Table 4.5 shows the results for the weights selection and the corresponding errors when D2− idf
and cosine-tf ∗ idf similarities are used in the selection process. D2− idf is selected as representa-
tive of the set-based similarities and cosine-tf ∗ idf represent the cosine class. The individual errors
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Weight Si j Attribute 50 100 150 200
`1 optimization

y11 D2− idf A1 1 1 1 1
y12 cosine−tf ∗ idf A1 0 0 0 0

Training Error [%] 0 7 7.33 7.00
Testing Error [%] 13.2 13.20 13.20 13.20
`2 optimization

y11 D2− idf A1 1 1 1 1
y12 cosine-tf ∗ idf A1 0 0 0 0

Training Error [%] 0 7 7.33 7.00
Testing Error [%] 13.20 13.20 13.20 13.20
`∞ optimization

y11 D2− idf A1 1 1 1 1
y12 cosine-tf ∗ idf A1 0 0 0 0

Training Error [%] 0 7 7.33 7
Testing Error [%] 13.2 13.20 13.20 13.20

Table 4.5: Training (1–4) and testing sets errors for `1, `2 and `∞ optimizations using D2− idf and
cosine-tf ∗ idf similarities for the name attribute in Abt-Buy database.

for these two similarities for the training and testing sets can be found in Tables: 3.6 and 4.3. Note
that these two similarities perform equally well for the four training sets. The results in Table 4.5
show that the `1, `2 and `∞ optimizations select always one of the the two similarities: D2− idf.
These results indicate that the cosine and the set-based similarities can be considered to belong to
the same equivalence class of similarities.

As in the case above, the norms of the optimization functional: `1,2 and `∞ are not sensitive to
the increase of the training set size and perform consistently even with limited number of training
samples. This fact demonstrate again that a small numbers of labeled data could provide good
estimation of the weights.

Table 4.6 shows the results for the third configuration of set of two similarities for selection of
weights that approximate the optimal superposition similarity. In this case ∆5− tf ∗ idf and cosine
tf ∗ idf are selected as representative of the distance-based and the cosine similarity measures re-
spectively. The individual errors for these two similarities for the training and testing sets can be
found in Tables: 3.6 and 4.3 . The results in Table 4.6 show that the `1 optimization select the
better performing similarities of the two: cosine−tf ∗ idf. Conversely, the `∞ optimization selects
the worst performing of the two: ∆5−tf ∗ idf resulting in a higher classification error for the testing
set compere to the `1 optimization. The results is consistent with the results shown in Table 4.6and
the higher sensitivity of the `1 norm to outliers.

It is important to note again, that these two norms of the optimization functional: `1 and `∞

are not sensitive to the increase of the size of the training set and perform consistently even with
limited number of training samples. This fact indicates that a small numbers of labeled data may
be sufficient for good estimation of the weights.
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Weight Si j Attribute 50 100 150 200
`1 optimization

y11 cosine-tf ∗ idf A1 1 1 1 1
y12 ∆5− tf ∗ idf A1 0 0 0 0

Training Error [%] 0 7 7.33 7.50
Testing Error [%] 13 13 13 13
`2 optimization

y11 cosine-tf ∗ idf A1 0.76 0.71 0.73 0.75
y12 ∆5− tf ∗ idf A1 0.24 0.29 0.27 0.25

Training Error [%] 0 7 7.33 7
Testing Error [%] 12.60 12.80 12.59 12.80
`∞ optimization

y11 cosine-tf ∗ idf A1 0 0 0 0
y12 ∆5− tf ∗ idf A1 1 1 1 1

Training Error [%] 6 22 24 27
Testing Error [%] 30.20 13.20 30.20 30.20

Table 4.6: Training (1–4) and testing sets errors for `1, `2 and `∞ optimizations using cosine-tf ∗ idf
and ∆5− tf ∗ idf similarities for the name attribute in Abt-Buy database.

