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West Nile virus (WNV) is an emerging infectious disease that has widespread 

implications for public health practitioners across the world. Within a few years of its 

arrival in the United States the virus had spread across the North American continent. 

This research focuses on the development of a spatially explicit GIS-based predictive 

epidemiological model based on suitable environmental factors. We examined eleven 

commonly mapped environmental factors using both ordinary least squares regression 

(OLS) and geographically weighted regression (GWR). The GWR model was utilized to 

ascertain the impact of environmental factors on WNV risk patterns without the 

confounding effects of spatial non-stationarity that exist between place and health. It 

identifies the important underlying environmental factors related to suitable mosquito 

habitat conditions to make meaningful and spatially explicit predictions. Our model 

represents a multi-criteria decision analysis approach to create disease risk maps under 

data sparse situations. The best fitting model with an adjusted R2 of 0.71 revealed a 

strong association between WNV infection risk and a subset of environmental risk 

factors including road density, stream density, and land surface temperature.  

This research also postulates that understanding the underlying place 

characteristics and population composition for the occurrence of WNV infection is 

important for mitigating future outbreaks. While many spatial and aspatial models have 

attempted to predict the risk of WNV transmission, efforts to link these factors within a 

GIS framework are limited. One of the major challenges for such integration is the high 



dimensionality and large volumes typically associated with such models and data. This 

research uses a spatially explicit, multivariate geovisualization framework to integrate 

an environmental model of mosquito habitat with human risk factors derived from socio-

economic and demographic variables. Our results show that such an integrated 

approach facilitates the exploratory analysis of complex data and supports reasoning 

about the underlying spatial processes that result in differential risks for WNV. 

This research provides different tools and techniques for predicting the WNV 

epidemic and provides more insights into targeting specific areas for controlling WNV 

outbreaks.  
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CHAPTER 1

INTRODUCTION

1.1 Introduction

West Nile virus (WNV) is a globally emerging infectious disease that first

appeared in United States in 1999. It poses a considerable public health concern and a

continuing challenge as currently no medications or vaccines exist that can treat WNV

infection in human population (De Filette et al. 2012). Therefore it becomes important to

develop efficient methods for disease prediction and modeling as it can help to identify

areas of risk, improve the specificity of exposure prediction, and, therefore, help develop

better public health intervention strategies.

The distribution of WNV is dependent on the occurrence of susceptible avian

reservoir hosts and competent mosquito vectors, mosquito host preference, and

availability of hosts. The WNV transmission cycle (Figure 1-1, JAMA, 2012) commences

with the deposition of eggs by a female mosquito. A competent female mosquito bites

an infected bird reservoir host (Blair 2009) while seeking a blood meal to obtain

nutrients necessary for egg development. The infected mosquito can now potentially

transmit the virus to another bird or animal host when it feeds again. Upon migration of

these infected birds the virus is once again transmitted to susceptible mosquitoes.

Ultimately the disease is transmitted by mosquitoes to humans or other mammals that

act as incidental hosts.



2

WNV has been detected in dead birds of at least 326 species. Although birds,

particularly crows and jays, infected with WNV can die or become ill, most infected birds

do survive.

Figure 1-1 West Nile Virus transmission cycle, Photo. JAMA. 2012/jamanetwork.com

(Kuehn 2012) (accessed March 30 2013).

1.2 Research questions

Across the research continuum several methods have been applied for developing

spatial epidemiological models. Some of the traditional spatio-temporal prediction

methods include general and generalized linear models (GLM), generalized additive

models (GAM) and Bayesian estimation methods that require both presence and

absence data of the disease. Newer spatial modeling methods like maximum entropy

(MAXENT) and the genetic algorithm for rule set production (GARP) require only
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disease presence data. These methods have been used widely in the fields of ecology,

species distribution modeling and habitat suitability. For the research reported in this

dissertation a knowledge driven approach, multi-criteria decision analysis (MCDA) that

uses knowledge of the causal factors of disease occurrence was used to identify areas

potentially suitable for harboring the disease. Literature (Hongoh et al. 2011) also

recommend this approach for developing spatially explicit decision support tools for

vector borne diseases. The objective of this research was to develop a spatially explicit

methodological approach for predicting areas vulnerable to WNV risk.

Three questions were defined (Figure 1-2) related to spatially explicit modeling of

WNV risk in human population:

1) In the absence of case data how can environmental factors be used to predict

WNV risk among humans?

2) How can spatial variations in the WNV model be determined?

3) How can human population characteristics be integrated to further improve the

assessment of WNV risk in human population?

Each of these questions is addressed as a chapter in this dissertation and it is written in

a manuscript format for publishing purpose.
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Figure 1-2 Modeling approach and research questions.

1.3 Environmental model

Due to the unavailability of reliable and complete data, developing models of WNV

risk pose additional challenges. Human case data is lacking due to issues of under-

reporting and limited surveillance. Animal sentinels have proved to be useful for disease

prediction modeling and identifying areas for human infection risk (Ann et al. 2009).

Several studies (Chaintoutis et al. 2014; Eidson et al. 2001a; Eidson et al. 2001b;

Eidson et al. 2001c; Guptill et al. 2003; Johnson et al. 2006; Mostashari et al. 2003;

Nielsen & Reisen 2007; Patnaik et al. 2007) have suggested links between infected

dead birds and WNV human infection rates. Since wild birds are also primary reservoir

hosts (Cooke et al. 2006) for WNV, we utilized this association and determined its utility

by correlating  the infected dead bird data with human infection rate (r2 = 0.409, p-value
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= 0.01). This allowed to the use of infected birds data as a proxy for incomplete human

case data. Further, mosquito habitat suitability has been used as a surrogate for

estimating WNV infection risk for humans (Cooke et al. 2006). Research suggests that a

model based solely on bird data does not determine the severity of the disease nor

describes the coincidence of bird exposure to mosquito habitats because bird habitats

cover vast areas In this research a model of mosquito habitat suitability conditions as a

predictor of the spatial distributions of infected birds was developed, which in turn can

be used to inform WNV disease risk among human populations. The habitats for

potential WNV mosquito vectors can be modeled using environmental variables as

vectors and pathogen reservoirs overlap under favorable conditions of environmental

factors (Rochlin et al. 2011). GIS, geostatistical, and spatial analysis techniques were

utilized in this study to evaluate habitat suitability of WNV-carrying mosquitoes. Table 1-

1 provides an overview of the environmental factors that are associated with WNV

transmission. These include characteristics of a place such as the WNV mosquito

species habitat; climatic conditions, topography, and land use/land cover classes such

as vegetation, water, and urbanized areas. Spectral indices acquired from satellite

imagery provide information about environmental characteristics like land surface

temperature, vegetation cover, and moisture (Rodgers & Mather 2006). Additionally,

these environmental variables also play an important role in influencing WNV

transmission by affecting the gonotrophic cycle of mosquito vectors (Reisen et al.

2006b).
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Table 1-1 Environmental factors associated with WNV vector habitat

1.4 Spatial Heterogeneity

The environmental variables considered in this study are known to vary across

space and therefore require an adjustment for spatial autocorrelation and non-

stationarity (DeGroote et al. 2008). Other studies suggest that if variables vary across

geographic space, then global models may lead to inaccurate predictions and lead to

inaccurate decision-making. According to Miller (2012) there are two important

Factors Relation to WNV risk Factors Relation to WNV risk

Stream (Cooke et al.

2006)

Sites for breeding and

resting

Road (Cooke et al.

2006)

Sites for breeding and

resting

Temperature (Kuehn

2012; Srivastava et al.

2001; Wimberly et al.

2008b)

Increases growth rate

of vector, decreases

egg development

cycle and shortens

extrinsic incubation

period of vector

Vegetation

(Brownstein et al.

2002; Cooke et al.

2006; Ruiz et al.

2004a; Srivastava et

al. 2001)

Sites for breeding and

resting

Surface slope (Cooke

et al. 2006; Ozdenerol

et al. 2008b;

Srivastava et al. 2001)

Water stagnation

creating mosquito

breeding ground

Evapotranspiration

(Liu & Weng 2012a;

Trawinski & Mackay

2008)

reflects the amount of

surface wetness that

is related to mosquito

abundance

Cultivated land

(Kilpatrick 2011)

Preferred natural

ground pools

Developed land

(Kilpatrick 2011)

warmer micro-climates
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considerations that must be examined when developing spatially explicit environmental

disease risk  models (Miller 2012). First, spatial autocorrelation considers that disease

rates as well as corresponding environmental factors in geographically proximate areas

are more related than the geographically distant areas. Second, due to variability in the

underlying risk factors for a disease, the model must account for any evidence of spatial

non-stationarity (Fotheringham 2009a; Miller 2012).

