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Abstract—Both binary and grid-based Langevin equations models for Coulomb collisions are 

used in particle simulation of plasmas.  We introduce a variant of the conventional binary collision 

algorithm for performing Coulomb collisions. In this algorithm particles in a configuration space cell 

are not paired for collisions. Instead, for every test particle in the cell, a unique field particle is 

defined by randomly sampling a velocity distribution defined on the grid by accumulating moments 

of the particle distribution function(s).  The test and field particle pair then undergoes a collision 

using the standard methodology for binary collisions.  The performance of the new algorithm is 

illustrated in example computations and compared to a drag-diffusion Langevin equations 

algorithm.  The grid-based algorithms do not conserve momentum and energy, although with good 

particle statistics the non-conservation is relatively small. Conservation can be restored after 

collisions using a shift and scaling of the momenta.  The comparative merits of the new algorithm are 

discussed.   

   

Index Terms— collision processes, plasmas, particle collisions, algorithms, computer applications.   
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I. Introduction 

In this work we introduce a new variant of a well-known algorithm for including Coulomb collisions 

in particle simulations of plasmas using finite-sized particles and deposition of charge and current densities 

onto a grid (particle-in-cell simulation, i.e., PIC simulation).   In the binary algorithm, particles in a sub-

domain, e.g., a cell, are grouped into discrete pairs of interacting particles such that the relative velocity is 

scattered through an angle whose statistical variance is dictated by the theory of Coulomb collisions in a 

plasma, in the Fokker-Planck limit [1, 2]. The post-collision velocities of the interacting pair conserve 

momentum and energy relative to the pre-collision velocities. In the second type of algorithm, the collisions 

are modeled by defining test and field particles; and the test-particle velocity is subject to drag and 

diffusion in three velocity dimensions using Langevin equations whose drag and diffusion coefficients 

depend jointly on the velocity of the test particle and the moments of the field-particle velocity distribution 

deposited on the configuration-space mesh [3, 4, 5, 6, 7].  The grid-based Langevin equations model 

conserves particle number trivially and conserves energy and momentum approximately in a statistical 

sense after averaging over many collisions and over the velocity distribution functions, although energy and 

momentum conservation can be repaired by scaling and shifting velocities after the Monte Carlo collisions 

occur on each time step [4,6].  The drag and diffusion coefficients are derived from the classical theory of 

screened Coulomb collisions in the Fokker-Planck limit [4, 8, 9, 10].   

   Coulomb collisions are an important physics component of many plasma phenomena.  Furthermore, 

computing collisions in particle-in-cell plasma simulation is a significant computational burden; and some 

collision algorithms are favored over others depending on considerations of the physics and the 

computational burden. Thus, it is of practical interest to assess the efficacy and performance of a new 

variant of the standard binary collision algorithm in which the field particle is created by random sampling 

from a velocity distribution that is computed from statistical moments of the particles accumulated onto the 

configuration-space grid. In particular, we introduce a grid-based variant of the algorithm of Takizuka and 

Abe (TA) [1].  We describe the algorithm in Sec. II. We illustrate its performance in example calculations, 

examine how good the energy conservation is as a function of the particle statistics, discuss how 

momentum and energy conservation can be restored, and compare the new algorithm to the drag-diffusion 

Langevin equation algorithm of Lemons, et al [6] in Sec. III. We discuss the comparative merits of the new 

grid-based collision algorithm and its possible extension in Sec. IV.  The merits of the grid-based TA 

algorithm are as follows: the grid-based TA algorithm is slightly more accurate than the Lemons, et al 

algoirhm in our example simulations, allows a ~10× larger time step for accurate electron-ion collisions, 
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and tolerates the rare large Monte Carlo kick much better than does the Lemons, et al algorithm; in 

situations where the particles have unequal weights so that application of the traditional TA algorithm does 

not conserve energy and momentum algebraically, the grid-based TA scheme is a natural alternative and 

energy/momentum conservation can be restored; the grid-based TA scheme, like other grid-based collision 

algorithms, is well suited for including Coulomb collisions in a particle-fluid hybrid plasma simulation; the 

grid-based TA scheme can accommodate some of the self-consistent evolution of the field-particle velocity 

distribution without having to solve for the Rosenbluth potentials (an elliptic equation in velocity space) to 

update the drag-diffusion coefficients in the Langevin equations approach of [4], [5], and [6]; the grid-

based collision algorithms in [4], [5], and [6] can be subject to a noise-induced instability, while the grid-

based TA scheme is not; and the grid-based TA collision algorithm can be extended straightforwardly to 

different collision models. 

