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ABSTRACT

The popularity of Amazon’s EC2 cloud platform has in-
creased in recent years. However, many high-performance
computing (HPC) users consider dedicated high-performance
clusters, typically found in large compute centers such as
those in national laboratories, to be far superior to EC2
because of significant communication overhead of the lat-
ter. Our view is that this is quite narrow and the proper
metrics for comparing high-performance clusters to EC2 is
turnaround time and cost.

In this paper, we compare the top-of-the-line EC2 clus-
ter to HPC clusters at Lawrence Livermore National Labo-
ratory (LLNL) based on turnaround time and total cost of
execution. When measuring turnaround time, we include ex-
pected queue wait time on HPC clusters. Our results show
that although as expected, standard HPC clusters are su-
perior in raw performance, EC2 clusters may produce bet-
ter turnaround times. To estimate cost, we developed a
pricing model—relative to EC2’s node-hour prices—to set
node-hour prices for (currently free) LLNL clusters. We ob-
serve that the cost-effectiveness of running an application
on a cluster depends on raw performance and application
scalability.

1. INTRODUCTION
In recent years, Amazon’s Elastic Compute Cloud (EC2)

platform has had significant success in the commercial arena,
but the story for high-performance computing (HPC) has
been mixed. While “success” stories appear in the popular
press periodically, most of them feature an embarrassingly
parallel program being run on tens of thousands of cloud
machines [8]. A more complicated issue is how well EC2
performs on more tightly-coupled applications, which are
more representative of applications HPC users typically ex-
ecute on HPC clusters (e.g., those at national laboratories
or other supercomputing centers). The prevailing opinion is
that EC2 is essentially useless for such applications [18, 33].
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There are reasons to justify skepticism of EC2 for tightly-
coupled, more traditional HPC applications. First, the la-
tency and bandwidth of the network used by EC2 are usu-
ally inferior to that of a typical, dedicated HPC cluster (e.g.,
Ethernet vs. Infiniband, although Infiniband cloud offerings
seem likely in the near future [32]). Second, compute nodes
are virtualized, which causes concerns in terms of virtual-
ization overhead as well as virtual machine co-location.

However, to compare EC2, which provides a fee-for-service
model in which access is essentially available 24/7, to tra-
ditional HPC clusters on only the axis of execution time
is unfair. This comparison ignores, for example, the some-
times significant queue wait time that occurs on HPC clus-
ters, which typically use batch scheduling. Of course, it also
ignores factors such as cost, where HPC clusters have a sig-
nificant advantage. After all, HPC clusters in supercomput-
ing centers such as Livermore Computing (LC) at Lawrence
Livermore National Laboratory (LLNL) are free to the user,
even though this is only an artifact of government funding.

In this paper, we take a novel look at these differences
and we contrast high-end Amazon EC2 clusters against tra-
ditional HPC clusters, but with a more general evaluation
scheme. First, we compare EC2 to five LLNL HPC clus-
ters based on total turnaround time for a typical set of HPC
benchmarks at different scales; for queue wait time on the
HPC clusters, we use a distribution developed from simu-
lations with actual traces. Second, to enable a comparison
on total cost of execution, we develop an economic model to
price LLNL clusters assuming that they are offered as cloud
resources at node-hour prices. Because at reasonable scales,
cloud computing platforms guarantee zero queuing delay, we
disregard waiting time while modeling prices. Using well-
known methods in economics on commodity resource pric-
ing, the model achieves profit maximization from the per-
spective of the cloud provider. Using these node-hour prices,
we then compare EC2 with the LLNL HPC clusters and ar-
gue that from a cost effectiveness perspective, applications
should be mapped to the most appropriate cluster, which is
not necessarily the highest performing one.

We make the following contributions in this paper.

• We evaluate EC2 and HPC clusters along the tradi-
tional axis of execution time at reasonable scales (over
1000 cores).

• We develop a pricing model to evaluate HPC clusters
in node-hour prices based on system performance, re-
source availability, and user bias.



• We evaluate EC2 and HPC clusters along more gen-
eral axes, including total turnaround time and total
cost. This provides to the best of our knowledge the
first comparison of EC2 and HPC clusters from a user
perspective (as opposed to a data center perspective
[33, 35]).

Our results show that the decision of whether to choose
EC2 or HPC clusters is complicated. First, EC2 nodes
are high-end and, thus, performance is comparable to HPC
clusters on EC2 for some applications that incur modest
communication. However, we confirm prior results showing
that communication intensive applications are typically in-
efficient on EC2 [33]. Second and more importantly, while
HPC clusters usually provide the best execution time, queue
wait time on these frequently oversubscribed resources can
lead to much larger turnaround times. For example, when
median wait time is exceeded, total turnaround time on the
LLNL machines is often larger than that on EC2 (sometimes
by more than a factor of 4) even though execution time on
LLNL machines (once the application starts) can be several
times faster. Finally, using the modeled node-hour prices,
we show that the choice of most cost-effective cluster for an
application is non-trivial and depends on application scal-
ability as well as user bias of cost versus turnaround time.
For example, for a cost bound of $5000 per hour, the opti-
mal cluster choice for LAMMPS is EC2, leading to a 51%
lower turnaround time than the fastest cluster. On the other
hand, given a 90 second time bound, it is 8.2% cheaper to
run LU on Hera (an LLNL machine) than the fastest cluster.

The rest of this paper is organized as follows. Section 2
provides background of EC2 and motivates our comparison
of EC2 to HPC clusters. Section 3 describes the machines
and provides our experimental setup. Section 4 provides
comparison of raw system performance. Section 5 provides
an evaluation based on queue wait times and turnaround
times, and Section 6 compares based on our pricing model.
Section 7 discusses the implication of our results. We provide
related work and our conclusions in Sections 8 and 9.