Geographically weighted regression (GWR) is commonly used to account for

these considerations and to produce improved models that enable better spatial

inference and prediction. Recent studies have applied GWR modeling to drug-resistant

tuberculosis versus risk factors (Liu et al. 2011); environmental factors versus typhoid

fever (Dewan et al. 2013); local climate and population distribution versus hand, foot,

and mouth disease (Hu et al. 2012); and environmental factors and tick-borne disease

(Atkinson et al. 2012; Atkinson et al. 2014; Wimberly et al. 2008a; Wimberly et al.

2008b), all showing that predictor variables varied spatially across large geographic

regions, implying that studies examining diseases across geographic space are

improved using GWR.

The spatially explicit model that is discussed in this research uses GWR to

account for spatial heterogeneity for two reasons: (a) disease risk observed over space

are covered by similar environmental conditions that are related to vector habitat

suitability and thus to disease transmission and (b) environmental variables that

influence WNV risk are not uniformly distributed across the study area. Although many

epidemiological models of WNV risk have been developed, few have explicitly

considered techniques that account for spatial heterogeneity as discussed above. Such
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models assume that the impact of various environmental factors are constant across the

study region, which is unrealistic as larger areas display substantial variations in

distribution of environmental, socio-economic, and demographic conditions (Goovaerts

2008).

Traditional global regression models such as ordinary least square regression

are not designed to address issues of spatial heterogeneity discussed above. This

research presents an analysis that utilizes a local regression approach to explicitly link

WNV human infection and environmental risk factors. The spatial heterogeneity in these

relationships was analyzed using GWR, a local regression analysis that accounts for the

spatial non-stationarity present in the independent variables (Fotheringham et al. 2003).

The significance of such an approach in predicting WNV risk is that it is likely to yield

more accurate predictions. The spatial granularity resulting from this approach provides

detailed information that can be used to identify locales where suitable conditions for

WNV mosquito habitat exists, thereby allowing public health planners to design better

interventions. The broader implication of this research is that it allows public health

authorities to design locally specific strategies for places with limited resources.

1.5 Geovisualization framework

Another challenge with spatially explicit disease modeling is the understanding of

spatial variations in disease risk across different regions as well as population groups.

Oppong & Harold (2009) argue that vulnerability to disease is inevitably tied to specific

places whether it involves risk behaviors, population, or place characteristics.

Understanding these factors is useful for hypothesis-generation in public health
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research, policy-making, and for understanding the underlying spatial processes that

produce differential risks. In this research a framework for integrating population

characteristics and place characteristics for assessing WNV risk was provided.

While many spatial and non-spatial models have attempted to predict the risk of

WNV transmission, efforts to link these factors within a GIS framework are limited.

However, the complex relationships that exist between WNV human infection risk and

any contextual or compositional factors are poorly understood. In this research, a

geovisualization technique was used to explore these relationships. A major challenge

for such integration is the high dimensionality of the data making it difficult to tease out

patterns of interest.

The lack of any integrated approaches in understanding the effect of these

variables on WNV limits the ability to discover potential hidden patterns in a large

number of possible combinations from such multivariate datasets. Guo et al. (2005)

asserted that even in a selected subset of the data it is still a challenge to discover

hidden relationships as potential patterns may take various forms - linear or non-linear,

spatial or non-spatial. It is also important that analyses of such complex datasets are

performed using methods that are computationally efficient. Tools developed for

geovisualization can be used to support multivariate analysis of geospatial data. In this

study, contextual environmental factors affecting WNV risk were modeled using

geostatistical and spatial analysis techniques. The compositional factors affecting WNV

risk are then combined with the contextual model output using geovisualization

techniques such as the self-organizing map (SOM) and the parallel coordinate plot

(PCP) approaches. When coupled with multivariate visualization, these techniques can
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reveal how interactions between the contextual and compositional factors vary locally

across geographic space. The clustering and mapping of these factors is then analyzed

to identify the places vulnerable to WNV risk. Our study postulates that understanding

the underlying place characteristics and population composition for the occurrence of

WNV is important for mitigating future outbreaks.
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CHAPTER 2

SPATIALLY EXPLICIT MODELING OF WEST NILE VIRUS RISK USING
ENVIRONMENTAL DATA

2.1 Abstract

West Nile virus (WNV) is an emerging infectious disease that has widespread

implications for public health practitioners across the world. Within a few years of its

arrival in the United States the virus had spread across the North American continent.

This research focuses on the development of a spatially explicit GIS-based predictive

epidemiological model that operates at the local level and enables the study of spatial

distribution of WNV. The study attempts to construct a WNV risk model based on

suitable environmental factors for predicting mosquito habitats. GIS data processing,

geo-statistical measures, and spatial analysis techniques were utilized for detailed

investigation. Our model represents a multi-criteria decision analysis approach to create

spatially explicit disease risk maps. It also considers the non-stationarity of

epidemiologic processes by utilizing GWR technique. The best fitting model with an

adjusted R2 of 0.709 (p<0.05) revealed a strong association between WNV infection risk

and a subset of environmental risk factors including road density, stream density, and

land surface temperature. This study postulates that understanding the conditions

underlying the occurrence of WNV provides tools for detecting, tracking, and predicting

the epidemic.
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2.2 Introduction

WNV is an emerging infectious disease that has widespread implications for

public health practitioners across the world. The disease was first identified in the

Western Hemisphere in New York City in 1999. Understanding the spatial distribution of

the disease is important as it can help identify areas of risk, improve the specificity of

exposure prediction, and therefore help develop better public health intervention

strategies. While studies have previously modeled the relationship between

environmental factors and WNV risk (Ann et al. 2009; Brown et al. 2008; Gibbs et al.

2006; Ward et al. 2009), they often assume that the effects of various environmental

factors are constant across the study region. However, such assumptions are unrealistic

as larger areas are known to have substantial local variations in the distribution of

environmental factors (Goovaerts 2008). While several spatial and aspatial models have

attempted to model the risk of WNV transmission, they typically do not incorporate such

localized differences. This research focuses on the development of a spatially explicit

GIS-based predictive epidemiological model that operates at the local level and enables

the study of spatial distribution of WNV. Our approach incorporates fine-scale

environmental variables for modeling habitat suitability of disease-carrying mosquitoes.

It also represents a multi-criteria decision analysis technique to create disease risk

maps while considering the non-stationary relationship between place and health.

The model introduced in this paper focuses on the habitat suitability for the

transmission vector using a variety of spatial and geostatistical techniques. Further, it

utilizes spatially indexed environmental data on land use, land surface temperature,

vegetation, slope, road density, stream density, and evapotranspiration. Geographically
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weighted regression is a spatially explicit technique for diagnosing spatial heterogeneity

of the predicted risk and has been utilized in our model. The best fitting model with an

adjusted R2 of 0.709 (p<0.05) revealed a strong association between WNV-infected

dead birds and a subset of environmental risk factors including road density, stream

density, and land surface temperature, which emphasizes the importance of

environmental factors in modeling habitat suitability for disease-carrying mosquitoes.

2.3 West Nile Virus

WNV is a mosquito transmitted zoonotic arbovirus that belongs to the genus

Flavivirus in the family Flaviviridae. It is a vector-borne pathogen that was first

discovered in Uganda in 1937 (Smithburn et al. 1940). Since then, its geographic range

has expanded throughout Africa and to Asia, Europe, North America, Central and South

America, and the Caribbean (Cruz et al. 2005; Hubálek & Halouzka 1999; Komar &

Clark 2006; Malkinson & Banet 2002; McIntosh et al. 1969; Morales-Betoulle et al.

2006; Quirin et al. 2004; Steele et al. 2000). Since its arrival in the United States, within

a few years the virus had spread across the North American continent (Hayes et al.

2005b). WNV has led to a decline in numerous bird species (CDC); however, an

increased morbidity and mortality of humans is of more concern. Although there are

licensed vaccines to treat horses infected with WNV, there is currently no immunization

available for WNV in humans, making it a continuing public health challenge in the

United States for the indefinite future (De Filette et al. 2012). With the spread of this

infection across North America, public health strategies have been developed to identify

places of high risk of infection to humans, with the goal of prevention.
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The distribution of WNV is dependent on the occurrence of susceptible avian

reservoir hosts and competent mosquito vectors, mosquito host preference, and

availability of hosts. The mosquito life cycle commences with the deposition of eggs by

a female mosquito. These eggs develop into larvae which mature to pupae and finally

into adults. This development requires the availability of standing water. While seeking a

blood meal for egg development, female mosquitoes become infected by acquiring the

WNV from infected birds (Blair 2009). A female mosquito may go through a number of

egg development cycles during her lifetime. Some mosquito species take more than

one blood meal per cycle (Kramer & Ebel 2003). After taking an infectious blood meal, a

mosquito can pick up a permanent infection and then has the potential to transmit the

virus to multiple hosts while seeking a blood meal. Multiple blood meals increase the

host contact as well as the fertility and life-span of these mosquitoes, thereby enhancing

viral transmission (Kramer & Ebel 2003). Transmission of the virus is caused primarily

through the bite of an infected mosquito when feeding on a susceptible avian host.