 

II.  Grid-based Takizuka and Abe collision algorithm 

Reference [11] gives an overview of some of the fundamentals of two Langevin equations collision 

algorithms and Takizuka and Abe’s binary collision algorithm. In the Langevin equation models [3, 4, 5, 6, 

7, 10], Langevin equations in three velocity dimensions containing drag and diffusion terms are integrated, 

typically with a simple first-order, forward Euler integration [3-7,10,11,14]. The algorithms are based on 

the theory describing screened Coulomb collisions in the Fokker-Planck limit [8, 9, 15].   

 In the classic work of Takiziuka and Abe [1] an algorithm for binary Coulomb collisions was 

introduced.  In the binary algorithm, equally weighted particles in a cell are paired; and then the relative 

velocity vector of the two particles is scattered through a random angle with variance dictated by the theory 

of screened Coulomb collisions in a plasma [8, 9].  After the relative velocity vector is scattered, the two 

scattered particle velocities are reconstructed such that particle momentum and energy are conserved 

algebraically.  Particle number is conserved identically.  Nanbu [2] extended the algorithm of Takizuka and 

Abe [1] to allow for a larger time step by aggregating multiple collisions.  In Takizuka and Abe [1], the 

relative velocity of a pair is scattered through an angle Θ with variance related to 
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and through a random angle φ about the axis of the relative velocity before the scattering event, where lnΛ 

is the Coulomb logarithm [8,9]. The post-collision velocity vectors of the scattered pair are constructed 

from the scattered relative velocity vector.  There is no separation of test and field particles in the binary 

scheme, and there is no assumption that the velocity distribution is isotropic and Maxwellian (ignoring 

corrections to lnΛ). This method conserves particle number, energy and momentum.  

In the work of Wang, et al.,[12] the convergence properties of the Takizuka and Abe, and the Nanbu 

binary collision operators with respect to particle number and time step were studied. It was found that the 

Nanbu collision algorithm achieved a factor of two improvement in relative accuracy over the Takizuka 

and Abe basic algorithm for the same time step.  The underlying properties of the Nanbu algorithm were 

studied analytically in the work of Dimits, et al. [13].   

Both the grid-based Langevin equations and binary collision algorithms can be generalized to semi-

relativistic collisions [16,17].  To accommodate a minority component of relativistic particles in a plasma 

that is otherwise non-relativistic, the binary algorithm Eq.(1a) is modified by  replacing n(1,2)<  with n2 and 

replacing the denominator m12
2u3 with p2v where p and v are the momentum and velocity of the test particle 

in the rest frame the field particle [18].  Then  
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2n2 ln%"t
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    (2) 

is the variance of the polar scattering angle of the relative velocity in the rest frame of the field particle. 

Lorentz transformations are used between the laboratory and rest frames of the field particle as in Chapter 

12 of Jackson’s book [18].  We note that n2 (the density of the field particles) is not computed 

relativistically here, which restricts the applicability of the model.  The field particles on average must be 

nonrelativistic in their motion with respect to the laboratory frame.  In addition, there can be modifications 

to the computation of lnΛ; we return to this issue in Sec. IV. Nevertheless, this semi-relativistic model is 

useful in many situations of interest.  A summary of the relativistic modifications to the non-relativistic TA 

algorithm in Eq.(1) are given in the Appendix. 

We transform the binary collision algorithm of Takizuka and Abe (TA) (or Nanbu’s extension to 

somewhat larger time steps) into a grid-based scheme as follows. Each test particle in a cell collides on a 

distinct field particle.  To define the field particle we accumulate the lowest velocity moments of the three-

dimensional (3D) velocity distribution of field particles in each cell using nearest grid-point interpolation 

[19].  Using a 3D Cartesian representation for the velocity distribution function, we define the field-particle 

velocity (or momentum) in each dimension independently by randomly sampling the cumulative 

normalized 1D velocity distribution: 

! 

vz =  2vth,fcos(2" ranf1) -ln 1- ranf2( ) + vz f
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 (3) 

where vth,f is the root-mean-square thermal velocity and <vz>f  is the mean drift for the vz distribution. ranf1 

and ranf2 are uniformly distributed random numbers 0<ranf<1.   