2. BACKGROUND AND MOTIVATION
The term cloud computing is somewhat difficult to de-

fine precisely. A traditional definition is that it provides,
at an actual monetary cost to the end-user, computation,
software, data access, and storage that requires no end-user
knowledge about physical location and system configura-
tion [31]. From a high-performance computing (HPC) per-
spective, the cloud provides a choice of different clusters.
Each cluster potentially provides different resources: num-
ber and type of cores, amount of memory, storage, and net-
work latency and bandwidth. In this paper, we assume ho-
mogeneous computing, though we realize that certain cloud
providers may not always make this guarantee for all of their
clusters.

2.1 EC2 Basics
We focus on the most popular cloud platform, which is

Amazon EC2 [6]. Amazon sells several kinds of virtual ma-
chine instances (VMs), which comprise cluster nodes. A
virtual machine is an isolated, guest operating system that
exists within a host system. There can be many virtual ma-
chines in one physical machine, and consequently a virtual
machine has resources, as defined by an instance, that can

be up to, but not exceeding, the resources on the physical
machine.

Amazon EC2 markets several different instances, which
are distinguished by different computational and network
capabilities. In this paper we focus on the highest-end in-
stance, called “cluster compute eight extra large”, because
it is the instance intended for HPC applications. EC2 also
markets several kinds of ways of purchasing time on their
systems; in this paper we use on-demand pricing, in which
the user pays money for each VM instance and receives ac-
cess to the purchased node immediately. We leave consider-
ation of reserved and spot-market pricing for future work.

By default EC2 does not provide any guarantees of phys-
ical node proximity [14]. However, EC2 does allow physical
proximity through a placement group on Cluster Compute.
It is unclear howmany nodes in a placement group a user can
acquire without wait times similar to batch systems. In our
experiments, we observed no delay due to placement groups,
but we used at most 128 nodes. Compared with HPC sys-
tems, though, batch systems cannot guarantee physically
proximate nodes either (they perform best effort [21]).

We emphasize that the cloud notion of having no wait
time has limits. Executions on tens of thousands of cloud
nodes [8], for one-time capability or hero type program ex-
ecutions, likely require some wait time or pre-arrangement
with the cloud provider. These kind of runs are clearly bet-
ter suited for resources as large compute centers, where con-
trol and scheduling is local and machines can be used for
dedicated application times (note that such jobs will also
not be handled by batch queuing systems any more and do
require manual intervention or scheduling). In this paper,
however, we focus on job sizes that are below that threshold
and occur frequently, as those make up a vast majority of
HPC workloads, in particular production workloads. Those
jobs can be easily handled by the pooled resources of cloud
providers and therefore require no wait time.

2.2 Comparing EC2 to HPC Clusters
As mentioned above, this paper compares EC2 and HPC

clusters using turnaround time and cost; the latter necessi-
tates developing a pricing model for HPC clusters. Even if
HPC clusters are “free”, the user may consider a cloud clus-
ter for the following reasons1. First, the application may be
compute intensive, and some of the nodes offered by EC2
may execute such applications faster than HPC nodes, as
cloud providers typically can afford a faster upgrade/refresh
cycle for their machine park. Second, the application may
execute faster from actual start time to finish on an HPC
cluster, but the total turnaround time on the cloud may be
less because of wait queue delay on the HPC clusters.

The second point above must be tempered by cost. That
is, if we expand our notion of execution time to a less tra-
ditional metric such as total turnaround time, we cannot
ignore the cost difference between an EC2 node (significant)
and an HPC node (“free”). On the other hand, the HPC
node is not really “free”, and for a fair cost comparison, we
need to create a pricing model.

Thus, there is a trade-off if one evaluates an EC2 cluster
versus an HPC cluster on the basis of cost and performance.
It depends on many factors, including the application, the
current cluster utilization, and the cost per node. The goal

1In this paper, we do not consider the trivializing case where
a user does not have access to an HPC cluster.



of this paper is to try to characterize these factors and to
better understand in which situations using EC2 for tra-
ditional HPC applications makes sense. Note that in this
paper, we do not make any judgments about the relative
importance of turnaround time and cost.

3. EXPERIMENTAL SETUP
This section describes our experimental setup and test

platforms. First, we provide a description of all test systems
and benchmarks used in our evaluation. Second, we describe
configurations used by the benchmarks.

3.1 Machine and Benchmark Description
Table 1 shows configurations for our test systems. Five of

our systems reside at Lawrence Livermore National Labora-
tory (LLNL), which we refer to as “LLNL clusters” or “HPC
clusters” interchangeably in the rest of the paper. Sierra
and Cab are newer clusters at LLNL. Sierra consists of 1849
Intel Xeon 5660 with 12 cores per node, a clock speed of 2.8
GHz, 12 MB cache, and a memory size of 24 GB/node. Cab
has 1296 Intel Xeon 2670 nodes with 16 cores per node, a
clock speed of 2.6 GHz, 20 MB cache, and a memory size
of 32 GB/node. Both Sierra and Cab have Infiniband QDR
inter-node connectivity. Hyperion runs 1152 nodes with 8
cores per node, a clock speed of 2.5 GHz, 6MB cache, 12
GB/node system memory and Infiniband DDR inter-node
connectivity. Currently, the largest partition available on
Hyperion contains 304 nodes. Hera is a somewhat older
system; it has 800 Opteron nodes with 16 cores per node,
clock speed of 2.3 GHz, 512 KB cache, a memory size of
32 GB/node, and Infiniband DDR inter-node connectivity.
LLNL also hosts uDawn, a BlueGene/P systems. It has 2048
nodes running IBM PowerPC processors with a clock speed
of 850 MHz, 4 cores per node, 2 KB caches and a memory
size of 2 GB/node.It is connected internally by a 3D torus
network for point-to-point communication.