The `2 norm of the optimization functional, however, estimates nonzero weights for the both
similarity metrics, assigning higher weight to the better performing metric cosine−tf ∗ idf. More-
over, for all the training sets, the optimal superposition metric gives better results compared to the
best performer of the two individual metric and thus performs better than the benchmark cosine
metric. This results are consistent with the results presented in Table 4.4, where the optimization
includes also the distance-based class but in this case in conjunction with the set-based class of sim-
ilarities. The fact that the `2 norm of the optimization functional distributes the weights between
the cosine/set-based and the distance-based similarities suggests the the distance-based class of
similarities does not belong to the same equivalence class as the cosine and set-based similarities
and thus they provide independent measure similarity between documents.

4.3.3 Selection of the optimal similarity superposition function based on the
set-based similarities class

In this section we present the results for the optimal superposition similarity function, defined and
optimized over the set-based similarities class. More specifically, the search for the weights is de-
fined over the set of similarities that includes J1,2− tf ∗ idf, idf, N1,2− tf ∗ idf, idf, D1,2− tf ∗ idf, idf.

Tables 4.10–4.9 show the results for the weights selection and optimal superposition similarity
function for `1, `2 and `∞ optimization respectively. As observed in the other case studies, the `1
norm of the functional as shown in Table 4.10 tends to select the optimally performing metric,
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Weight Si j Attribute 50 100 150 200
y1,1 J1− tf ∗ idf A1 0 0 0 0
y1,2 N1− tf ∗ idf A1 0 0 0 0
y1,3 D1− tf ∗ idf A1 0 0 0 0
y1,4 J2− tf ∗ idf A1 0 0 0 0
y1,5 N2− tf ∗ idf A1 0 0 0 0
y1,6 D2− tf ∗ idf A1 0 0 0 0
y1,7 J1− idf A1 0 0 0 0
y1,8 N1− idf A1 0 0 0 0
y1,9 D1− idf A1 0 0 0 0
y1,10 J2− idf A1 0 0 0 0
y1,11 N2− idf A1 0 0 0 0
y1,12 D2− idf A1 1 1 1 1

Training Error [%] 0 7 7.33 7
Testing Error [%] 13.20 13.20 13.20 13.20

Table 4.7: Training (1–4) and testing sets errors for the EM problem, for `1 optimizations using
set-based similarities for the name attribute in Abt-Buy database.

Weight Si j Attribute 50 100 150 200
y1,1 J1− tf ∗ idf A1 0 0 0 0
y1,2 N1− tf ∗ idf A1 0 0 0 0
y1,3 D1− ttf ∗ idf A1 0 0 0 0
y1,4 J2− tf ∗ idf A1 0 0 0 0
y1,5 N2− tf ∗ idf A1 0 0 0 0
y1,6 D2− tf ∗ idf A1 0.9770 0 0 0
y1,7 J1− idf A1 0 0 0 0
y1,8 N1− idf A1 0 0 0 0
y1,9 D1− idf A1 0 0 0 0
y1,10 J2− idf A1 0 0 0 0
y1,11 N2− idf A1 0 0 0 0
y1,12 D2− idf A1 0.0229 1 1 1

Training Error [%] 0.00 7.00 7.33 7.00
Testing Error [%] 13.20 13.2 13.20 13.20

Table 4.8: Training (1–4) and testing sets errors for the EM problem, for `2 optimizations using
set-based similarities for the name attribute in Abt-Buy database.