The self-consistency of the collisions of test and field particles can be improved by sampling field 

particles from a grid-based distribution function that incorporates more moments of the velocity 

distribution and represents the actual evolving velocity distribution in more detail.  Recall that the 

traditional TA collision algorithm samples field particles from the set of particles present in a spatially 

localized domain of the plasma to allow for an evolving and arbitrary velocity distribution.  Of course, the 

additional self-consistency and detail comes with an additional computational cost.  In the collision 

algorithms using Langevin equations incorporating drag and diffusion, Rosenbluth potentials must be 

computed and recomputed in order to maintain self-consistency with an arbitrary distribution function that 

evolves [4,15].  The traditional and grid-based TA algorithms do not require calculation of the Rosenbluth 

potentials. 

When the collisional scattering of the velocity vector in one time step is too large, neither grid-based 

nor binary collision algorithms are accurate.  If only the scattering angle  becomes too large in Eq.(1) or (2) 

when the time step is too large, the angular diffusion rate becomes inaccurate, but the change in the test-

particle energy may still be small. We also find (Sec. III) that particle statistics influence the energy 

conservation.  We note that when the time step becomes too large in the binary collision algorithm, 

conservation of energy and momentum is still preserved; and although relaxation rates may not be 

reproduced accurately, the binary collision algorithm fails gracefully.   

To remedy the non-conservation of momentum and energy in the grid-based algorithm, after a like-

species collision one can shift the mean of the test-particle velocities in each dimension and in each cell, 

and scale the velocity relative to the mean velocity so that the momentum and kinetic energy are restored to 

their values before the collision [4,6]. The non-relativistic implementation for this is exact.  For the 

relativistic case, we shift the mean momentum to conserve the total momentum in each cell.  We then scale 

the momentum per unit mass relative to the local mean by a factor (1+α) and expand the expression for the 

kinetic energy for |α|<<1, in order to solve for α such that kinetic energy conservation is restored 
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  (4) 

In Eq.(4) v is the momentum per unit mass. In practice, |α| is quite small, e.g., |α|=O(10-5- 10-4) for 

sufficiently small collisional scattering angle per time step. For a light species collisionally scattering on a 

heavy species, we shift and scale the heavy species particle velocities because this results in a smaller 

relative adjustment of the velocities. 

 In carrying out the computations for the grid-based TA collision algorithm as compared to the 

traditional TA algorithm we note the following characteristics.  In the grid-based TA algorithm the 

additional gather/scatters from/to the grid are a small burden compared to the total computational burden of 

performing the collisions, as are the sorting into unique pairs and the optimized shuffling of the pairs [20] 

in the classic TA algorithm. The biggest difference in the computational burden between grid-based TA 

and basic TA algorithms is that Np,cell particles corresponding to Np,cell pairs are collided in the grid-based 

TA scheme, while there are only Np,cell/2 pairs in the basic TA algorithm. Here we are assuming Np,cell  is 

even. This factor of two applies to both like-species and unlike-species collisions using the grid-based TA 

algorithm.   

Timings of our implementation of the grid-based TA algorithm indicate that it is slightly slower than 

our implementation of the drag-diffusion Langevin equation collision algorithm of Lemons et al. [6] by a 

factor of ~1.35, but neither implementation has been optimized for speed.   Our implementation of the shift-

scale fix of the energy and momentum for the grid-based collision algorithms requires an additional 35% of 

the computational time.  Thus, the grid-based TA collision algorithm with shift-scale energy-momentum 

conservation is ~ 2.7× the computational cost of the standard TA binary collision algorithm.  

In Secs. III and IV we compare the grid-based TA algorithm to the Lemons algorithm for the 

relaxation of a weak temperature anisotropy and discuss the extension of the grid-based TA algorithm for a 

particular physical situation of interest in inertial confinement fusion.  