Infected birds then fly to different locations where the virus is transmitted to other

susceptible mosquitoes. Ultimately the disease is transmitted by mosquitoes to humans

or other mammals that act as incidental hosts. A study conducted in California has

shown vertical transmission of WNV in infected Culex mosquitoes that were collected

during late summer and fall. The study showed that females having high titered

infections were capable of passing the virus onto their offspring destined for

overwintering (Nelms et al. 2013). The incubation period of WNV is the time between

exposure to WNV and the first appearance of disease symptoms. In humans WNV

incubation period ranges from 2-14 days (Campbell et al. 2002). Figure 2-1 gives a
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diagrammatic representation of the WNV transmission cycle and life cycle of a

mosquito. There are more than 300 bird species (Gubler 2007) that act as reservoirs for

WNV. WNV has been detected in more than 60 mosquito species (CDC), though it

appears that only a few Culex species are implicated in the transmission of WNV

infection in North America. WNV-infected dead birds are currently a primary indicator for

the presence of disease in a geographic region. Reisen et al. (Reisen et al. 2006a)

studied the role of corvids in epidemiology of WNV in Southern California. Their study

showed that spatially significant clusters of dead corvids were congruent with clusters of

WNV human cases, indicating their importance in viral amplification and as a risk factor

for human infection. Because animal sentinels have proved to be useful for disease

prediction modeling and identifying areas for human infection risk (Ann et al. 2009), our

study focuses on using environmental factors to predict where dead birds infected with

the virus are most likely to be found. Furthermore, due to the unavailability of reliable

and complete data, developing models of WNV risk pose additional challenges. Human

case data is lacking due to issues of under-reporting and limited surveillance. WNV

infected birds have been used as a proxy for incomplete human case data (Cooke et al.

2006). However, this data is also spotty and sparsely available as it is not routinely

collected and is generally tabulated using user-reported observations of dead birds.

Further, mosquito habitat suitability has been used as a surrogate for estimating WNV

infection risk for humans (Cooke et al. 2006). In this paper, we follow a similar approach

and use a model of mosquito habitat suitability conditions as a predictor of the spatial

distributions of infected birds, which in turn can be used to inform WNV disease risk

among human populations.
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Figure 2-1 West Nile virus transmission cycle and mosquito life cycle.

2.4 Putative environmental risk factors

This research postulates that understanding the conditions underlying the

occurrence of WNV is important for mitigating future outbreaks. Vectors and pathogen

reservoirs overlap under favorable conditions of environmental factors, distinct

landscape features, and ecological settings (Rochlin et al. 2011). The distribution of

WNV appears to be dependent upon the presence of both susceptible bird reservoir

hosts and the mosquito vectors. Previous studies linking environmental variables to

WNV are typically undertaken at a coarse scale and have suggested a wide range of
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environmental correlates, including: long-term temperature patterns (Wimberly et al.

2008b), precipitation (Shaman et al. 2005), land-use changes and urbanization (Ezenwa

et al. 2007), host biodiversity (Kilpatrick et al. 2006), and global climate change

(Harrigan et al. 2014). Areas of high-vegetation abundance and vegetated areas along

the rivers are notably associated with WNV risk (Brownstein et al. 2002; Cooke et al.

2006). Low, flat areas with poor drainage have also been considered as preferred

habitats for mosquitoes (Cooke et al. 2006; Ozdenerol et al. 2008c). Land use classes

of cultivated and developed lands are also associated as preferred vector breeding sites

(Bowden et al. 2011; Bradley et al. 2008; Eisen et al. 2010; Kilpatrick 2011). Cooke,

Grala, and Wallis (Cooke et al. 2006) investigated environmental conditions favorable

for mosquito habitats by including variables such as road density, surface slope, stream

density, vegetation, and seasonal water budget in the risk model they developed. They

concluded that WNV risk was associated with road density being high, surface slope

being gentle, and stream density being low. Srivastava et al. (Srivastava et al. 2001)

research on predictive habitat modeling for malaria risk included forest cover, altitude,

rainfall, and temperature variables predicting areas of occurrence of Anopheles at the

micro-level geographic scale. Ruiz et al. (Ruiz et al. 2010) showed consistent and

significant impact of Spatio-temporal patterns of air temperature and precipitation on

increased mosquito infection. Brown et al. (Brown et al. 2008) systematically

determined a significant association of WNV risk with urbanization, suggesting that

urbanization enhances environmental conditions for virus transmission. As of the writing

of this paper, the most recent study (Valiakos et al. 2014b) relating environmental

parameters to WNV found that altitude and distance to water were significant correlates.
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Among these environmental variables, ambient temperature correlates with WNV

amplification because increased temperatures can result in increased mosquito

population, increased maturation of mosquitoes, frequency of mosquito feeding

behavior, and decreased extrinsic incubation period of the virus (Wimberly et al. 2008b).

This may trigger a shift from WNV amplification within avian communities to human

transmission. Kuehn (Kuehn 2012) reported that the 2012 WNV season had 5 times the

number of cases that were reported in 2011 and was one of the worst since the virus

emerged in the United States. Kuehn’s research suggests that the increase in WNV

cases concentrated in Texas, Mississippi, Michigan, South Dakota, Louisiana,

Oklahoma, and California in 2012 could be attributed to ecological factors, including

higher-than-normal temperatures, that may have influenced the abundance of

mosquitoes and birds, viral replication in host mosquitoes, and the interactions between

birds and mosquitoes. Liu and Weng (Liu & Weng 2012b) in a study on WNV risk in

southern California found that one of the main factors contributing to the WNV

propagation included land surface temperature. They related higher temperature to viral

replication in mosquitoes for WNV to be disseminated throughout the year. The results

also show that areas with lower elevations tended to be more susceptible to WNV

invasion as mosquito population propagates in the plain habitats with warmer

temperatures compared to areas with higher elevation that have lower temperatures.

These studies have resulted in the practice of using dead bird counts or

mosquito-abundance data as an indicator of WNV risk. Research suggests that a model

based solely on bird data does not determine the severity of the disease nor does it

describe the coincidence of bird exposure to mosquito habitats because bird habitats
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cover vast areas of land (Cooke et al. 2006). For these reasons, bird data alone may

not correctly predict the pattern of WNV infection, and therefore the research reported

here involved development of a WNV risk model based on environmental factors related

to mosquito habitats.

2.5 Spatial-epidemiology modeling for risk prediction

Traditional spatial-temporal methods for disease prediction include general and

generalized linear models (GLM), generalized additive models (GAM), and Bayesian

estimation methods. These methodologies require both presence and absence data of

the disease. Recent spatial modeling methods like maximum entropy (MAXENT) and

the genetic algorithm for rule set production (GARP) require only disease presence

data.

Multi-criteria decision analysis (MCDA) modeling uses knowledge of the causal

risk factors of disease occurrence to identify potential risk areas. Because of various

environmental determinants, the risk for vector-borne diseases can be considered to be

heterogeneously distributed in space. The MCDA-based approach is useful to the

development of geospatial models and spatially explicit decision support tools for the

management of vector-borne diseases (Hongoh et al. 2011). In data-sparse situations,

disease risk maps can be produced using a GIS-based MCDA approach. An important

element of this approach is professional judgment, which provides a framework for

interaction between formal statistical methods and experience-based qualitative

knowledge. The MCDA approach can include both quantitative and qualitative variables,

and it is able to accommodate the non-linear relationships that are generally
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encountered between disease organisms, vectors, reservoirs, and the environment

(Stevens & Pfeiffer 2011). Table 2-1 provides a list of epidemiologic studies that have

utilized the MCDA approach for modeling disease risk as seen from Table 1. MCDA

modeling includes four steps, the first two of which are: 1) establish the factors and

constraints and 2) standardize the factors and constraints. Standardization of input

factors is important as it incorporates different scales of each factor in the model and

also the factors’ relationships to the dependent variable (Steele et al. 2009). For

standardization, there are different transformation techniques, but within MCDA, the

linear transformation method is most commonly used (Malczewski 2000). The final two

steps of the MCDA approach include: 3) establish relative weights of each factor and 4)

conduct the final evaluation. There are different ways of  defining factor weights

(Malczewski 2000; Steele et al. 2009), including an analytical hierarchy process (Saaty

1990). The final evaluation is achieved by combining the factors using methods such as

weighted linear combination (WLC), ordered weighted averaging (OWA), simple

additive weighting (SAW), or Dempster-Shafer theory. (Rakotomanana et al. 2007). Our

research utilized the MCDA approach for identifying mosquito habitat suitability areas

and creating the WNV risk map.
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Table 2-1 Epidemiologic studies utilizing multi-criteria evaluation approach

Epidemiologic

study

Publication(s) Multi-criteria evaluation

approach

Method for defining

factor weights

Avian influenza

virus H5N1

(Stevens &

Pfeiffer 2011)

Weighted linear combination Analytical   Hierarchy

Process

West Nile Virus (Cooke et al.