which in this case is D2− idf. The D2− idf perform the same as the benchmark cosine −tf ∗ idf
for the four training sets. The `2 norm of the functional and for a training size of 50 samples as
shown in Table 4.8, selects superposition of two similarities: D2− idf and D2− tf ∗ idf assigning a
very high weight of 0.98 to D2− tf ∗ idf and a small weight of 0.02 to D2− idf. As the training size
increase to size of 100 and 200 records, the optimization selects only one of the twelve similarities
D2− idf, assigning weight of 1 to it and 0 to the rest of the similarities. The testing error for the 50
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Weight Si j Attribute 50 100 150 200
y1,1 J1− tf ∗ idf A1 0 0 0 0
y1,2 N1− tf ∗ idf A1 0 0 0 0
y1,3 D1− tf ∗ idf A1 0 0 0 0
y1,4 J2− tf ∗ idf A1 0 0 0 0
y1,5 N2− tf ∗ idf A1 0.51 0.29 0.37 0
y1,6 D2− tf ∗ idf A1 0 0.22 0.21 0.48
y1,7 J1− idf A1 0 0 0 0
y1,8 N1− idf A1 0 0 0 0
y1,9 D1− idf A1 0 0 0 0
y1,10 J2− idf A1 0 0 0 0
y1,11 N2− idf A1 0 0.27 0.22 0
y1,12 D2− idf A1 0.49 0.21 0.20 0.51

Training Error [%] 0 7 7.33 7
Testing Error [%] 13.20 13.20 13.40 12.60

Table 4.9: Training (1–4) and testing sets errors for the EM problem, for `∞ optimizations using
set-based similarities for the name attribute in Abt-Buy database.

training samples is equal to the cases with bigger size of the training sets.

In contrast with earlier observations, when the selection was performed over two classes of
similarities and the `∞ optimization tended to select one of the classes, usually the outlier, the
results presented in Table 4.9 show that in this case the `∞ optimization selects more than one
metric of the same class for the creation of the optimal superposition similarity function. For
example, for training set size of 50 samples, the `∞ optimization selects 2 similarities: N2− tf ∗ idf
and D2− idf with weights of 0.51 and 0.49 respectively. When the size of the training set increases
to 100, the weights become almost uniformly distributed between 4 similarities: N2− tf ∗ idf and
D2− idf and D2− tf ∗ idf and D2− idf. Similar observations holds for the case of 150 training
samples, however, the highest weight value of 0.37 is assigned to N2−tf ∗ idf. When the size of the
training set however increases to 200, only two metric again participate in the optimal superposition
similarity metric: this time D2− tf ∗ idf and D2− idf with weights of 0.48 and 0.51 respectively
and providing the lowest testing set classification error of 12.60 [%].

The results from this study and in particular the `∞ optimization demonstrate that multiple
combinations of similarities from the set-based class can lead to similar performance of the EM,
suggesting that the similarities within the set-based class of similarities exhibit very similar char-
acteristics. More studies need to be conducted with increased training data sets size to investigate
further sensitivity and convergence of the performance.

46



Weight Si j Attribute 50 100 150 200
y1,1 J1− tf ∗ idf A1 0 0 0 0
y1,2 N1− tf ∗ idf A1 0 0 0 0
y1,3 D1− tf ∗ idf A1 0 0 0 0
y1,4 J2− tf ∗ idf A1 0 0 0 0
y1,5 N2− tf ∗ idf A1 0 0 0 0
y1,6 D2− tf ∗ idf A1 0 0 0 0
y1,7 J1− idf A1 0 0 0 0
y1,8 N1− idf A1 0 0 0 0
y1,9 D1− idf A1 0 0 0 0
y1,10 J2− idf A1 0 0 0 0
y1,11 N2− idf A1 0 0 0 0
y1,12 D2− idf A1 1 1 1 1
y1,13 cosine −tf ∗ idf A1 0 0 0 0
y1,14 ∆1− tf ∗ idf A1 0 0 0 0
y1,15 ∆2− tf ∗ idf A1 0 0 0 0
y1,16 ∆∞− tf ∗ idf A1 0 0 0 0
y1,17 cosine −idf A1 0 0 0 0
y1,18 ∆1− idf A1 0 0 0 0
y1,19 ∆2− idf A1 0 0 0 0
y1,20 ∆∞− idf A1 0 0 0 0

Training Error [%] 0 7 7.33 7
Testing Error [%] 13.20 13.2 13.20 13.20

Table 4.10: Training (1–4) and testing sets errors for the EM problem, for `1 optimizations using
the set-based distance, and cosine similarities classes for the name attribute in Abt-Buy database.