 

III.  Example of using the grid-based Takizuka and Abe collision algorithm and comparison to a 

drag-diffusion Langevin equations algorithm 

   In this section of the paper we report results of an example of using the grid-based Takizuka and 

Abe collision scheme for a particular relaxation problem and a discussion of performance characteristics. In 

[11] we experience was reported with both grid-based drag-diffusion and binary TA collison algorithms 

focusing on time-step considerations.  Here we exercise the grid-based and traditional binary TA collision 

algorithms for a small time step giving accurate results and examine some of the performance 

characteristics as a function of particle statistics.   
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 Here we also compare the results of the grid-based TA algorithm to results of the drag-diffusion 

Langevin equations algorithm introduced by Lemons et al. [6].  The Lemons et al. drag-diffusion equations 

are based on  
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In Eq.(5) the drag-diffusion coefficients depend on the spatially local density, mean drift, and thermal 

velocity of the field particles accumulated on the spatial grid, which evolve self-consistently in time.  For 

like-species collisions, the test and field particle velocity distributions are the same.   

There are some features in the integration of Eq.(5) that deserve comment. As noted in [6], there is a 

divergence of some of the drag-diffusion coefficients at small speeds; and [6] provides a prescription for 

dealing with the divergence.  A rare large kick in the polar angle Δθ in one time step can be tolerated if it is 

a rare event, because the angle can wrap around every 2π radians without generating a significant energy 

error.  However, a large kick in the speed can significantly spoil the energy moment of the total distribution 

function. In our implementation of the Lemons algorithm we include a clamp on the change of speed in one 

time step such that if  |Δv/v|>1, Δv is set to zero.  When this clamp is not present, occasionally unphysically 

large jumps in the energy moments of the particle distribution occur.  Both TA and Lemons algorithms 

were implemented in a particle code [11,21] where special relativity was included in the kinematics.  In 

consequence, the procedure for imposing ad hoc energy-momentum conservation uses Eq.(3) and is 

approximate.   

Figures 1-4 show the results of a series of particle simulations examining the performance of the grid-

based Takizuka and Abe collision algorithm. The test case involved is the collisional relaxation of a weak 

temperature anisotropy (Ty=0.9Tx, Tx=Tz) in which we vary the number of particles per cell for fixed 

product of the characteristic collision frequency 

! 

"* and the time step Δt in one spatial dimension, where 

! 

"* = (2 2)"0,"0 = 2#q4n ln$ / mT 3 / 2 and ν0 is the Braginskii [22] characteristic collision frequency for like-
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species collisions. The value of lnΛ was scaled so that the value of 

! 

"*#t  can be set artificially. The 

exponential relaxation rate for a weak temperature anisotropy is given by Trubnikov [9], 

! 

" relax = (8 /5 2# )" 0 .   

In Figures 1 and 2 we plot the relaxation of the weak temperature anisotropy normalized to the initial 

anisotropy as a function of time and the asymptotic theory, exp(-νrelaxt).  In Figure 1a we used Np,cell=400 

particles per cell and 100 cells, and there is good agreement among the three results. Figure 1a shows 

results for the relaxation of a weak temperature anisotropy by like-species collisions vs. time using the TA 

algorithm, the TA algorithm with sampling, and the TA algorithm with sampling and ad hoc energy and 

momentum conservation for 

! 

"#$t = 0.01 and 100 time steps.   Figure 1b shows the corresponding results 

obtained with the self-consistent Lemons et al algorithm and the Lemons algorithm with ad hoc energy and 

momentum conservation for the same time step as in Fig. 1a.  The traditional TA algorithm results give the 

best agreement with theory in Fig. 1a.  The agreement of the grid-based TA algorithm is slightly better than 

the two variants of the Lemons algorithm. Imposition of the ad hoc energy and momentum conservation 

does not degrade the agreement of the simulated relaxation rates with the theory. We vary the number of 

particles per cell in the results shown in Figure 2 for the grid-based TA and Lemons algorithms with 

! 

"#$t = 0.01.  The agreement with the theoretical relaxation rate steadily improves with increasing particle 

statistics. We deem the agreement with respect to the theory to be good for greater than 200 particles per 

cell.  The relative agreement with theory for the grid-based TA and Lemons algorithms is similar. 