2006)

Simple additive weighting Rank sum

Malaria (Hanafi-Bojd et

al. 2012;

Rakotomanana

et al. 2007)

Weighted linear combination,

Simple additive weighting

Analytical   Hierarchy

Process, Evidence based

weighting

Trypanosomiasis (Robinson et al.

2002)

Weighted linear combination Established by

experienced

professionals

Rift valley fever (Clements et al.

2006)

Weighted linear combination,

Ordered weighted averages,

Dempster-Shafer theory

Relative frequency of

reporting in literature,

Rank of suitability scores

within pixel

Research on spatial epidemiology tends to focus on people and time, with little

consideration of the implications of spatial dimensions of disease processes (Rezaeian

et al. 2007). Many epidemiological analyses implicitly or explicitly assume the impact of

various factors to be constant across the study region, which may be unrealistic for

large areas that might display substantial variations in distribution of environmental,

socio-economic, and demographic conditions (Goovaerts 2008). The consideration of
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place in public health studies is useful for formulating etiological hypotheses and for the

efficient distribution of resources for prevention and treatment (Rezaeian et al. 2007).

There are various spatial statistical techniques that have improved specificity of

exposure and disease relationships and increased our understanding of the

relationships between place and health (Auchincloss et al. 2012). Spatial statistics such

as Local Indicators of Spatial Associations (LISA) (Anselin 1995), Geographical

Weighted Regression (GWR) (Fotheringham et al. 2002), the G statistics (Getis & Ord

1992), local Moran’s I, and Geary’s C have been developed to measure spatial

dependency within local space. These techniques highlight local variation in the study

area to identify “hot” or “cold” spots, allowing investigations of non-stationary

relationships across space. Spatial autocorrelation results from the lack of

independence of data from neighboring areas, which implies that disease rates for

geographically proximate areas are more highly related than the geographically distant

areas. Simultaneous autoregressive models are methods designed to address spatial

autocorrelation, thus accounting for spatial dependency of the data (Rezaeian et al.

2007). The GWR technique is a local regression method that can be used for

diagnosing spatial heterogeneity between dependent and explanatory variables over

space (Auchincloss et al. 2012). It is performed within local windows centered on the

nodes of a regular grid; each observation is weighted based on its proximity to the

center of the window. This technique avoids abrupt changes in the local statistics of

adjacent windows, helps visualize spatial variability within the geographic entity, and

allows analyses of regionally aggregated data of different factors (Goovaerts 2008).

Herein, we utilize GWR to emphasize the role that environmental factors play in
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modeling habitat suitability for disease-carrying mosquitoes and demonstrate an

approach to create disease risk maps under data sparse situations while considering

the non-stationary relationship between place and health.

2.6 Materials and Methods

2.6.1 Study area

The study was conducted in the state of California at the county level. California

is the third largest state in area in the United States and is made up of 58 counties

(Figure 2-2). WNV was first detected in California in July 2003 (Reisen et al. 2004) and

the state became the national epicenter of WNV activity in 2004 and 2005 (Jean et al.

2007). California has the highest population in the U.S., but the population is unevenly

distributed across the state, due in part to its variable landscape with a central valley

bounded by mountain ranges.

Figure 2.2 World physical map with inset map showing study area.
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2.6.2 Study design overview

Clinical data of WNV human incidence cases, infected dead bird counts, and

spatially explicit data on environmental factors from 2004 to 2010 were utilized in this

study to develop a WNV risk map for California. Our study demonstrates a spatial

modeling approach in which temporal data is strengthening the results. Figure 2-3

summarizes the different steps of the WNV risk mapping methodology. The selected

environmental variables were categorized in two groups: static environmental factors,

which show slow or no change over the time frame of our study, and dynamic

environmental factors, which do. GIS data processing, geo-statistical measures, and

spatial analysis, along with MCDA and GWR techniques, were utilized in this study to

evaluate habitat suitability of WNV-carrying mosquitoes. Finally, a map of disease risk

for California was created.
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Figure 2-3 West Nile virus model skeleton.

2.6.3 Data sources

The Moderate Resolution Imaging Spectro-radiometer (MODIS) toolbox was

downloaded from ArcGIS® Resource Center (http://resources.arcgis.com) and

incorporated into the ArcGIS 10.0® environment for rapid download of imagery from

MODIS obtained from Terra and Aqua satellites. This toolbox also supports the

download of various dynamic environmental data products that are required for this

study including Normalized Difference Vegetation Index (NDVI), Land surface

temperature (LST), and Evapotranspiration (ET). Table 2-2 lists the different datasets
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and acquisition sources utilized for this research. Figure 2-4 provides a visual reference

to the land cover data that were acquired as an example.

Figure 2-4 Map showing distribution of different land-cover classes in California.
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Table 2-2 Sources of data and their spatial resolution

Data Source Spatial resolution

Elevation National Elevation Dataset (NED) 10m

Land Surface

Temperature (LST)

MODIS aboard the Terra and Aqua satellites 1 Km

Normalized Difference

Vegetation Index (NDVI)

MODIS aboard the Terra and Aqua satellites 250 m

Evapotranspiration (ET) MODIS aboard the Terra and Aqua satellites 1 Km

Streams U.S. Bureau of Reclamation available in vector

format for the State

of California

Roads U.S. Census bureau available in vector

format for the State

of California

Cultivated land National Land Cover Database 30 m

Developed land National Land Cover Database 30 m

WNV infected dead birds

count

U.S.G.S. National wildlife health center County scale

WNV  human incidence

cases

U.S.G.S. National wildlife health center County scale

Human population U.S. Census bureau (2010 census) County scale
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2.7 Data processing and analysis

The data for human incidence cases and WNV-infected dead bird counts were

compiled for analysis with other spatial datasets. Human incidence cases were

normalized for every 100,000 population, whereas infected dead bird counts were

averaged for the study’s 7 year period (2004-2010) for each county.

WNV vector-mosquitoes have specific habitat requirements, which were included

as factors in this study. Factors selected for this study were based on their established

relationship with WNV human risk as determined from previous research. Table 2-3

shows the association of environmental factors with WNV vector habitats. While spatial

epidemiological models are useful for disease surveillance and control program  if it

uses predictors that are easily available and interpretable (King et al. 2004); in practice

it is not possible to include each factor that affects habitat suitability. Here, the

environmental factors considered most important to mosquito habitat prediction and for

which data are easy to acquire in georeferenced format were utilized. Road density,

stream density, slope, percent of developed land, and percent of cultivated land were

selected as static variables, while land surface temperature, normalized difference

vegetation index, and evapotranspiration were selected as dynamic variables for

modeling suitable vector habitats.  There is a time elapse of 2-14 days between the

infection of a human by an infected mosquito and the appearance of disease symptoms.

The incubation period of WNV in mosquitoes was taken into account and the climate

data used in this study was for the month of July – the month prior to peak WNV human

incidence cases. Figure 2-5 presents a graph displaying WNV incidence with maximum

number of cases in the month of August. Data for each of the dynamic variables were
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downloaded in the form of GIS tiles. The tiles were mosaicked and clipped to the outline

of California, the study area boundary, in ArcGIS. The modeling method utilized in this

study was based on analyzing data in raster format, and therefore road and stream

vector data were converted to raster format using the ‘Kernel Density Estimation’ tool in

ArcGIS to create road density and stream density grid files. The tool assumes a

Gaussian distribution and thus assigns more importance towards the center of kernel in

comparison to the features that are further apart. Figure 2-6 shows kernel density maps

of major roads and streams for California.

Figure 2-5 Graph showing WNV disease onset week for California, 2004-2009 (CDPH)
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Figure 2-6 Kernel density maps of major roads and streams in California.