4.3.4 Selection of the optimal superposition similarity function based on the
set-based, distance and cosine similarities classes

In this subsection we present results for the optimal selection of the superposition similarity func-
tion overt the full space of the generalized similarity metrics. In particular, we include all sim-
ilarities presented earlier that cover the three main classes: generalized set-based, generalized
distance-based and the benchmark cosine with tf*idf and idf encodings.

Tables 4.10–4.12 show the results for the weights selection and optimal superposition similar-
ity function for `1, `2 and `∞ optimization respectively. As observed in the case study presented in
Section 4.3.3 , the `1 norm of the functional tends to select the optimally performing metric, which
in this case is also D2− idf. The D2− idf perform the same as the benchmark cosine −tf ∗ idf for
the four training sets. The `2 norm of the functional as shown in Table 4.11 and for a training size
of 50 samples, selects superposition of two similarities: D2− idf and D2− tf ∗ idf assigning a very
high eight of 0.9768 to D2− tf ∗ idf and a small weight of 0.0231 to D2− idf. As the training size
increase to 100 and 200, the optimization selects only D2− idf, assigning weight of 1 to it and 0
to the rest of the similarities. The testing error for the 50 training samples is equal to the cases
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Weight Si j Attribute 50 100 150 200
y1,1 J1− tf ∗ idf A1 0 0 0 0
y1,2 N1− tf ∗ idf A1 0 0 0 0
y1,3 D1− tf ∗ idf A1 0 0 0 0
y1,4 J2− tf ∗ idf A1 0 0 0 0
y1,5 N2− tf ∗ idf A1 0 0 0 0
y1,6 D2− tf ∗ idf A1 0.98 0 0 0
y1,7 J1− idf A1 0 0 0 0
y1,8 N1− idf A1 0 0 0 0
y1,9 D1− idf A1 0 0 0 0
y1,10 J2− idf A1 0 0 0 0
y1,11 N2− idf A1 0 0 0 0
y1,12 D2− idf A1 0.02 1 1 1
y1,13 cosine −tf ∗ idf A1 0 0 0 0
y1,14 ∆1− tf ∗ idf A1 0 0 0 0
y1,15 ∆2− tf ∗ idf A1 0 0 0 0
y1,16 ∆∞− tf ∗ idf A1 0 0 0 0
y1,17 cosine −idf A1 0 0 0 0
y1,18 ∆1− idf A1 0 0 0 0
y1,19 ∆2− idf A1 0 0 0 0
y1,20 ∆∞− idf A1 0 0 0 0

Training Error [%] 0 7 7.33 7
Testing Error [%] 13.20 13.2 13.20 13.20

Table 4.11: Training (1–4) and testing sets errors for the EM problem, for `2 optimizations using
the set-based distance, and cosine similarities classes for the name attribute in Abt-Buy database.

with bigger size of the training sets, showing equivalency in the performance of the D2− idf and
D2− tf ∗ idf and the ability of the optimization to select it.