In Figures 3 and 4 we assess the conservation of energy in the grid-based TA and Lemons algorithms. 

Energy (and momentum) conservation improves with increasing numbers of particles per cell. The total 

kinetic energy of the simulation as a function of time for a series of simulations using the grid-based TA 

algorithm in which different numbers of particles per cell were used is plotted in Figure 3.  In Figure 4 we 

show results for 400 particles per cell using the grid-based TA algorithm, the Lemons algorithm, and the 

Lemons algorithm with ad hoc energy-momentum conservation imposed.  We note that the energy errors 

are similar for the grid-based TA and Lemons algorithms.  The energy errors for the Lemons algorithm 

with energy-momentum conservation imposed are significantly improved, and the results reveal a very 

weak systematic growth of the kinetic energy. We note two issues that may affect the result shown in Fig. 

4c: (1) the ad hoc energy-momentum conservation does not restore energy conservation exactly because of 

the use of Eq. (3) to cope with special relativity in the particle code; (2) there can be a noise-induced 

instability in the drag-diffusion Langevin equations when the drag-diffusion coefficients are calculated self-

consistently [23].  For the temperature dependence of the collision frequency in Coulomb collision rate T-

3/2, the analysis in [23] predicts instability with a growth rate scaling inversely with the number of particles 

for Np>>1.  Reference [23] notes that the instability can be nullified by shifting and scaling the velocities 
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after each collision to exactly conserve energy or by constraining the random numbers used in the 

collisions to exactly conserve their mean and variance.    

Two types of root-mean-square (RMS) error in the kinetic energy are plotted as a function of the 

number of particles per cell in Figure 5: 

                                                                                                                                   (6) 

where the sums are over the N collision events for each particle and KE is the sum of the kinetic energy 

over particles. The first RMS error is an average over the cumulative error in the energy, while the second 

RMS error is the average over kinetic energy errors at each time step.  We observe that the asymptotic error 

scaling 1/Np,cell
1/2 emerges for the grid-based TA algorithm  in Fig. 5a.  When we repeated the same set of 

computations with the Lemons, et al collision algorithm, the RMS errors in Fig. 5b are similar in 

magnitude and also scale as 1/Np,cell
1/2.   

Because restoring energy and momentum conservation after the collisions comes at a significant 

computational cost, it is important to understand the magnitude of the non-conservation problem.  A simple 

estimate for the energy error in one time step (RMS Err #2) in the grid-based TA scheme can be obtained 

as follows.  In the grid-based TA scheme the relative velocity vector is scattered through a small angle on 

each time step.  For the case of test and field particle velocity distribution functions at the same 

temperature, the scattering of test particle momenta through an angle should conserve total energy 

statistically if the sampling of the field particles, the random numbers used in the collisions, and the 

placement in phase space of the test-particle velocity vectors are random and uncorrelated, while 

symmetrically and uniformly distributed. However, the random numbers are not perfectly uniform and 

symmetric so that the standard error in any statistical quantity is O(1/Np
1/2); and the energy error is 

expected to scale as O(

! 

("#$t)
1/ 2 /N p

1/ 2).  We expect that the cumulative energy error  (RMS Err #1) will be 

larger by [N(N+1)/2]1/2~70 for the N=100 collision events in the simulations. 

The kinetic energy change in one time step in the Lemons scheme derives from a computation of 

! 

"KE = 1
2 m v+ "v( )2 # 1

2 mv
2 = m v"v + 12 "v

2( )  using Eq.(5) and then summing over the test particles, assuming 

the field particles have net zero mean drift.  This leads to three terms to O(Δt), i.e., , 
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! 

"KE = d 3v# f (v) a(v)"t + b(v)"t(N1
2 $1) + c(v)"t1/ 2N1[ ]  (7)    

      
  
where a, b, and c are functions of the speed v and are derived from the drag-diffusion coefficients, f(v) is 

the test-particle velocity distribution function, and the integral is represented by a sum over particles in the 

simulation.  If the test-particle distribution function is the same as the Maxwellian distribution function 

used for the field particles, then the integrated contribution of the deterministic term involving a 

analytically vanishes.  However, this cancellation is not perfect in the simulation due to the statistical 

sampling of the distribution function; and the standard error in the cancellation is of relative order 1/Np
1/2. 