Amazon EC2 offers two HPC-oriented virtual machines:
Cluster Compute Quadruple Extra Large “CC1” and Clus-
ter Compute Eight Extra Large “CC2”. In this paper we
focus on the more powerful instance, CC2, which consists of
Xeon Sandy Bridge processors with two oct-cores, a clock
speed of 2.59 GHz, 20 MB cache, a memory size of 60.5
GB/node, and 10 Gb Ethernet inter-node connectivity. CC2
has hardware-assisted virtualization support to reduce over-
head. For convenience we most often refer to this as simply
“EC2” in the rest of the paper.

We use benchmarks from the NAS Parallel [7], ASC Se-
quoia [4], and ASC Purple [3] benchmark suites. Specifi-
cally, we run CG, EP, BT, LU and SP from the NAS suite;
Sweep3D and LAMMPS from ASC Sequoia, and SMG2000
from ASC Purple. We did not execute all of the programs
from a given suite because we wanted some diversity, and
executing all of the benchmarks from each suite would have
taken several extra hours of compute. The cost per hour at
scale (128 nodes/1024 tasks) on EC2 is over $300.

3.2 Program Setup
We usedMVAPICH-1.7 (for the LLNL clusters) andMPICH2

(for the EC2 clusters). We compile all benchmarks using the
-O2 option. All experiments avoid execution on core 0. This
is because EC2 currently pins all interrupts on to core 0.
For communication intensive programs, this causes severe
load imbalance on core 0 and significant performance degra-

dation, a problem first reported by Petrini [25]; and, we
borrow their solution of leaving core 0 unused. We executed
separate experiments that show that using core 0 leads to as
much as a 500% overhead on our benchmarks. Personal com-
munication with Amazon indicates that in the near future
interrupt handling will be spread throughout the cores [27],
and we expect that this problem will then cease to exist.

However, we go further and, in fact, use only half of the
available cores on a node (except on Sierra, where we use
8 out of the 12 available cores because of the power-of-two
nature of the benchmarks). We use only half of the cores
because to use 15 out of the 16 cores on a node would lead
to an uneven core distribution (e.g., 64 cores spread over
6 nodes with 15 utilized cores each and one node with 4
cores). This can cause additional communication and im-
balances in the applications due to the particular topology
mapping chosen by individual MPI implementations (which
are different between the LLNL clusters and the EC2 clus-
ters). Our experiments show that on a core-to-node map-
ping that is a power-of-two, this additional communication
is minimized. We also disabled hyperthreading on the EC2
cluster, because our experiments showed that hyperthread-
ing most often degrades performance.

We use strong scaling, so in each set of results, all of
the benchmark sizes are identical across different MPI task
counts, and we configure the benchmarks to run for between
30 and 170 seconds on EC2 across all scales. For the NAS
programs, we edited npbparams.h directly; the benchmark
sizes were close to class C (sometimes smaller, sometimes
larger). For SMG2000, we use a size of 65x65x65 at 1024
tasks, and then adjusted sizes accordingly at lower scales to
convert it to a strongly scaled application. For Sweep3d,
we use the makeinput utility and modified the sizes. For
LAMMPS, we use the Lennard-Jones input deck.

Our benchmarks cover a wide variety of message char-
acteristics. Many are communication intensive (BT, CG,
LU, and SP), sending, per MPI rank, at least 100K mes-
sages totaling at least 1 GB (SP sends over 2 GB per rank).
SMG2000 sends about 400 MB per rank. LAMMPS sends
about 200 MB per rank, but did so over far fewer messages
(only about 1000 per rank), and has far less time spent in
MPI communication than BT, CG, LU, SMG2000, or SP.
Finally, EP is computation intensive, sending only about 1
KB per rank.

4. COMPARING RAW PERFORMANCE
This section describes our base performance evaluation of

clusters at LLNL and EC2. First, we measure point-to-point
latency and bandwidth between physical nodes. Second,
we analyze computation performance of a single node on
each cluster with single-task configurations of standard HPC
benchmarks. Third, we evaluate execution times at scales
of up to 1024 tasks with standard HPC benchmarks.

4.1 Raw Computation and Communication Per-
formance Evaluation

We use a set of simple microbenchmarks to measure per-
formance of individual system parameters. Our tests cover
network latency and bandwidth between nodes as well as
relative single node computation performance.

First, we present the results of network latency and band-
width, using a standard ping-pong benchmark, in Table 2.
The experiments show that Sierra has the least inter-node



Cluster CPU Cache Memory Cores/Node Interconnect Cost
speed size size Technology
(GHz) (MB) (GB) ($/Hour)

Sierra 2.8 12 24 12 Infiniband QDR —
Hera 2.3 0.5 32 16 Infiniband DDR —
Cab 2.6 20 32 16 Infiniband QDR —
Hyperion 2.4 6.0 12 8 Infiniband DDR —
uDawn 0.85 0.02 2 4 3D Torus —
EC2 2.59 20 23 16 10 GigE 2.4

Table 1: System specification for our test systems

Cab Hera Sierra Hyperion uDawn EC2

Latency 1.61 µs 2.23 µs 1.58 µs 1.91 µs 2.92 µs 55.15 µs
Bandwidth 22.6 Gb/s 9.3 Gb/s 23.1 Gb/s 16.9 Gb/s 3.1 Gb/s 3.7 Gb/s

Table 2: Network latency and bandwidth for Cab, Hera, Sierra, Hyperion, uDawn and EC2

latency and the fastest bandwidth. This is due to the In-
finiband QDR technology used for communication. uDawn
employs a 3-D Torus network for MPI point-to-point com-
munication with about 5 times higher latency and 3 times
lower bandwidth compared to Infiniband QDR in Sierra.
EC2 shows low variance in network bandwidth, confirming
previous work [?]; however, the latency is at least 50 times
higher than Sierra. These times are consistent with results
reported elsewhere [35, 33].