To initiate modeling, correlation analysis was performed on infected dead bird

counts versus human incidence rates to confirm that dead birds can be used as a

surrogate of WNV human risk. A positive moderate correlation (r2 = 0.409; p = 0.01)

was found, and, therefore, infected dead bird data were utilized as the dependent

variable in the model. Zonal Statistics tool in ArcGIS was used to compute the statistical

mean values for the independent variables at county scale. This was required for

regression analysis, also performed in ArcGIS, for the purpose of exploring spatial

relationships and understanding the factors responsible for observed patterns. For this

research, the Exploratory Regression tool in ArcGIS, similar to stepwise regression, was

used to evaluate possible combinations of the variables, in order to choose the model
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that best explains the dependent variable under specified criteria.  The ordinary least

squares (OLS) regression model was run on the dataset with infected dead bird counts

as the dependent variable and environmental factors as independent variables. Moran’s

Index of spatial autocorrelation was used to check if the residuals from the model output

exhibited a random spatial pattern.  In order to reduce over-estimation bias in the

results, redundancy among the explanatory variables was checked to examine overlap

among variables that might contribute to multi-collinearity. The OLS model allowed

identification of statistically significant explanatory variables using adjusted R2 values

and the corrected Akaike's Information Criterion (AICc) (Hurvich et al. 1998). The

Jarque-Bera test statistic was also employed to test for model bias (Jarque & Bera

1980).
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Table 2-3 Association of environmental factors with WNV vector habitat

Environmental

factors considered

Publication(s) Relation to WNV vector habitat

Slope (Ozdenerol et al. 2008c), (Cooke et

al. 2006),(Srivastava et al. 2001)

Water stagnation/ outflow rate

Stream (Cooke et al. 2006) Water used for breeding

Road (Cooke et al. 2006), (LaBeaud et al.

2008)

Sites for breeding along the

roads

NDVI (Ozdenerol et al. 2008a),(Cooke et

al. 2006), (Brownstein et al.

2002),(Srivastava et al. 2001), (Ruiz

et al. 2004a)

Vegetation areas are used for

breeding and resting

LST (Srivastava et al. 2001),(Wimberly et

al. 2008b),(Kuehn 2012)

Increase growth rates

of vector, decrease the length

of gonotrophic cycle, shorten the

extrinsic incubation period of the

virus in the vector, increase the

rate of virus evolution

Evapo-transpiration (Trawinski & Mackay 2008), (Liu &

Weng 2012a)

Reflects the amount of surface

wetness that is related to

mosquito abundance

Cultivated land (Kilpatrick 2011), (Eisen et al. 2010) Natural ground pools preferred

by some vector species

Developed land (Kilpatrick 2011), (Bowden et al.

2011), (Bradley et al. 2008)

increasing breeding sites or

warmer microclimates
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The OLS assumes that the variation in the coefficients are the same for every

area (spatially stationary), but many spatial epidemiologic processes are non-stationary

in nature. The Koenker statistic was used to determine if explanatory variables have a

consistent relationship with our dependent variable across the study area. Finding

conditions of non-stationarity model results were improved by use of GWR that

assumes that relationships can be stronger in one area than in another. The GWR

model was executed on the dataset with infected dead bird counts as the dependent

variable and independent variables comprising the statistically significant environmental

factors as determined by the OLS regression model results. Similar to the OLS model,

spatial autocorrelation analyses were performed on the model residuals to check if over

and under predictions were randomly distributed. Model performance was again

measured using adjusted R2 values and ultimately the model was calibrated using the

AICc method. The AICc method compared GWR model performance to the OLS model

and indicates improvement in model performance (a decrease of more than 3 points in

AICc value indicates a real improvement in model performance) (Charlton et al. 2009;

Krivoruchko 2011). The model was developed using two-thirds of California (randomly

selected). Those results were validated on the remaining one-third of the counties.

Figure 2-7 shows a map that represents the observed count of infected dead birds and

the predicted dead birds for each county in California. Comparing the predicted results

for each county, it appears that the model is relatively erratic when dead bird count is

low. This indicates that a more reliable model can be built when the dead bird count

reaches a minimum threshold.
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Figure 2-7 Observed Vs Predicted infected dead birds.

The MCDA approach was utilized to create a WNV disease risk map. This

modeling process was based upon  four steps: 1) establishment of the environmental

factors, 2) standardization of the factors, 3) establishment of relative weights for each

factor, and 4) conduction of the final evaluation (Rakotomanana et al. 2007).

Determination of relative factor weight was a crucial step in the modeling process. The
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significant environmental variables obtained from the spatial regression output were

ranked in order of their statistical significance, with more significant factors being

assigned a higher rank. Numerical weights were then calculated based on the Rank

Sum method that involved normalized summation of weights derived for each criterion

and is considered useful when the number of criteria being evaluated is relatively small

(Liu & Mason 2009), as follows:
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where wi is the normalized weight for ith criterion, n is the number of criteria being

evaluated, and ri is the rank position of the ith criterion.

Once the factors were ranked and weighted, each factor layer was standardized

for the “risk scale” of 1 to 10, where 1 represents least risk and 10 represents highest

risk. This step was executed using the spatial analyst extension in ArcGIS. Quantile

classification was used for standardization so that each risk class contained an equal

number of pixels. An important consideration during the risk standardization assignment

process was the coefficient sign since a negative coefficient creates an inverse risk

scale where 10 represents the least risk and 1 represents the highest risk. Finally, a

Simple Additive Weighting (SAW) method was applied to construct the disease risk

surface. For this method, each layer was multiplied with its weight before overlaying and

summing all the factor layers together to produce the output of the disease risk map.
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2.8 Results and discussion

Correlation analysis performed on infected dead bird counts and human

incidence rate showed a positive significant correlation (r2 = 0.409; p = 0.01) (see

Figure 2-8). Quantile classification was used for standardization and comparison of

these two maps. Because of this relationship, we suggest that a model that can predict

dead bird counts may be useful for planning intervention and response plans to reduce

human risk of WNV disease. The analysis demonstrated that a number of

environmental variables showed predictive value for WNV disease risk over the seven-

year time period our data covered. Significant associations were determined between

infected dead bird counts and environmental risk factors, including high road density

values, low stream density values, and land surface temperature (LST). The resulting

environmental risk factors are in accordance with various research publications

recommending that environmental data is effective in WNV risk prediction by focusing

on vector habitat requirements (Table 2-3). For the static environmental variables, road

density and lower stream density were significant predictors. Ditches along roadways

are likely places for stagnant water, thus optimal for mosquito breeding. Contrary to our

initial thoughts, stream density demonstrated a negative relation to disease risk.  This

may reflect that flowing water is normally not suitable for larval development of the

various species of mosquitos that commonly transmit WNV or that rasterizing the

stream database into stream density introduces a component that is not yet fully

understood. For our dynamic environmental variables, the analysis determined that LST

is a good predictor of the abundance of infected dead bird counts over the seven year

period; temperature increases the growth rates of mosquito populations, decreases the
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length of the gonotrophic cycle (interval between blood meals), shortens the extrinsic

incubation period of the virus in the vector, and increases the rate of virus evolution.

Figure 2-8 Maps of WNV human incidence rate and WNV infected dead birds.

Results of model performance from OLS regression gave a significant adjusted

R2 value of 0.617 (p<0.05) and AICc value of 567.70. Moran’s index of spatial

autocorrelation exhibited a complete spatial randomness of residuals from OLS

regression model thereby confirming that our model assumptions were met. The

Jarque-Bera test statistic was not significant, implying that the model was not biased

and that the regression residuals were normally distributed. Multi-collinearity amongst

explanatory variables was checked using the variance inflation factor that indicated that

the factors did not exhibit redundancy. The Koenker test statistic was found to be
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statistically significant indicating non-stationary relationships across the study area for

our dependent variables. Moving to GWR resulted in model improvement, increasing

the adjusted R2 value to 0.709 (p<0.05). Also, upon running the GWR model, the AICc

value decreased to 551.40, a drop of nearly 16 points, showing it to be a much better

model than the OLS regression model. Figure 2-9 displays our WNV human infection

risk map for 2005 using significant variables in MCDA model. Based on a threshold

count of at least forty infected dead birds, fifteen counties were selected. Executing the

model on this dataset gave an adjusted R2 of 0.82 (p<0.05).  Figure 2-10 graphically

compares the observed and predicted dead bird counts for the selected counties.

There are several assumptions upon which this study is based, most importantly

that factors suitable for mosquito habitat leads to higher mosquito populations,

increasing the likelihood that WNV is spread to human populations. It was also

assumed that the probability of human infection is higher in counties with multiple

confirmed WNV bird cases. In reality, a potential bias in this assumption may be that

human population density, variations in level of public concern, and resource availability

might bias the reporting of dead birds. Another assumption in this study is that people

are infected within the county of their residence, ignoring the possibility of contracting an

infection while traveling outside their county of residence. This could result in an

overestimation of locally occurring WNV human infection risk.  On the other hand,

human WNV cases may be under reported because some people may not have access

to healthcare services or the illness presents with mild symptoms resulting in

misdiagnosis. Additionally, mosquito control effort information was not integrated into

the model even though active control measures would likely influence the model results.
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Finally, data aggregation and smoothing processes were likely to introduce some

uncertainty into the model. Despite the assumptions, limitations and technical caveats,

we suggest that the model has enough explanatory power that can be potentially useful

at a coarse geographic scale for public health surveillance, intervention, and response

for WNV risk.