Furthermore, the ensemble averages of the terms involving b and c also have standard errors of relative 

order 1/Np
1/2. Furthermore, the functional dependence of the self-consistent drag-diffusion coefficients on 

the velocity moments of the velocity distribution can lead to noise-induced damping or growth of the 

energy as analyzed in Ref. [23]. Thus, the analysis of Eqs.(5), (6), and (7) is quite complicated.  

Nevertheless, we analytically compute the contribution to ΔKE from the standard error in the leading term 

in O(Δt 1/2), i.e., diffusion term c(v) Δt1/2 in Eq.(7), to obtain an estimate for the error in the kinetic energy: 

O(

! 

("#$t)
1/ 2 /N p

1/ 2), which is the same as for the grid-based TA algorithm, if we assume that the noise-

induced instability, if present, is a weak effect.  The results in Figs. 5a and 5b are reasonably consistent 

with the estimates for RMS Err #1 and #2. 

 

IV.   Discussion 

We see from the performance of the grid-based TA algorithm that the grid-based algorithm requires 

twice the computation of the standard binary TA algorithm. With energy-momentum conservation 

imposed, the grid-based TA algorithm results in more than 2-3× the computational burden of the traditional 

TA algorithm in our implementation.  The grid-based TA algorithm is a little slower than our 

implementation of the Lemons algorithm and is at least as accurate for the same time step and number of 

particles.  What then might be the advantages of the grid-based TA algorithm compared to other collision 

algorithms? 

As part of a comparison of collision algorithms extending beyond the results reported in [11], we 

undertook a series of simulations varying the size of the collisional time step and studying the same 

relaxation of a weak temperature anisotropy problem addressed here. We studied relaxation driven by 

electron-electron collisions using both the Lemons, et al. grid-based algorithm [6] and the traditional TA 

binary collision algorithm[1].  Both algorithms yield good results compared to theory for 

! 

"*#t $ 0.25  

Separately we studied the same relaxation problem with only electron-ion collisions using the two 
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algorithms.  By using the TA binary algorithm for electron-ion (hydrogen) collisional relaxation of an 

electron temperature anisotropy, we were able to employ a time step that is O(10×) of those allowed in 

using the Lemons et al. algorithm [6].  This finding we attribute to having to resolve the diffusive velocity 

step in the perpendicular velocity diffusion at low velocities in the Lemons et al algorithm given the 

unfavorable scaling with (mi/me)1/2 of the perpendicular velocity diffusion rate for electron-ion collisions 

compared to the diffusion rate for electron-electron collisions, as explained in [11].  Thus, the TA collision 

algorithm allows the use of a substantially larger time step for electron-ion collisions than does the Lemons, 

et al algorithm without modification.  (However, if the Lemons, et al. algorithm for electron-ion collisions 

is reduced to just pitch-angle collisions with the drag and diffusion of the electron speed suppressed, the 

studies in [11] demonstrate that time steps as big as those used with the TA algorithm can be used with 

similarly good accuracy obtained.)  We also note that, as stated earlier, the drag-diffusion algorithms [3, 4, 

5, 6] can be vulnerable to noise-induced instability [23]; and the TA algorithm is more tolerant with respect 

to a rare large kick than is the Lemons et al algorithm unless some clamp or limiter on the magnitude of 

velocity kicks is installed in the latter. 

 The grid-based TA algorithm is straightforwardly extended to accommodate additional physics 

affecting the collision model, e.g., the stopping and scattering of relativistic electron beams in dense 

plasmas, as in the model of Atzeni, Schiavi, and Davies [24].  This collision model is of interest in the 

study of inertial confinement fusion involving fast ignition.  Atzeni, et al. derive the variance of the polar 

scattering angle in the laboratory frame for relativistic electrons collisionally scattering on plasma electrons 

using the Möller cross-section and including screening: 
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and relativistic electrons collisionally scattering on plasma ions including screening 
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where γ is the relativistic factor for the test particle with velocity v and 

! 