To understand the computation power of the systems, we
executed the benchmarks with a single MPI task. Table 3
shows the result of executing all of our benchmarks on one
MPI task. Each machine is expressed in terms of average
speedup over uDawn, which is the cluster with worst single-
node performance. The highest performing node is Cab,
and the next fastest is EC2; both are the same architec-
ture with different processor speeds. We used the Stream
benchmark [23] to measure the memory bandwidth and la-
tency on both Cab and EC2 nodes. We found that Cab has
40% higher memory bandwidth and about 30% lower mem-
ory latency than EC2. This affected performance of some
memory-bound benchmarks such as BT and CG by as much
as 30%. Also, our EC2 cluster does not co-locate virtual
machines [27] and, because as stated above we avoid core 0,
there is no significant noise overhead.

We did not specifically perform tests to try to characterize
the virtualization overhead, because we do not have identi-
cal, non-virtualized nodes with which to compare. However,
as shown earlier, sequential performance on EC2 nodes is
quite good, even if virtualization overhead exists (plus, there
is hardware support to reduce it). Others have studied the
impact of virtualization on HPC applications [34, 17].

4.2 Execution Time at Scale
In this section, we first present results of our MPI bench-

marks that allow us to compare EC2, Cab, Sierra, Hyperion,
Hera and uDawn. We use 128 nodes and a total of 1024 MPI
tasks. Second, we provide scaling results from 256 tasks to
1024 tasks.

We first consider the difference in execution time for the
various systems, i.e., the elapsed time from program start
to program end. Figure 1 shows the median values collected
during at least three runs on the systems (normalized to
EC2 times, with a breakdown of relative computation and
communication time shown also). For the most part, our

results here are similar to execution time measurements col-
lected by others [35, 18], in the sense that communication-
intensive applications have significant overhead on the cloud
due to the use of 10 Gb/s Ethernet instead of Infiniband2.
LU performs 1.3-2.6 times worse on EC2 than LLNL clus-
ters, except uDawn, due to communication time dominating
program execution. Due to their similarity to LU in rela-
tive performance on EC2 and HPC clusters, we do not show
numbers for BT, CG and SP (space considerations prohibit
it later in the paper, so we omit them everywhere for unifor-
mity). SMG2000 performs 1.9-4.6 times worse on EC2 than
Cab, Sierra and Hyperion, and about 28% slower than Hera.

For EP, EC2 is slower than Cab by 12% and faster than
other clusters. For Sweep3D, EC2 is the fastest cluster.
Somewhat surprisingly, EC2 outperforms both Hyperion and
Hera on LAMMPS, but is 68% and 29% slower than Cab and
Sierra, respectively. While these three codes do have non-
trivial communication at 1024 tasks, the superiority of the
EC2 nodes compensates somewhat for its inferior communi-
cation infrastructure.

Out of all LLNL clusters, uDawn shows slowest perfor-
mance for most of the benchmarks. This is because uDawn
uses slower, more power efficient processors and employs
slower interconnects than Infiniband; its strength is that
the BlueGene design scales to large node counts. In case of
compute-bound applications, uDawn performs 4.2-4.7 times
slower than EC2 with 1K tasks, even though uDawn has
negligible system noise.

5. TURNAROUND TIME COMPARISON
This section compares job turnaround times on HPC and

EC2 clusters on a variety of job sizes and core/node counts.
Turnaround time is the sum of execution time and job queu-
ing delay. We evaluate execution time using standard HPC
benchmarks at large scales. We evaluate job queuing de-
lay by both real and simulated experiments at different task
scales and sizes that represent real-world jobs.

5.1 Queue Wait Times
This section is concerned with comparing total turnaround

times, which is the time between submission of the job and

2As mentioned earlier, Microsoft Azure has announced its
intention to offer an Infiniband-based cluster [32], which will
presumably have competitive performance with HPC clus-
ters.



uDawn Cab Sierra Hyperion Hera EC2

1.00 9.55 7.30 7.22 3.62 8.22

Table 3: Relative sequential performance (normalized to uDawn) for Cab, Sierra, Hyperion, Hera and EC2.
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Figure 1: Comparison of execution times on Cab, Sierra, Hyperion, Hera, uDawn and EC2 clusters (128
nodes/1024 tasks). Times are normalized to those of EC2, and the relative percentage spent in computation
and communication is shown.

completion of the program. LLNL clusters use batch sub-
mission and are optimized for execution time. On the other
hand, EC2 optimizes for turnaround time [27].

To measure turnaround time, we need to know queue wait
time, which varies with HPC cluster, job size, and maximum
run time. On EC2, using on-demand instances with non-
excessively-sized requests, we observed low queue wait times.
However, HPC clusters are well utilized by a large number
of users and hence can have significant queue wait time.

Estimating wait time is particularly tricky because (1) the
batch submission algorithm used is opaque, and (2) queue
wait time may not be linear in the number of nodes or time
requested. To estimate the wait time, we therefore sim-
ulate job execution times using the Alea-3 simulator [20].
Job scheduling on LLNL clusters is performed by the Sim-
ple Linux Utility for Resource Management (SLURM) job
scheduler, which employs First-Come First-Serve and Back-
filling algorithms [2]. We configure Alea-3 to match the
SLURM properties using the Easy Backfilling algorithm,
which is optimized for throughput, provided the maximum
job execution time is specified at submission. Additionally,
we modify the simulator to handle node-level allocations and
output queue wait times. We use job logs for ANL’s Intrepid
cluster from the Parallel Workloads Archive [1] collected
during January 2009 to September 2009. We chose Intrepid
logs since it provided similar volume of workload compared
to LLNL’s Sierra, Hera, Cab, Hyperion and uDawn clusters.
To estimate the wait times on each cluster, we configure the
simulator separately with the machine specification for each
LLNL cluster. For each cluster, we manually add jobs with a
unique identifier at 12 hour intervals to probe for queue wait
times in the simulation. These probe jobs were configured

to measure wait times at task counts from 32 up to 1024 in
steps of powers of 2. We set the maximum job time (the
time at which, the program, if still executing, is killed) to
(separately) 2 minutes and 5 hours (somewhat arbitrarily).