Consistently with the earlier observations, the `∞ optimization, as shown in Table 4.12 tends
to select more than one metric for the creation of the optimal superposition similarity function. For
example, for training set size of 50 samples, the `∞ optimization selects 3 similarities: D2− tf ∗ idf,
∆∞− idf and ∆∞− tf ∗ idf with the highest weight assigned to the ∆∞− tf ∗ idf. As the training size
increase to 100 and above, the selection of the weights converges to two similarities: ∆∞− tf ∗ idf
and ∆∞− idf with almost uniform weight distribution between the two. The classification error for
the testing set is higher in this cases (27 [%])compared to the weight selection based on 50 records
training set size (24 [%]). These results confirm again that the set-based and distance-based similar-
ities do not belong to the same equivalence classes. In general, the set -based class of similarities
performs better than the distance-based for the EM problem. Including set-based similarities in
conjunction with similarities from the distance-based class could enhance the performance of the
EM problem with respect to the case when only the similarities from the distance-based class are
considered.
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Weight Si j Attribute 50 100 150 200
y1,1 J1− tf ∗ idf A1 0 0 0 0
y1,2 N1− tf ∗ idf A1 0 0 0 0
y1,3 D1− tf ∗ idf A1 0 0 0 0
y1,4 J2− tf ∗ idf A1 0 0 0 0
y1,5 N2− tf ∗ idf A1 0 0 0 0
y1,6 D2− tf ∗ idf A1 0.02 0 0 0
y1,7 J1− idf A1 0 0 0 0
y1,8 N1− idf A1 0 0 0 0
y1,9 D1− idf A1 0 0 0 0
y1,10 J2− idf A1 0 0 0 0
y1,11 N2− idf A1 0 0 0 0
y1,12 D2− idf A1 0 0 0 0
y1,13 cosine −tf ∗ idf A1 0 0 0 0
y1,14 ∆1− tf ∗ idf A1 0 0 0 0
y1,15 ∆2− tf ∗ idf A1 0 0 0 0
y1,16 ∆∞− tf ∗ idf A1 0.83 0.46 0.48 0.51
y1,17 cosine −idf A1 0 0 0 0
y1,18 ∆1− idf A1 0 0 0 0
y1,19 ∆2− idf A1 0 0 0 0
y1,20 ∆∞− idf A1 0.15 0.54 0.52 0.49

Training Error [%] 0 20 22.67 24
Testing Error [%] 24 27.20 27.40 27.80

Table 4.12: Training (1–4) and testing sets errors for the EM problem, for `∞ optimizations using
the set-based, distance, and cosine similarities classes for the name attribute in Abt-Buy database.

4.3.5 Selection of the optimal superposition similarity function over differ-
ent attributes

In this subsection we present the results for the selection of optimal similarity metric when the
search is performed over different similarities for different attributes such as name, and descriptor.
Table 4.13 shows the results for selection of optimal similarity function when two attributes are
considered: name and descriptor. The cosine–tf ∗ idf similarity metric is applied to both. In this
case, all three optimization norms and for almost all training set sizes the optimization selects the
name attribute with the cosine–tf ∗ idf metric and assigns 0 weight to the descriptor attribute. This
results in 13 [%] error for the testing set. The only exception is the `∞ optimization for the training
set size of 50, where the weights are assigned between name and descriptor attributes. This results
in the lowest observed classification error of 9 [%].

Table 4.14 shows the results for selection of optimal similarity function when again the same
two attributes are considered: name and descriptor, and ∆5− tf ∗ idf metric from the distance-
based similarities class is applied to each attribute. In this case, similar to the results presented
in Tables 4.13, `1,2 optimizations norms, for all training set sizes selects the name attribute and

49



Weight Si j Attribute 50 100 150 200
`1 optimization

y11 cosine–tf ∗ idf A1 1 1 1 1
y12 cosine–tf ∗ idf A2 0 0 0 0

Training Error [%] 0 7 7.33 7.50
Testing Error [%] 13 13 13 13
`2 optimization

y11 cosine–tf ∗ idf A1 1 1 1 1
y12 cosine–tf ∗ idf A2 0 0 0 0

Training Error [%] 0 7 7.33 7.50
Testing Error [%] 13 13 13 13
`∞ optimization

y11 cosine–tf ∗ idf A1 0.61 1 1 1
y12 cosine–tf ∗ idf A2 0.39 0 0 0

Training Error [%] 0 7 7.33 7.50
Testing Error [%] 9 13 13 13

Table 4.13: Training (sets 1–4) and testing sets errors for `1, `2 and `∞ norms of the optimization
functional using cosine similarity metric with tf*idf encoding.