ln" = 4#$De /$dB = 4#$Demec%& /h  where λDe is the electron Debye length, h is Planck’s constant, λdB is 

the deBroglie wavelength, and β=v/c in the physics model of Atzeni et al [24].  The plasma electrons are 

assumed to be non-relativistic and essentially stationary compared to the relativistic electrons.  Note that 

the variances of the deflection angles in Eqs.(8) and (9) are calculated in the laboratory frame and a 
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typographical error in the exponent of γ in the denominator in Eq.(24) of [24] has been corrected here. We 

also note that the pre-factors in Eqs.(8) and (9) are consistent with those in the semi-relativistic model in 

Eq.(2) with the replacement for the relativistic electron test-particle momentum in the denominator: 

p=γmev≈γmec, assuming the velocity of the field particle is negligible compared to the relativistic electron 

in the laboratory frame.  Equations (8) and (9) represent a computation of corrections to lnΛ.  In the 

Appendix we give a summary of the relativistic extension to the TA algorithm for colliding a pair of 

particiles. 

A model for collisions when a minority component of relativistic electrons is present could use 

Eqs.(8) and (9), and the grid-based TA algorithm for the relativistic electrons scattering on the background 

plasma; and the inter- or intra-species collisions of the non-relativistic electron and ion background 

particles could use the traditional TA, grid-based TA, or Lemons et al algorithms.  In this model, it is 

assumed that the scattering of the relativistic electrons off other relativistic electrons is negligible compared 

to the scattering off the background electrons and ions, and that the scattering of the background electrons 

and ions off the relativistic electrons is negligible compared to the scattering off the background electrons 

and ions. 

In the simulation model of Sentoku and Kemp [16] unequally weighted particles are introduced to 

represent a large range in plasma density spanning many orders of magnitude.  Sentoku and Kemp [16] 

extend the TA/Nanbu binary collision model to accommodate unequally weighted particles, but energy-

momentum conservation can no longer be preserved.  The grid-based version of the TA/Nanbu collision 

algorithm is easily applied to the use of unequally weighted particles, and energy-momentum conservation 

can be restored by shifting and scaling the momenta after the collision as described earlier. 

In summary, the grid-based TA collision algorithm should be considered as a good alternative to grid-

based collision algorithms like those in [3], [4], [5] and [6].  Like other grid-based collision algorithms, the 

grid-based TA scheme is well suited for including Coulomb collisions in a particle-fluid hybrid plasma 

simulation.  Its performance is at least as good or better than the grid-based algorithms in [4], [5] and [6], is 

more tolerant to the rare large Gaussian random number, is not subject to a possible noise-induced 

numerical instability, and allows the use of a significantly larger time step for electron-ion collisions. 

Furthermore, as suggested in Sec. II, the detailed self-consistency of the field particle velocity distribution 

function with the evolving kinetic plasma and its influence on the collisional relaxation can be 

accommodated in the grid-based TA scheme in principle without having to calculate Rosenbluth potentials.  

Finally, the grid-based TA collision algorithm can be extended straightforwardly to different collision 

models.   

 



 13 

Acknowledgment 

We are grateful to Alex Friedman, Andreas Kemp, David Larson, Mark Rosin, and Russ Caflisch for 

useful discussions, suggestions, and encouragement.  

 

Appendix: Relativistic Binary Collisions 

Here we give a summary of the steps in the semi-relativistic generalization of the TA collision 

algorithm.  The analysis involves Lorentz transformation of the momentum vectors of the two colliding 

particles between three frames of reference: laboratory frame (L), rest frame of the field (second) particle 

(R), and center-of-mass frame (CM).  One first designates a test (1) and field (2) particle pair, and Lorentz 

transforms to the rest frame of the field particle which is defined by  
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The test-particle momentum p1
L is Lorentz transformed to the rest frame R using the VR determined in 

Eq.(A1).  The momentum vector p1
R is then represented with respect to rotated Cartesian axes such that the 

new zR’ axis is aligned with p1
R as rotated in Eq.(2) of [1] and Eq.(23) of [6].  In the rest frame p2

R=0 and 

after the collision event, the scattered test particle momentum q1
R will make a polar angle Δθ with the zR’ 

axis determined with Δθ determined in Monte Carlo fashion using Eq.(2), (8), or (9), for example.   

