Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

PDF Version Also Available for Download.

Description

Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe ... continued below

Creation Information

Krutka, Holly & Sjostrom, Sharon July 31, 2011.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant’s Martin Lake Steam Electric Station and Xcel Energy’s Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO{sub 2} removal with the sorbents evaluated under this program, it was useful to compare the CO{sub 2} removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO{sub 2} for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO{sub 2} removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO{sub 2} capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO{sub 2} uptake rate. Three additional supported amine materials, sorbents AX, F, and BN, were selected for evaluation using the 1 kW pilot at Sherco. Sorbent AX was operated in batch mode and performed similarly to sorbent R (i.e. could achieve up to 90% removal when given adequate regeneration time). Sorbent BN was not expected to be subject to the same mass diffusion limitations as experienced with sorbent R. When sorbent BN was used in continuous mode the steady state CO{sub 2} removal was approximately double that of sorbent R, which highlighted the importance of sorbents without kinetic limitations. Many different processes and equipment designs exist that may be applicable for postcombustion CO{sub 2} capture using solids in a temperature-swing system. A thorough technology survey was completed to identify the most promising options, which were grouped and evaluated based on the four main unit operations involved with sorbent based capture: Adsorption; Heating and cooling, or heat transfer; Conveying; Desorption. The review included collecting information from a wide variety of sources, including technology databases, published papers, advertisements, web searches, and vendor interviews. Working with power producers, scoring sheets were prepared and used to compare the different technology options. Although several technologies were interesting and promising, those that were selected for the final conceptual design were commercially available and performed multiple steps simultaneously. For the adsorption step, adsorption and conveying were both accomplished in a circulating fluidized bed. A rotary kiln was selected for desorption and cooling because it can simultaneously accomplish conveying and effective heat transfer. The final technology selection was used to complete preliminary costs assessments for a conceptual 500 MW CO{sub 2} capture process. The high level cost analysis was completed to determine the key cost drivers. The conceptual sorbent-based capture options yielded significant energy penalty and cost savings versus an aqueous amine system. Specifically, the estimated levelized cost of electricity (LCOE) for final concept design without a CO{sub 2} laden/lean sorbent heat exchanger or any other integration, was over 30% lower than that of the MEA capture process. However, this cost savings was not enough to meet the DOE’s target of ≤35% increase in LCOE. In order to reach this target, the incremental LCOE due to the CO{sub 2} capture can be no higher than 2.10 ¢/kWh above the LCOE of the non-capture equivalent power plant (6.0 ¢/kWh). Although results of the 1 kWe pilot evaluations suggest that the initial full-scale concept design must be revisited to address the technical targets, the cost assessment still provides a valuable high-level estimate of the potential costs of a solids-based system. A sensitivity analysis was conducted to determine the cost drivers and the results of the sensitivity analysis will be used to direct future technology development efforts. The overall project objective was to assess the viability and accelerate development of a solid-based post-combustion CO{sub 2} capture technology that can be retrofit to the existing fleet of coal-fired power plants. This objective was successfully completed during the project along with several specific budget period goals. Based on sorbent screening and a full-scale equipment evaluation, it was determined that solid sorbents for post-combustion capture is promising and warrants continued development efforts. Specifically, the lower sensible heat could result in a significant reduction in the energy penalty versus solvent based capture systems, if the sorbents can be paired with a process and equipment that takes advantage of the beneficial sorbent properties. It was also determined that a design using a circulating fluidized bed adsorber with rotary kilns for heating during regeneration, cooling, and conveying highlighted the advantage of sorbents versus solvents. However, additional technology development and cost reductions will be required to meet the DOE’s final technology goal of 90% CO{sub 2} capture with ≤35% increase in the cost of electricity. The cost analysis identified specific targets for the capital and operating costs, which will be used as the targets for future technology development efforts.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: NT0005649
  • DOI: 10.2172/1084028 | External Link
  • Office of Scientific & Technical Information Report Number: 1084028
  • Archival Resource Key: ark:/67531/metadc827520

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 31, 2011

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • Nov. 28, 2016, 1:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Krutka, Holly & Sjostrom, Sharon. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants, report, July 31, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc827520/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.