Weight Si j Attribute 50 100 150 200
`1 optimization

y11 ∆5− tf ∗ idf A1 1 1 1 1
y12 ∆5− tf ∗ idf A2 0 0 0 0

Training Error 6 22 22.67 27
Testing Error 30.20 30.20 30.40 30.20

`2 optimization
y11 ∆5− tf ∗ idf A1 1 1 1 1
y12 ∆5− tf ∗ idf A2 0 0 0 0

Training Error 6 22 24 27
Testing Error 30.20 30.20 30.20 30.20

`∞ optimization
y11 ∆5− tf ∗ idf A1 0.39 0.03 0.19 0.13
y12 ∆5− tf ∗ idf A2 0.61 0.97 0.81 0.87

Training Error 4 25 28.77 33
Testing Error 28.40 52.20 59.39 38.39

Table 4.14: Training (sets 1–4) and testing sets errors for `1, `2 and `∞ norms of the optimization
functional, and using Minkowski similarity measure with tf*idf weighting scheme.

assigns 0 weight to the descriptor attribute. This results in 30.20 [%] error for the testing set. The
`∞ optimization however, distributes the weight between the name and descriptor attributes. For
training set with size 50, the optimization assigns weight of 0.61 to the descriptor and 0.39 to name
attribute. This results in the lowest observed error of 28.40 [%]for this particular configuration. As
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the size of the training set increases, the wight for the descriptor attribute increases, which results
in higher classification error for the testing set of 38.39 [%] for the training set size of 200.

Weight Si j Attribute 50 100 150 200
`1 optimization

y11 ∆2− tf ∗ idf A1 1 1 1 1
y12 cosine–tf ∗ idf A2 0 0 0 0

Training Error 0 12 12.67 13
Testing Error 19 19 19 19

`2 optimization
y11 ∆2− tf ∗ idf A1 1 1 1 1
y12 cosine–tf ∗ idf A2 0 0 0 0

Training Error 0 12 12.67 13
Testing Error 19 19 19 19

`∞ optimization
y11 ∆2− tf ∗ idf A1 0.9963 1 1 1
y12 cosine–tf ∗ idf A2 0.0037 0 0 0

Training Error 0 12 12.67 13
Testing Error 18 19 19 19

Table 4.15: Training (sets 1–4) and testing sets errors for `1, `2 and `∞ optimizations using ∆2−
tf ∗ idf metric for the name attribute and cosine-tf ∗ idf for the Descriptor attribute.

Table 4.15 shows the results for selection of optimal similarity function when two attributes are
considered: name and descriptor and two different type of similarities are applied to each attribute.
In particular, ∆2− tf ∗ idf is applied to the name attribute and the cosine–tf ∗ idf similarity metric
is applied to the descriptor attribute. In this case, similar to the results presented in Table 4.13,
all three optimization norms and for almost all training set sizes the optimization selects the name
attribute with the ∆2− tf ∗ idf metric and assigns 0 weight to the descriptor attribute. This results
in 19 [%] error for the testing set. Again, the only exception is the `∞ optimization for the training
size of 50, were the weights are assigned between name and descriptor attribute, with very high
weight assigned to name and very low to the descriptor. This however, results in a slightly lower
error for the test set of 18 [%] .