Figure 2-9 WNV human infection risk map for 2005.
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Figure 2-10 Counties with minimum threshold of WNV infected dead birds (at least 40

dead birds infected with WNV; r2=0.82)
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CHAPTER 3

USING LOCAL MODELING APPROACH TO EXPLORE SPATIAL HETEROGENEITY

IN WEST NILE VIRUS RISK

3.1 Abstract

The primary aim of the study reported here was to determine local spatial

variations in the statistical relationships between West Nile Virus (WNV) transmission

and environmental risk factors. Because standard regression methods do not account

for autocorrelation and non-stationarity of the type of spatial data analyzed for this

study, and because they often violate the model parameters, we hypothesized that a

geographically weighted regression model would help us better understand whether

environmental factors are related to WNV risk patterns without the confounding effects

of spatial non-stationarity. We examined eleven commonly mapped environmental

factors using both ordinary least squares regression and geographically weighted

regression. Ordinary least squares regression efforts lead to identifying three

environmental variables that were statistically significantly related to WNV risk (adjusted

R2=0.61): stream density, road density, and land surface temperature.  Geographically

weighted regression helps us improve the explanatory value of these three

environmental variables with better spatial preciseness (adjusted R2 = 0.71, p<0.5).

Public health professionals may benefit from this understanding of environmental spatial

heterogeneity in relation to WNV transmission risk to human populations.
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3.2 Introduction

WNV is an emerging vector-borne disease that was first detected in the United

States in 1999 (Nash et al. 2001). Within a few years the virus had spread across the

North American continent (Hayes et al. 2005b). WNV has had important environmental

and human impacts, including a decline in numerous bird species (CDC) and increased

morbidity and mortality among humans. This has also resulted in increased economic

burdens(Barrett 2014). We became interested in developing a spatially explicit model

using environmental factors to predict WNV risk.

There are two important considerations that should be examined when

developing spatially explicit environmental disease risk  models (Miller 2012). First,

spatial autocorrelation (the degree to which a set of spatial features and their associated

data values tend to be clustered together in space) should be considered. This will

account for whether environmental factors and the corresponding disease rates in

geographically proximate areas are more or less clustered together than they are in

geographically distant areas. Second, data non-stationarity (changing means, variances

and covariances in data across space) should be controlled (Fotheringham 2009a;

Miller 2012). Geographically weighted regression (GWR) is commonly used to account

for these considerations and to produce improved models that enable better spatial

inference and prediction. Recent studies have applied GWR modeling to drug-resistant

tuberculosis versus risk factors (Liu et al. 2011); environmental factors versus typhoid

fever (Dewan et al. 2013); local climate and population distribution versus hand, foot,

and mouth disease (Hu et al. 2012); and environmental factors and tick-borne disease

(Atkinson et al. 2012; Atkinson et al. 2014; Wimberly et al. 2008a; Wimberly et al.
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2008b), all showing that predictor variables varied spatially across large geographic

regions, implying that studies examining diseases across geographic space are

improved using GWR.

The spatially explicit model that is discussed in this paper uses GWR to account

for spatial heterogeneity for two reasons: (a) WNV disease risk observed across space

may be related to similar environmental variables that increase vector habitat suitability

and (b) environmental variables that influence WNV risk are not uniformly distributed

across the study area. Although many epidemiological models of WNV risk have been

developed, there has been little research that has explicitly examined techniques that

account for spatial heterogeneity. Most models assume that the impact of various

environmental factors are constant across the study region, which is unrealistic as

larger areas display substantial variations in distribution of environmental, socio-

economic, and demographic conditions (Goovaerts 2008).

Due to the unavailability of reliable and complete data, developing models of

WNV risk pose additional challenges. Human case data is lacking due to issues of

under-reporting and limited surveillance. WNV-infected birds have been used as a proxy

for incomplete human case data (Cooke et al. 2006). However, these data are also

spotty and sparsely available as it is not routinely collected and is generally tabulated

from user-reported observations of dead birds. Further, mosquito habitat suitability has

been used as a surrogate for estimating WNV infection risk for humans (Cooke et al.

2006). For our study, we followed a similar approach and used a model of mosquito

habitat suitability condition as a predictor of the spatial distributions of infected birds,

this in turn can be used to inform WNV disease risk among human populations. Further,
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because the environmental variables considered in this study are known to vary across

space, we account for spatial autocorrelation and non-stationarity using Geographically

Weighted Regression (DeGroote et al. 2008) in order to improve the predictability of a

model.

The spatial granularity resulting from this approach provides detailed information

that can be used to identify locales where suitable conditions for a WNV mosquito

habitat exists, thereby allowing public health planners to design better interventions.

The broader implication of this research is that it may encourage public health

authorities to design more effective and efficient locally specific strategies for places

with limited resources.

3.3 Modeling WNV risk in a local environment: Transmission and risk factors

The WNV transmission cycle was an important component of the model

discussed in this paper. The first step in the WNV transmission cycle primarily occurs

when a competent female mosquito vector bites an infected bird reservoir host, which in

turn results in the virus being transmitted to the mosquito (Blair 2009). This occurs when

the female mosquito is seeking a blood meal to obtain nutrients necessary for egg

development. After taking an infectious blood meal, a mosquito may pick up a

permanent infection. The infected mosquito now has the potential to transmit the virus

to another bird or animal when it feeds again. Infected birds then fly to different

locations where the virus is transmitted to susceptible mosquitoes. Ultimately the

disease is transmitted by mosquitoes to humans or other mammals that act as

incidental hosts. Dead birds found to be infected with WNV are currently the primary



45

indicators for the presence of disease in a geographic region and have proven to be

useful for disease prediction modeling and identifying areas for human infection risk

(Cooke et al. 2006; Ruiz et al. 2004b; Valiakos et al. 2014a).

Vector and pathogen reservoirs overlap when certain environmental conditions

are present (Rochlin et al. 2011). Table 3-1 provides an overview of the environmental

conditions that are associated with WNV transmission, which were utilized for our

research. These include characteristics of a place such as the mosquito species habitat:

climatic conditions, topography and land use/land cover classes such as vegetation,

water, and urbanized areas. Spectral indices acquired from satellite imagery provide

information about environmental characteristics like temperature, vegetation cover, and

moisture (Rodgers & Mather 2006).
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Table 3-1 Environmental conditions related with WNV human transmission risk

Factors studied

(reference)

Relation to WNV risk Factors studied

(reference)

Relation to WNV risk

Stream (Cooke et al.

2006; Curtis et al.

2014; Schurich et al.

2014)

Sites for breeding and

resting

Road (Cooke et al.

2006)

Sites for breeding

and resting

Temperature

(DeGroote et al. 2014;

Kuehn 2012;

Srivastava et al. 2001;

Wimberly et al. 2008b)

Increases growth rate of

vector, decreases egg

development cycle and

shortens extrinsic

incubation period of

vector

Vegetation

(Brownstein et al.

2002; Cooke et al.

2006; DeGroote et

al. 2014; Ruiz et al.

2004a; Schurich et

al. 2014; Srivastava

et al. 2001)

Sites for breeding

and resting.

Surface slope (Cooke

et al. 2006; Ozdenerol

et al. 2008b; Schurich

et al. 2014; Srivastava

et al. 2001)

Water stagnation

creating mosquito

breeding ground

Evapotranspiration

(Liu & Weng 2012a;

Trawinski & Mackay

2008)

Reflects the amount

of surface wetness

that is related to

mosquito

abundance

Cultivated land

(Kilpatrick 2011)

Preferred natural

ground pools

Developed land

(Kilpatrick 2011)

Warmer micro-

climates
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3.4 Modeling WNV risk in a local environment: statistical considerations

Miller (2012) suggests that a ‘global’ model is the one that assumes that the

parameters (commonly mean and variance) of some process are constant across

geographic space. This is referred to as the spatial stationarity of a process. Miller

suggests that in case these parameters vary across geographic space (spatial

heterogeneity), then such models may lead to inaccurate predictions and incorrect

decision-making. In an ecological context, spatial heterogeneity usually results from the

interaction of various environmental processes that operate at different scales

(Legendre 1993). Fotheringham (Fotheringham 2009b) used local statistics for linking

the concepts of spatial autocorrelation and heterogeneity that are deemed important

when developing spatial models. Local statistics disaggregate a global mean value into

locally computed values for each spatial unit. It is based on a conceptualization of

Tobler’s first law in Geography (Tobler 1970) that specifies that observations that are

located closer together are more related than those situated further apart. Spatial

autocorrelation is a commonly used measure of the degree of spatial heterogeneity.