To compute the magnitudes and directions of the scattered momenta q1
R and q2

R, we need to consider 

the collision in the center-of-mass frame CM. In the CM frame the momenta of the test and field particles 

must sum to zero, by definition. Thus, the test and field momenta are equal and oppositely directed both 

before and after the collision, and are simply rotated by the small angle α in the scattering plane due to the 

collision.  The collision also introduces a completely random azimuthal angle with respect to the zR’ axis.  

Moreover, the magnitudes of the momenta vectors in the CM frame are unchanged by the collision in order 

to conserve energy either non-relativistically or relativistically if the collision is elastic (e.g., ignoring 

radiation losses and assuming that the collision is non-ionizing).  By considering the Lorentz 

transformations from the R frame to the CM frame with the condition that p2
cm= - p1

cm, one readily 

determines  
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p1z
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R m2c
2 /(m2c

2 + E1
R ),

Vc = p1z
R /(m2 + E1

R /c2), " c = 1/(1#Vc
2 /c2)1/ 2

   (A2) 

where Vc is the velocity of the CM frame with respect to the rest frame R. Rotations and a Lorentz 

transformation using Eq.(A1) determines p1z
R from p1

L.  We can now determine the angle α by Lorentz 
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transforming q1
CM back to frame R and by using the vector components of q1

R to evaluate tanΔθ, where 

Δθ is determined by the product of a Gaussian random number and the square root of the variance  

<Δθ2> accrued in one time step Δt calculated from Eq.(2), (8), or (9), for example. Then 
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   (A3) 

From Eq.(A3) one determines sinα and then q1
R, keeping in mind that the theory assumes small-angle 

scattering. It is then straightforward to evaluate q2
R by using q2

CM= - q1
CM and performing the Lorentz 

transformation from CM to R.  The post-collision random azimuthal angle φ can be introduced in the CM 

frame, which leads to (q1x
R, q1y

R)= q1⊥

R(cosφ,sinφ).  We next reverse the rotation of axes performed in the 

rest frame R and finally use the inverse of the Lorentz transformation defined in Eq.(A1) to determine the 

post-collision momenta q1
L and q2

L. 

 In the non-relativistic limit, Eqs.(A2) and (A3) lead to  
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where u=v1z
L-v2z

L.  Hence, 

! 

q1,2
L = p1,2

L ±m12"u , where 

! 

"u = uz ,u#[ ] = u(1$ cos%),u sin%[ ] .  These results recover 

the results of TA as in Eq.(1).  We also note that for like-species collisions, m12=m1/2 and the energy of the 

test particle after the collision in the rest frame R is reduced by the collision, 
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R 2 1* (sin+ )2( ) , while the energy of the field particles increases.  For m1/m2<<1, as in 

electron-ion collisions, m12≈m1 and the energy of the test particle after the collision in the rest frame R is 

unchanged to good approximation, 
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Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Collisional relaxation (e-e collisions) of a 10% initial temperature anisotropy with Ncell=400, 40K 

particles total, with ν*Δt=νee,NRLΔt=0.01 (a) Takizuka-Abe algorithms. (b) Lemons algorithm with and 

without energy conservation 
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Fig. 2 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Agreement of the (a) grid-based Takizuka-Abe and (b) Lemons et al collision algorithms for 

relaxation of a 10% temperature anisotropy compared to theory improves with more particles per cell. ν*Δt 

= νee,NRLΔt=0.01 
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Fig. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Collisional relaxation of a weak temperature anisotropy using the grid-based TA algorithm.  Kinetic 

energy vs. time as a function of increasing numbers of particles per cell. The kinetic conservation error 

decreases with increasing particles per cell Np,cell 
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Fig. 4 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Collisional relaxation of a weak temperature anisotropy.  Kinetic energy normalized to the initital 

energy is plotted vs. time. (a) Takizuka-Abe grid-based algorithm. (b) Lemons et al. algorithm with self-

consistent drift and drag-diffusion coefficients. (c) Lemons et al algorithm with approximate energy 

conservation 
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Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Collisional relaxation of a weak temperature anisotropy.  The root-mean-square (RMS) energy 

conservation errors decrease with increasing particles per cell. (a) Takizuka-Abe grid-based algorithm. (b) 

Lemons et al. algorithm.  
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