Table 4.16 shows the results for selection of optimal similarity function when two attributes
are considered: name and descriptor for `∞ norm for the optimization of the functional. In contrast
to the cases considered above, 12 similarities are applied to the attribute descriptor (all set based
with tf ∗ idf and idf encoding) and cosine −tf ∗ idf to the name attribute. It is again interesting to
note that for training size of 50 records, the optimization gives weight 0.77 to the name attribute
with the cosine −tf ∗ idf metric and 0.23 to the descriptor with D2− idf metric, leading to testing
error of 8.8 [%]. This error value is lower compared to the error associated with the stand alone
name attribute with the cosine−tf ∗ idf metric. As the size of the training data set increases to 200,
the optimization selection converges to selection of only name attribute with the cosine −tf ∗ idf
metric; however, the testing error increases with approximately 4 [%]. For the `1,2 norms for the
optimization of the functional, the optimization selects always only name attribute with the cosine
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Weight Si j Attribute 50 100 150 200
y1,1 J1− tf ∗ idf A2 0 0 0 0
y1,2 N1− tf ∗ idf A2 0 0 0 0
y1,3 D1− tf ∗ idf A2 0 0 0 0
y1,4 J2− tf ∗ idf A2 0 0 0 0
y1,5 N2− tf ∗ idf A2 0 0 0 0
y1,6 D2− tf ∗ idf A2 0 0.09 0.09 0
y1,7 J1− idf A2 0 0 0 0
y1,8 N1− idf A2 0 0 0 0
y1,9 D1− idf A2 0 0 0 0
y1,10 J2− idf A2 0 0 0 0
y1,11 N2− idf A2 0 0 0 0
y1,12 D2− idf A2 0.23 0 0 0
y1,13 cosine −tf ∗ idf A1 0.77 0.91 0.91 1

Training Error [%] 0 4.67 4.67 7.50
Testing Error [%] 8.8 9.80 9.80 13.00

Table 4.16: Training and testing errors for two attributes: descriptor and name, and training sets
with varying sizes; `∞ norm for the optimization.

−tf ∗ idf metric for all the four sizes of the training set.

Weight Si j Attribute 50 100 150 200
y1,1 J1− tf ∗ idf A2 0 0 0 0
y1,2 N1− tf ∗ idf A2 0 0 0 0
y1,3 D1− tf ∗ idf A2 0 0 0 0
y1,4 J2− tf ∗ idf A2 0 0 0 0
y1,5 N2− tf ∗ idf A2 0 0 0 0
y1,6 D2− tf ∗ idf A2 0.05 0.20 0 0.22
y1,7 J1− idf A2 0 0 0 0
y1,8 N1− idf A2 0 0 0 0
y1,9 D1− idf A2 0 0 0 0
y1,10 J2− idf A2 0 0 0 0
y1,11 N2− idf A2 0 0 0 0
y1,12 D2− idf A2 0.22 0.04 0.22 0
y1,13 ∆5− tf ∗ idf A1 0.73 0.76 0.78 0.78

Training Error [%] 8 17 23.33 19.5
Testing Error [%] 24.40 23.60 22.20 21.40

Table 4.17: Training and testing errors for two attributes: descriptor and name, and training sets
with varying sizes; `2 norm for the optimization.

Table 4.17 shows the results for selection of optimal similarity function when two attributes
are considered: name and descriptor for `2 norm for the optimization of the functional. Similar to
the case shown in Table 4.16,12 similarities are applied to the attribute descriptor (all set-based
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with tf ∗ idf and idf encoding) but the distance-based metric ∆5− tf ∗ idf is applied to the name
attribute. This case contrasts the case shown in Table 4.16, since the ∆5− tf ∗ idf metric is lower
performer for the name attribute compared to the benchmark cosine −tf ∗ idf metric.

For this case, the `2 norm for the optimization functional selects the ∆5− tf ∗ idf metric applied
to the name attribute along with the D2− tf ∗ idf metric applied to the descriptor attribute. Higher
value is given to the ∆5− tf ∗ idf metric in conjunction with name attribute; however, the error
for the testing set achieved with the superposition of the two attributes and the corresponding
similarities is better compared to the case when the attribute-metric are applied stand-alone.