GWR is a local regression method that can be used for diagnosing spatial

heterogeneity between dependent and explanatory variables over space (Fotheringham

et al. 2003). It is performed within local windows centered on the nodes of a regular

grid. Each observation within the local window is weighted based on its proximity to the

center of that window. This approach has several advantages: it avoids abrupt changes

in the local statistics computed for adjacent windows, helps visualize spatial variability

within the geographic entity, and allows analysis of regionally aggregated data of

different factors (Goovaerts 2008). A model’s predictive ability, particularly in ecological
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modeling is influenced not only by the strength of relationships between the species and

its environment, but whether the model recognizes if the relationships are operating at

multiple spatial scales. GWR provides a framework for exploring scale-dependent

effects. It tests the effect on model’s predictive ability by systematically increasing the

local window (Miller 2012).

GWR has been used for mapping the spatial distribution of the model’s

coefficient values in order to identify potential missing variables or to suggest other

underlying factors associated with the observed non-stationarity (Miller 2012). GWR is

also useful for exploratory data analysis and visualization. Kupfer and Farris (2007)

(Kupfer & Farris 2007) used a ‘leave-one-out’ (jackknifing) methodology to compare

residuals from GWR and  ordinary least squares regression. They found that GWR

often had more accurate predictions for sites that were difficult to predict (where both

models had overall higher residuals), which is why we used a GWR framework for

explicitly modeling the spatial relationships between WNV and its environmental risk

factors.

3.5 Study area and data

3.5.1 Study area

The model is built for the state of California, which was the national epicenter of

WNV activity in 2004 and 2005 (Jean et al. 2007). WNV was first detected there in July

2003 (Reisen et al. 2004). It is the third largest state by area in the United States and is

made up of 58 counties. California has the largest population in the U.S., but it is
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unevenly distributed across the state. The state also has a variable landscape with a

large valley in the middle, bounded by mountain ranges.

3.5.2 Environmental factors and data sources

Our model considers various environmental factors (Table 3-1) that have been

suggested as descriptive in local WNV risk distribution: surface slope, density of roads,

density of streams, monthly mean temperature, monthly mean evapotranspiration, and

land cover classes like vegetation, developed land, cultivated land, and open surface

water. All environmental parameters except roads and streams (Table 3-2) were

acquired in grid format and resampled to 120 meter resolution as suggested by Cooke

et al. (2006).

Various dynamic environmental data including Normalized Difference Vegetation

Index (NDVI), Land Surface Temperature (LST), and Evapotranspiration (ET) were

downloaded from Moderate Resolution Imaging Spectro-radiometer (MODIS) toolbox

incorporated in ArcGIS®. The time lapse of 2-14 days between the infection of a human

by an infected mosquito and the appearance of WNV disease symptoms, referred to as

incubation period (Campbell et al. 2002), was taken into account and the environmental

data used for this study was for the month of July, the month prior to peak WNV human

incidence cases.
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Table 3-2 Data sources

Data Spatial resolution Source

Elevation 10m National Elevation Dataset (NED)

LST 1 Km MODIS aboard the Terra and Aqua

satellites

NDVI
250 m MODIS aboard the Terra and Aqua

satellites

Evapotranspiration (ET) 1 Km MODIS aboard the Terra and Aqua

satellites

Streams available in vector format U.S. bureau of reclamation

Roads available in vector format U.S. Census bureau

Cultivated land 30 m National Land Cover Database

Developed land
30 m National Land Cover Database

WNV infected dead

birds count

County scale U.S.G.S. National wildlife health center

WNV human incidence

cases

County scale U.S.G.S. National wildlife health center

Human population County scale U.S. Census bureau
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3.6 Methods

3.6.1 OLS modeling

WNV disease annual incidence rate (cases per 100,000 populations) was used

as the measure of disease severity for purposes of this study. Annual WNV-infected

dead birds sentinel data, averaged for 2004-2010, was used as a surrogate of WNV

risk, which was used as the dependent variable for modeling purposes. Several studies

(Chaintoutis et al. 2014; Eidson et al. 2001a; Eidson et al. 2001b; Eidson et al. 2001c;

Guptill et al. 2003; Johnson et al. 2006; Mostashari et al. 2003; Nielsen & Reisen 2007;

Patnaik et al. 2007; Ruiz et al. 2004b) have suggested links between infected dead

birds and WNV human infection rates. Since wild birds are the primary reservoir hosts

for WNV and indicate human infection risk, we utilized this association to develop the

prediction model and to examine the extent to which infected dead birds are associated

with WNV infection risk. We determined the utility of the infected dead bird data by

correlating (r2 = 0.409; p = 0.01) it with the human WNV infection rate. We explored all

environmental factors listed in Table 3-1 as potential independent variables in our OLS

regression modeling.

Interpretations of OLS model performance were based on assessing multi-

collinearity, robust probability, adjusted R2
, and Akaike’s information criterion (AIC)

(Akaike 1974). Multi-collinearity was assessed through the variance inflation factor (VIF)

statistic, which measures redundancy among explanatory variables. Explanatory

variables associated with VIF values larger than about 7.5 indicate that these variables

are providing similar information, and they were removed one at a time from the model

based on VIF value until the model became unbiased.  Robust probability indicates the



52

statistically significant variables that are important to the regression model. Upon

examining the VIF values and the robust probability, we re-ran OLS model on the non-

redundant and significant variables, which are LST, stream density, and road density.

Akaike’s information criterion approach lead to our best OLS model, which identified

land surface temperature (VIF = 1.046), stream density (VIF = 1.177), and road density

(VIF = 1.143) as statistically significant (p <0 .5) variables related to WNV risk:

WNV risk = -75.87 + 595.60 (RD) + 1.89 (LST) - 146.89 (SD) (1)

Where:

WNV risk = average infected dead bird count

RD = road density

LST = land surface temperature

SD = stream density

Spatial autocorrelation (Global Moran’s I) was utilized to assess whether the

environmental factors exhibited a random spatial pattern (Goodchild 1986) where a

good model has a random distribution of the residuals (Mitchell 2005). Figure 1

indicates that the histogram of the OLS model’s residuals approximates that of a normal

curve, the non-significant (0.134, p<0.05) Jarque-Bera statistic (Jarque & Bera 1980),

and the Moran’s I Index Z-score (1.23) all imply that the model is unbiased and

significantly different than random.
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Figure 3-1 Distribution of model’s standardized residuals (line indicates normal curve).

However, the Koenker statistic (0.000007*, p<0.05) confirmed non-stationarity in

the OLS model indicating that there is not a consistent relationship between the

explanatory variables and WNV risk across the study area, indicating that the OLS

model is stable but non-stationary, confirming that proceeding with GWR model is valid.

3.6.2 GWR model specification

Finding conditions of non-stationarity in our ordinary least squares (OLS) model,

we explored geographically weighted regression (GWR) in an attempt to improve model

results. Using the same dependent and explanatory variables as identified in the OLS
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modeling, we proceeded to explore the spatial variability of local regression coefficients

to determine whether the underlying process exhibited spatial heterogeneity

(Fotheringham et al. 2003). A GWR local model was applied to analyze how the

relationship between infected dead bird counts and environmental factors changed from

one county to another. Unlike conventional OLS regression modeling, which produces a

single regression equation to summarize global relationships among the independent

and dependent variables, GWR detects spatial variation of relationships in a model and

produces information useful for exploring and interpreting spatial non-stationarity

(Fotheringham et al. 2003). The GWR model in this study was implemented using

ESRI®ArcGIS10.1 and can be rewritten as:

WNV risk(i) = βi0 + β(i1) RD(i) + β(i2) LST(i) – β(i3) SD(i) + ε(i) (2)

Where β coefficients are county specific.

Instead of remaining the same everywhere, model coefficients now vary in terms

of locations (i), which in this study represents individual counties. Individual parameters

are estimated at each county in a GWR model.

A spatial kernel was used to provide geographic weighting for the local window

centered on the grid nodes used in our model. There are two possible choices for the

spatial kernel: fixed or adaptive, and bandwidth, which is a key coefficient that controls

the size of the kernel (Akaike 1974). These kernel tend to be Gaussian or Gaussian-like

which implies that distant samples are weighed lesser than the proximal ones. An

optimal bandwidth can be found by minimizing the corrected Akaike information criterion
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(AICc). There are three choices for the bandwidth method: AICc, cross validation (CV),

and bandwidth parameter. Both AICc and CV are automated methods in ArcGIS for

finding the bandwidth that gives the best predictions, whereas the ‘bandwidth

parameter’ function allows you to specify a bandwidth. The AICc method finds the

bandwidth that minimizes the AICc value, and it is computed from (a) a measure of the

divergence between the observed and fitted values and (b) a measure of the complexity

of the model that depends on the number of variables and the bandwidth in the model.

This interaction between the bandwidth and the complexity of the model is the basis for

our preference for the AICc method over the CV score.  In the GWR model, the

adaptive kernel with AICc estimated bandwidth was chosen as the distribution of

infected dead birds was inhomogeneous in the study area. Initially we selected the

following settings in our ArcGIS GWR: Bandwidth method = AICc and Kernel type =

Adaptive. We also tested various settings by keeping fixed bandwidth parameters to

each unit of analysis.