To validate our numbers, we also collect job wait times
on Sierra and Hera at similar job sizes. The maximum job
time was set to 2 minutes and 5 hours, and we submitted
the jobs at 10 A.M. and 10 P.M. every day for two months.
We would have liked to execute these experiments with a
larger variety of maximum job execution times. However,
we did not, as we wanted to minimize our consumption of
LLNL resources.

The results are shown in Figure 2 as a series of boxplots,
which show the median in addition to the ranges of each
quartile. For real experiments, queue wait times increase
with an increase in maximum job execution time, as long as a
node request is below a significant percentage of the available
nodes (which is roughly 64 nodes on Hera and between 512
and 1024 nodes on Sierra). In addition, the data shows that
even for the two-minute jobs, there are potentially significant
wait times.

Although the real clusters can have different workloads
than the one used in our simulation, simulated runs show
similar trends for queue wait times at increasing scales and
job limits. For example, median values for simulated and
real queue wait times for Sierra at 512 and 1024 tasks fall
in the same range. Similarly, median simulated queue wait
times for Hera at 128 and 256 tasks follow corresponding
numbers in real experiments. Also, Sierra shows lower queue
wait times than Hera in both simulated and real exper-
iments, typically at higher scales, due to higher resource
availability. Thus, the real queue wait times validate sim-
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Figure 2: Boxplots showing comparison of (a) real queue wait times and (b) simulated queue wait times at
different node counts on Sierra and Hera

ulated queue wait times at relevant scales. Hence, we use
simulated numbers for other clusters for the analysis of total
turnaround times.

On EC2, we measured queue wait time as the time from
request submission to MPI hostfile setup on all nodes, be-
cause that is when an MPI program can be initiated. We
measured wait times of 146 seconds, 189 seconds and 244
seconds to acquire 16, 32 and 64 EC2 nodes, respectively.
Due to limited funds (each experiment to measure startup
time on 64 nodes costs $150), we iterated our experiments
few times, and our measurements are not statistically signif-
icant. However, because the wait times on EC2 are clearly
orders of magnitude lower than those on LLNL clusters, this
does not affect the validity of our overall findings.

5.2 Turnaround Time
In this section, we focus on the same six machines (EC2,

Cab, Sierra, Hyperion, Hera and uDawn), but turn our at-
tention to total turnaround time. Figure 3 presents a statis-
tical representation of total turnaround time on all machines
at three different MPI task counts: 256, 512, and 1024. The
data is presented as follows. We scale the execution times
on each LLNL cluster for an application on a 5-hour scale
relative to execution times on EC2. The lower edge of the
boxplot represents normalized execution time. Note that the
fourth quartile of the boxplot is not visible because of the
queue wait time distribution and normalization. We then
add queue wait times on the respective clusters to get total
turnaround times. Thus the combined plot shows the factor
of total turnaround time for each application compared to
EC2 total turnaround time. Because queue wait time is a
distribution, we use a boxplot to represent it; here, we use
the results we collected for the 5-hour wait times.

The results show two general trends: First, in many cases,
the EC2 execution time is better at lower scales. For exam-
ple, EP and LAMMPS on most clusters have higher execu-
tion times than EC2, especially at 256 tasks. In such situa-
tions, of course, total turnaround time will be much better

on EC2, as queue wait time is an additive penalty on higher-
end LLNL clusters. However, as we increase the number of
MPI tasks, higher-end LLNL clusters scale better than EC2;
again, this is not surprising as (1) we are using strong scal-
ing, and (2) higher-end LLNL clusters use Infiniband, and
EC2 uses 10 Gb Ethernet.

Second, at higher task counts, demand for more resources
generally causes longer turnaround times. For example, con-
sider applications LU and SMG2000 at 1024 MPI tasks.
Clearly, the queue wait time governs turnaround time for
most of the clusters (except uDawn, which consistently shows
higher execution times than EC2). That is, for these appli-
cations, if the queue wait times fall within the first quartile,
LLNL clusters are superior. On the other hand, if the queue
wait times fall in the fourth quartile, then EC2 is clearly
better. If the queue wait time falls in the second or third
quartile, which system is better depends on (1) where in
the quartile the wait time falls, along with (2) the relative
superiority of the execution time on HPC clusters.

The effect of wait queue times is more pronounced for
applications with overall higher computation times at higher
scales, due to better execution times on EC2. For example,
consider Sweep3D, EP and LAMMPS on LLNL clusters and
EC2 at 1024 MPI tasks. In most cases, EC2 turnaround time
(horizontal line) falls below HPC cluster execution times.

We can also view the expected wait time using existing
methods such as QBETS[24]. With QBETS, a binomial is
used to determine a confidence level that a given percentage
of jobs will have lower wait time than one of the values from
the pool of measured wait time samples. Prediction accuracy
of the binomial method in QBETS has been shown to be
quite good (close to the actual time on average). We use a
confidence level of 95%, and we find, for each application, the
percentage of time that LLNL clusters are expected to have
lower turnaround time than EC2 at 1024 tasks. The results
are shown in Table 4 (page eight). In the table, for the 0%
case, such as Sweep3D, the applications run faster on EC2
than the other clusters. For other cases, the table shows that
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Figure 3: Comparison of total turnaround times on EC2 and LLNL clusters on 256, 512, and 1024 tasks. The
figure shows turnaround times on LLNL clusters normalized to the EC2 turnaround times assuming 5-hour
jobs on EC2. The y-axis represents multiples of EC2 turnaround time.