4.4 Conclusions

In this chapter we formulated and developed a robust and flexible algorithm for EM that can adapt
to various application contexts. More specifically, a supervised EM frameworks is developed,
that interprets the EM as the combinatorial optimization problem of finding the maximum weight
matching in a weighted bipartite graph connecting records from two databases. The casting of
EM problems into LSAP offers valuable practical and theoretical advantages. There are efficient
algorithms that solve LSAP in polynomial time. Availability of such algorithms allows us to reduce
the task of solving the EM problem to the task of computing weights for the edges of the bipartite
graph connecting the records from the databases. This in turn allows us to focus efforts on the
development of robust and flexible methodologies for the estimation of the similarity between
records that work across multiple application domains.

Our approach uses training data to approximate an optimal similarity superposition function
for a given relation pair. This function is seek as linear combination of the generalized similarity
functions for the common relation attributes. Solution of a suitably defined Quadratic Program
(QP) defines the weights in the linear combination. Last but not least, LSAP tends to perform
better than matching schemes based on greedy-type algorithms because it optimizes the assignment
globally over the complete set of records.

Computational studies using the ABT-Buy database confirm the utility, flexibility and the ro-
bustness of our approach. Two distinct pattern in the behavior of the optimal similarity superposi-
tion function were observed when the search for the optimal function is restricted over two classes
at time. The first pattern is that the optimization selects the best performing metric from the search
space irregardless of the norm of the optimization functional. This is usually the case when the
search for the optimal superposition similarity function is defined over the space of the set-based
and cosine similarities. The second pattern observed is that `1 norm of the optimization functional
selects the best performing metric, the `2 selects combination of similarities and `∞ selects the
worst performing. This observation holds usually in the cases when the search for the optimal su-
perposition similarity function is defined over the space of the set-based, cosine similarity , and the
distance-based similarities. These results suggest that the optimal similarity superposition function
forms two equivalence classes. The first class is the class for which the first pattern holds and this
equivalence class comprises of set-based and cosine similarity metrics. The second equivalence
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class is the class for which the second patter holds and comprises of distance-based similarities.

The computational results for the various case studies have also demonstrate that superposition
of similarities from different classes can achieve improved performance compared to individual
similarities performances. Such example results are shown in Tables 4.4 and 4.6. Moreover,
superposition of similarities that are not necessary top performers can approximate results achieved
by top performing similarities or in some cases even better. These results facilitate the utility of
the optimization approach. The analyst will not know in advance in many cases which similarity
function or combinations thereof will turn out to give the best performance for a specific EM task.
Therefore, it pays to include a range of different similarities so that the optimization can pick the
best possible selection.

The computation results also demonstrate the ability of the optimization to rank correctly the
importance and contribution of the individual attributes to the performance of the EM. In particular,
the optimization properly recovers that descriptor and price attributes has less discriminative power
compared to the name attribute. Last but not least, the results show that the optimization approach,
especially for `1 and `2 norms of the optimization functional performs reliably even with small size
of the labeled data. This indicates the utility of our method over probabilistic EM models and other
models, that exhibit higher sensitivity to the size of the training sets and require larger training size
to achieve satisfactory results.
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Appendix A

Definitions

Attribute: in a database management system an attribute may describe a component of the database,
such as a table or a field, or may be used itself as another term for a field.

Database: an organized collection of data; collection of documents, images, database records,
and combination of these can be viewed as database. The internet might be a database.

Information Retrieval: the activity of obtaining information resources relevant to an information
need from a collection of information resources.

Metric: an abstraction of the notion of distance in a metric space; a real-valued function used to
compare a single attribute of a record against a single attribute of another record or a query.
Multiple metrics might address an individual mode.

Mode (information): different types of information: image, video, text, graphics, etc.; can be a
mean of expression of an attribute. Given a set of data bits that represent information, the
mode describes how to meaningfully interpret those bits.

Record (database): a set of fields in a database related to one entity.

Query: a question, composed of any combination of modes, against which records of the database
will be compared to find best matches. Query is used as the way of retrieving the information
from database.
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