Application Cab Sierra Hyperion Hera uDawn

EP 25% 0% 0% 0% 0%
Sweep3D 0% 0% 0% 0% 0%
LU 40% 35% 15% 25% 0%
SMG2000 35% 0% 0% 0% 0%
LAMMPS 35% 25% 0% 0% 0%

Table 4: Percentage of time that LLNL clusters are
expected to have lower turnaround time than EC2
for a 1024 tasks job.

even on the fastest machine, Cab, the expectation ranges
from 25% to 40%. This shows that the queue wait time can
be a dominating factor on many clusters.

6. COST COMPARISON
In this section, we compare the EC2 and HPC clusters

based on total cost of execution. Because clusters at LLNL
are free to end users, we derive node-hour prices relative the
market price of the EC2 CC2 cluster ($2.40 per node hour).
We expect that clusters similar to the HPC clusters we are
using in this paper will be available shortly (but we have
no pricing information yet) [32]. Other factors in influenc-
ing node-hour prices include system performance, scalability
and availability of resources.

This section is organized as follows. First, we present
our methodology, which draws on economic theory, to price
LLNL clusters. Second, using the generated node-hour prices,
we present a cost-performance analysis.

6.1 Pricing Methodology
To compare clusters on the cost axis, we need to gener-

ate reasonable prices for currently un-priced clusters. One
approach might be to view computation as a public utility
and base prices only on the cost of ownership for the cluster
operator. Cost data is not publicly available, however, and
would not be publishable if we were able to obtain it; this
necessitates an alternate model.

The approach we take is to assume the LLNL clusters are
operated as a competitor in a market for computation. This
results in generated prices that are naturally comparable to
Amazon’s EC2 cluster and provides for the future possibil-
ity of additional types of analysis (e.g. optimizing future
machine acquisition based on the market value of individ-
ual components’ effects on performance). To be clear, we
are not implying that publicly procured computational re-
sources should be priced this way (or priced at all). Instead,
we are studying how a competitively priced situation would
inform a cost-time performance analysis.

Our competitive model is developed with economic the-
ory by nesting a model of users making optimal execution
choices, given pricing and timing information, inside a model
of a profit-maximizing cluster operator. Amazon’s EC2 clus-
ter is included as an outside option with a fixed price, and
the operator chooses prices relative to Amazon’s.

Users are assumed to have a fixed problem size. That is,
they are not choosing the size of the problem to execute, only
which cluster and how many nodes to split the work over.
There are four user types, defined by the type of application
they are running, each modeled by the speedup properties of
LU, CG, BT and SP, where we took care to balance compu-
tation and communication so as not to bias the HPC or EC2

clusters. As explained later, our user model requires that we
develop a continuous performance prediction function, and
we use linear regression to do this. On HPC clusters, we
use job scales of up to 2048 tasks to obtain sufficient data
for regression, while on on EC2 we had to limit ourselves
to job scales of up to 128 tasks due to limited funds. To
gather enough data points to obtain sufficient significance
in the linear regression, we run benchmarks 8 times at each
task count. We adjust input sizes by modifying the npb-

params.h file so that each benchmark has a total execution
time of 30-500 seconds, which is large enough to compen-
sate for variance introduced by system noise and virtualiza-
tion overhead. For each cluster/application pair, execution
time is modeled by a execution time function derived us-
ing a standard Ordinary Least Squares regression. Using a
continuous timing model allows the user model to optimize
over all possible choices of node counts, instead of restricting
choices only to the set of benchmark experimental runs.

The user must choose among the available computational
clusters, each with hourly price p, then decide how many
nodes n to purchase. The optimal choice is defined to be that
which minimizes the combined implicit and explicit costs of
execution [19], C = (p × n × t(n)) + (a × t(n)). The ex-
plicit cost, p × n × t(n), is the actual expenditure incurred
by purchasing the nodes for the time required to execute the
application. The implicit cost, a× t(n), may have different
interpretations depending on the context. In a business or
scientific environment, this may be a literal cost incurred
by waiting longer for execution to finish, for example, from
giving to delay a cost-saving decision dependent on the re-
sults. In this case, parameter a is the hourly cost of wait-
ing. Alternatively, for an individual user, a would represent
the individual’s personal relative valuation of time. In this
case, a large a may be due to a looming deadline, or other
behavioral influences that cause a person to prefer shorter
execution times.

A cluster operator can then use this model of user choice
to predict purchase decisions, given a candidate set of hourly
node prices for each cluster. These predictions can in turn be
used to achieve a particular operational objective. Here, we
assume that the operator wishes to maximize profit, though
achieving target utilization rates for each cluster might be a
plausible alternative.

To predict the user’s choice, first, for each (cluster i, user
type u) pair and candidate set of prices, we solve for the
optimal (cost-minimizing) number of nodes nui(p). This
function (evaluated for all possible prices) represents the
user’s classical demand function for nodes on this cluster.
In our case, the functional form of t(n) means that there is
no closed-form solution for nui(p), so n must be found with
an optimization algorithm.

Next, for each user type, we calculate the probability that
the user will choose each cluster using the Logit Random
Utility model [28]. In short, this model states that there
are unobservable factors that cause some noise to be added
to the user’s cost function C, and models this noise with a
Logit distribution. This results in the following formula:

sui = e−Cui/
∑

j

(e−Cuj )

sui can be interpreted in two ways: for an individual user,
it is the probability that a user of type u chooses cluster i;
for a population of users, it is the market share for cluster



CC2 Hera Sierra Hyperion uDawn Cab

2.40 2.36 3.83 2.13 0.25 5.49

Table 5: Node-hour prices (in dollars) for LLNL and
EC2 clusters

i among users of type u. That is, it is the proportion of
users of type u that choose cluster i. The operator can then
choose the set of prices that results in the desired objective.
Here we assume that (1) the operator is profit-maximizing
over the short run, such that only hourly operational costs,
and not acquisition costs, are relevant, and (2) the hourly
costs of operation are effectively the same for all clusters.
These assumptions mean that profit maximization is equiv-
alent to revenue maximization. Clearly, these assumptions
may not hold in the real world, but they do not substantively
change the way the model works and are therefore accept-
able abstractions given the absence of available cost data.
Using this model, the expected profit/revenue is then calcu-
lated as the sum over the clusters and users of the expected
revenue, or:

R =
∑

i

(
∑

u

(sui × p× nui(p)× t(nui(p))))

Table 5 shows the results obtained by our model by choos-
ing prices p to maximize R. At each iteration of the maxi-
mization algorithm, user choice as a function of price nui(p)
is obtained by the user’s cost-minimization problem as de-
scribed above.

6.2 Cost vs Performance Comparison
In this section we present cost-performance trade-offs for

our MPI benchmark set using the prices obtained in the
previous section. We consider pure execution times for com-
parison (that is, zero wait times), as we assume equal dis-
tribution of jobs across all clusters. The purpose of this
section is to answer the following questions. First, what
is the trade-off between execution time and cost at various
scales? Second, if the user has a turnaround time bound
(e.g., “finish the weather prediction for tomorrow before the
evening newscast at 7pm”), is the most cost-effective way
to do that always to use the fastest cluster (Cab), or might
using a less powerful cluster be better?

Figure 4 shows the trade-off between cost and turnaround
time. The figure is displayed as a scatterplot of turnaround
time (x-axis) and cost (y-axis), with the points represent-
ing the same cluster connected to show scalability of each
cluster. In general, computational scientists execute large
programs for large amounts of time. For practical reasons
(again, our cost on EC2), we execute short programs. Be-
cause this does not map well to the hour billing granular-
ity used by EC2, we compensate by pro-rating the hourly
rate for the given execution time. The pro-rated hourly
rate is obtained by dividing the per-hour node price by
3600 (seconds per hour) and multiplying the result by the
execution time. (Essentially, we are assuming the billing
function is continuous instead of discrete.) In Figure 4,
points closer to origin show superior configuration choice
in terms of both cost and performance over other configu-
rations. Points higher in the plot imply higher total cost of
execution, while the points towards the right indicate higher
execution time. Plots with smaller slopes indicate good ap-

plication scalability where as larger slopes indicate poor scal-
ability. If addition of nodes to a configuration decreases the
slope, it shows better scalability, and hence adding more
nodes to the configuration is cost-effective.

There are several interesting cases. First, for different
applications, different clusters minimize total cost of execu-
tion. For example, the total cost of execution of running EP,
Sweep3D, LAMMPS and LU is least on EC2. Except with
EP, EC2 is cheapest at 256 tasks. This is because the price
of EC2 is optimized for computation bound applications.
This is confirmed by the nature of EC2 plot from EP to LU,
with slope decreasing in proportion of computation in over-
all application execution. On the other hand, it is cheapest
to run SMG2000 on Cab, even though the Cab nodes are
most expensive. This is because the node-hour price of Cab
is optimized for applications with significant communication
overhead, which characterizes SMG2000 (recall Figure 1).

Second, different clusters optimize performance for certain
classes of application characteristics. For example, SMG2000,
EP, LU and LAMMPS are fastest on Cab, whereas Sweep3D
performs best on EC2. The application characteristics for
which the individual clusters are optimized include commu-
nication overhead, communication topology and cache pres-
sure. From the architectural specifications, we can see that
clusters with fast interconnects, certain cores per node and
larger L2 cache per processor show better performance with
applications characterized to use these resources. For ex-
ample, Sierra and Cab are optimized for communication
performance (with Infiniband QDR), which is well suited
for SMG2000 and LU. Also, Cab, Hera, EC2 and Hyperion
have cores per node in powers of two, which provides op-
timal communication topology for BT benchmark. Finally,
EC2 and Cab are optimized for applications with high cache
pressure, such as CG, as Cab has 20 MB of cache per pro-
cessor.

Third, if a turnaround time bound exists, then optimiz-
ing cost may require using one of the less-powerful or more
expensive clusters. For example, on LU with a turnaround
time bound of 90 seconds (shown with a grey vertical line),
Hera is the cheapest option at 1024 tasks. Recall that EC2,
which runs more cores per node, is the cheapest option with-
out a time bound at 256 tasks. Likewise, with a turnaround
time bound of 8 seconds with EP, the cheapest choice of
cluster is Cab at 1024 tasks, because both cost about the
same. Without a time bound, EC2 is the cheapest option
at 512 tasks. A similar situation can occur if a cost bound
exists. For example, for a cost bound of $5000 per hour
($1.39 per second) with LAMMPS, EC2 is the fastest choice
at 1024 tasks. Similarly, with a cost bound of $12000 per
hour ($3.33 per second) with LU, Hera is the fastest choice
at 1024 tasks. Without a cost bound, LAMMPS and LU
run fastest on Cab at 1024 tasks. Thus, for either a time or
a cost bound, we observe that the optimal choice of cluster
is non-trivial.

7. DISCUSSION AND FUTURE WORK
Our evaluation reveals several interesting items. First,

we establish that the choice of which cluster to use is de-
pendent on the application, queue wait time, price, and the
user’s bias towards either turnaround time or total cost. Ob-
viously, the user does not have the luxury of exhaustively
trying all clusters and then deciding which was best after
the fact. In our opinion, this motivates designing software
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Figure 4: Cost versus turnaround time comparison for LLNL and CC2 clusters. Increasing sizes and darker
shades indicate higher task counts. Different scales are used for each plot for readability. Vertical and
horizontal lines indicate user cost and turnaround time constraints.

systems that perform cluster selection automatically, which
has also been discussed by Li et al. [22]. While this is cer-
tainly not a simple task, an effective software system could
save users a significant amount of time and money.

Second, in order to develop systems that decide between
HPC clusters such as those at LLNL and EC2, it is neces-
sary for the HPC systems to provide wait queue data—likely
both historical and current. This would allow analysis to de-
termine the expected wait time on the HPC clusters, which
is clearly a critical factor in which cluster to choose. How-
ever, there are clear security concerns. These can probably
be alleviated by anonymizing some queue data. On the pos-
itive side, there should be an incentive for organizations like
LLNL to provide this data, as it could reduce demand.

Finally, our pricing model could be useful to the cloud
provider in various ways. For example, the user’s time pref-
erence parameter could be adjusted to improve prices over
time depending upon real-world demands. This could be

extended to obtain prices at different times of day, week or
month, considering that workloads on the cloud spike up
due to external known or unknown events. (For example,
cloud providers could provision high-throughput resources
by asking the question, “What is the time preference on the
Black Friday sale?”) Conversely, the pricing model could
be used to incentivize use of certain resources and avoid
oversubscription of other resources. The model could also
indicate, based on real-world workload type and demand,
which resources to upgrade. For example, if the workload
consists primarily of communication-intensive applications,
the pricing model would suggest an upgrade of interconnect
technology. This would be indicated by low count on opti-
mal number of nodes suggested by the pricing model.

8. RELATED WORK
There is a large body of work related to this paper. We



focus on two areas in public clouds (e.g., Amazon EC2 [6],
FutureGrid [5], and OpenCirrus [9]): (1) performance analy-
sis of standard HPC benchmarks and comparative usability
and (2) cost analysis of running real scientific codes on small,
medium and large scale HPC-style clusters.

Amazon EC2 has become increasingly popular with sci-
entific HPC users due to high availability of computational
resources at large scale. Several researchers have bench-
marked EC2 using MPI programs. Previous work [?, 15, 26,
16, 18, 12, 11, 13, ?] has focused on extensively benchmark-
ing currently available EC2 cluster types with standard MPI
benchmarking suites such as NAS [7] and Sequoia [4]. Our
work uses both large task counts and takes a user perspec-
tive, which has not been studied simultaneously. Also, we
investigate the cost/performance tradeoff at different scales
on EC2, which to our knowledge has not been investigated.

Several attempts have been made to formalize and com-
pare the cost of running standard HPC benchmarks as well
as real applications on Amazon EC2 and standard cluster
systems. Formalizing the cost of a standard HPC cluster is
not straightforward due to the manner in which the compu-
tational resources are charged per user. Walker et al. [30] at-
tempt to formalize the cost of leasing CPU in HPC clusters.
Work on comparing the cost of resources on medium-scale
university-owned cluster with Amazon EC2 Cluster Com-
pute (CC) instance has been carried out [10]. Cost estima-
tion of a large-scale cluster presented by Yelick et al. [33]
involves a detailed modeling of cost of ownership, support,
and hardware and software upgrades. The work showed
that other factors in total cost include amortized cost of
a cluster, utilization rate and job execution times and in-
put sizes. Because resources are charged on an hourly ba-
sis, attempts have been made to execute applications cost-
effectively. Li et al. [22] present a comparative study of
public cloud providers for different real HPC applications.
Again, our work differs in the use of turnaround time and
cost/performance analysis at scale.

The work most closely related to our work compares the
cost of renting virtual machines in the cloud against hosting
a cluster [35]. The authors present a detailed analysis of
MPI applications on CC1. Also, a cost comparison between
CC1 and an HPC cluster is presented with amortized cost
calculations.

Our work differs from that above in several ways. Most
importantly, our work studies turnaround time and cost;
i.e., the perspective of the user, as opposed to the cost of
running a supercomputer center. From the point of view of
the owner of the center, operating an HPC cluster is always
better as long as the system is reasonably well utilized, and
supercomputer centers easily fit that characteristic, as they
tend to be oversubscribed.

Other differences also exist with our work. First, the scale
at which benchmarks were studied is typically quite small
in number of cores/nodes and problem sizes. Second, most
of the work employed small and medium instance types pro-
vided by Amazon EC2 that are not specifically intended for
HPC applications. We present benchmarking results on the
recently introduced CC2. Third, most conclusions present
network latency and bandwidth, and virtualization overhead
as the factors causing application performance degradation.
We show that system noise is not significant compared to
HPC clusters, so long as core 0 is not utilized.

9. CONCLUSION
This paper evaluated the cloud against traditional high-

performance clusters along two axes–turnaround time and
cost. We first confirmed prior results that high-end tradi-
tional HPC clusters are superior to the cloud in raw perfor-
mance. However, we also found that queue wait times can
potentially increase total turnaround times. Finally, we de-
veloped a pricing model for HPC clusters that are currently
unpriced. We used the pricing model as a tool to make a fair
comparison of traditional HPC and cloud resources in terms
of total cost of execution. Our pricing model can be used
from the perspective of the user and the provider; in this
paper we focused on the user perspective. From that per-
spective, we found that there are multiple considerations in
choosing a cluster, including the expected queue wait time
along with the actual cost.

Based on this evaluation, we believe that choosing the
optimal cluster is a task that should be abstracted from
the typical user. Our goal in our future work is to utilize
turnaround time and cost to develop tools and techniques
for directing users of diverse sets of applications, given par-
ticular constraints, to the most appropriate cluster.
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