Finally, we also examined local collinearity, independency, normality of residuals,

and local collinearity of our GWR model to evaluate the fit of the model. If a county’s

local collinearity, the square root of the largest eigenvalue divided by the smallest

eigenvalue, was greater than 30, the county was removed from analysis before

proceeding.  The adjusted coefficient of determination (Adjusted R2) was used for

comparing OLS and GWR models. The Akaike Information Criterion (AIC) generated for

OLS and corrected Akaike Information Criterion (AICc) calculated for GWR were also

used to help us determine which approach would provide a better understanding of the
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relationship between environmental conditions and West Nile Virus risk (Fotheringham

et al. 2003).

3.7 Modeling results

By comparing the fit of the global OLS and local GWR models, we found that the

global adjusted R2 is 0.61 (R2 is 0.65, P<0.5, Figure 3-2) and the local adjusted R2 is

0.71 (R2 is 0.74, p<0.5, Figure 3-3), which suggests that there has been some

improvement in model performance. Our preferred measure of model fit, which is the

AICc, gave a value of 567.70 for the global model and 551.40 for the local model. The

difference of 16.30 is a strong evidence of an improvement in the model fit to the data.

Figure 3-2 Trendline plot for global OLS model
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Figure 3-3 Trendline plot for local GWR model

In this study the number of nearest neighbors (NN) or bandwidth used in the

estimation of each set of coefficients is 54. This bandwidth is large in comparison with

the total number of observations in the dataset (58). It may be noted that although the

bandwidth criteria is large but it is still Gaussian like distribution. During analysis we

observed that although a smaller band-width criterion gave an improved combination of

AICc and adjusted R2 values, it also compromised the model diagnostics. Thus, it is

better to have a larger band-width rather than violating model assumptions and to avoid

the unstable prediction (Charlton & Fotheringham ; Nakaya 2014).

Mapping the values of the standardized residual (Figure 3-4) provided a

representation of: (a) areas with unusually high or low residuals and (b) whether the

residuals were spatially autocorrelated. Counties with excessively large positive

residuals would under-predict the WNV infection risk, and counties with excessively
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large negative residuals would over-predict the WNV infection risk. The spatial

autocorrelation of GWR residuals for our model resulted in a Moran’s I value of -0.11

(p=0.18), implying little evidence of any autocorrelation in them.

Figure 3-4 Map showing distribution of standardized residuals
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Local coefficient estimates were also mapped. Figure 3-5 shows the variation in

the β coefficient estimates for the LST variable. The map for the local coefficients

reveals that the influence of this variable in the model varies considerably over

California, with a strong north-south direction. The range of the local coefficient is from

1.26 in the northernmost counties to 3.06 in the southernmost counties – evidence that

points to heterogeneity in the model structure within California.  The global coefficient

and all the local coefficients for this variable are positive – there is agreement between

the two models on the direction of the influence of this variable. Figure 3-6 shows a

similar distribution in north-south direction of positive road density coefficient. Figure 3-7

reveals the opposite for stream density coefficients, with larger values in the north and

smaller values in south.

Our best ordinary least squares model, the global OLS model (Equation 1)

produced an adjusted R2 of 0.61 (p<0.5) with a corresponding corrected AIC of 567.70.

Utilizing the same environmental variables, our best model using geographically

weighted regression, the local GWR model, produced an adjusted R2 of 0.71 (p<0.5)

with a corresponding corrected AIC of 551.4. This 16 points decrease in the AICc and

approximately 16% improvement in the model performance suggest that incorporating

spatial data improves the predictive ability of WNV risk in human population.
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Figure 3-5 Maps showing distribution of land surface temperature coefficients
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Figure 3-6 Maps showing distribution of road density coefficients
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Figure 3-7 Maps showing distribution of stream density coefficients
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3.8 Discussion

One of the frequent technical issues in modeling disease risk is to incorporate the

local rather than global associations in these models (Foley et al. 2009). In spatial

regression models, a global model can be used to examine the relationship between

disease risk and potential explanatory factors, which are based on the assumption that

the relationship is a stationary spatial process (Miller 2012). For a small and

homogenous region of interest, it is reasonable to assume that the explanatory factors

would not change significantly across the whole region, and the relationship between

WNV incidence and the potential factors would also be unchanged. However, the

topography, climate, and population distribution change greatly when it comes to a large

region like California with a territory over 163,000 square miles. California is

geographically diverse and is equally varied in its range of climates with several climatic

sub-regions recognized. It would be unexpected to find that the spatial stationarity

assumption holds in such large areas having a substantial range of climatic conditions.

Our results concur that WNV epidemiological models with improved predictive ability for

risk for exposure to vectors can be achieved through consideration of spatial

heterogeneity (Beck et al. 1994). Besides improving prediction accuracy, spatial

heterogeneity can also provide insights into the underlying ecological processes

controlling the distributions of zoonotic pathogens (Wimberly et al. 2008a) and vector

population because GWR models consider spatial heterogeneity by separating the large

heterogeneous region into smaller, more homogeneous local regions. Fotheringham,

2009 (Fotheringham 2009a), stated that an advantage of using GWR is that it accounts

for much of the spatial autocorrelation in the residuals that is usually found in global
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modeling. It should also be realized that a variable that is insignificant at the global level

might be important locally.

Environmental factors serve as correlates of the microhabitats that are the

proximal influences on vector and host populations (Wimberly et al. 2008a). In this

study, a GWR model was successfully used to explore the effects of local environmental

factors on WNV incidence at the county level, which demonstrates that GWR models

can be used to geographically differentiate the relationships between diseases and their

explanatory factors. The local GWR models’ statistical tests run on 58 counties show

that factors like road density, stream density, and land surface temperature are

significantly related to the WNV risk in all counties. We found that all three significant

factors together could explain about 71% with bandwidth criterion of 54. The road

density and land surface temperature exhibited a positive relation to the WNV infection

risk in all counties. In contrast, stream density had a negative relationship in 76% of

counties.

There are several limitations of this study. First, it is assumed that factors

suitable for mosquito habitat increase the likelihood of WNV spread in human

populations. On the surface this seems to be reasonably sound; however, we do not

have specific evidence that this is true. Second, it is also assumed that the probability of

human infection is higher in counties with multiple confirmed WNV bird cases. Again, a

sound presumption with several references in the previous section, but we do not have

specific evidence. A potential problem with this assumption is that human population

density, variations in level of public concern, and resource availability might bias the

reporting of dead birds. Thus, proper surveillance methods that take into consideration
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these limitations while collecting infected dead bird data will contribute to more

meaningful results. Third, the study considers that people are infected within the county

of their residence, ignoring the possibility of contracting an infection while traveling

outside the county limits. Unfortunately, we have no way of gathering any data to

confirm or refute this assumption; we recognize that this can result in an overestimation

of locally occurring WNV infection rate.  Potential future research may include the travel

habits of WNV-infected individuals, i.e. the distance from home and travel frequency.

Such information can be used to filter model inputs to those human cases that occurred

in close proximity to their homes or workplaces. Fourth, human WNV cases may be

under reported because some people may not have access to healthcare services or

the illness presents with mild symptoms (or they are asymptomatic) resulting in

misdiagnosis. Additionally, mosquito control effort information was not integrated into

our model even though active control measures would likely influence the model results.

The unaccounted conditions such as population immunity to WNV risk, public health

measures taken by local health departments, and personal and environmental hygiene,

may also contribute to the occurrence, transmission, and spread of WNV among the

community (Hu et al. 2012) that are not accounted for in our modeling efforts. These

factors are potential covariates and can be included in future research. Fifth, while

environmental data used in this research was of fine resolution, WNV disease human

incidence data and infected dead bird data that is used is available only at coarse

county level. This presented a spatial scale problem that could have been avoided by

using fine resolution or location-specific data; however, due to patient confidentiality and

data reporting issues, these data were unavailable. We had to assume that aggregating
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the environmental data up to the county adequately represented the environmental

conditions presented in the county, but we knew that data aggregation and smoothing

processes were likely to introduce some uncertainty into the model.

3.9 Conclusion

The potential for amplification of mosquito vectors and for humans to become

infected may differ greatly from one geographic area to the next depending on the

environmental conditions of the area.  Thus, the intrinsic potential for a human outbreak

of WNV may be very different in areas having similar population density. These results

demonstrate that mosquito habitat modeling provides a valuable public health tool for

assessing the risk of human arboviral infections and justifying the allocation of limited

public health resources.

The model described in this paper is a spatially explicit model that used GWR to

adjust for spatial autocorrelation and non-stationarity and produced continuous

estimates of mosquito habitat suitability. The model output may be useful for predicting

WNV risk in human populations, particularly in those areas where outcome data are

unavailable. GWR is a good example of a spatial statistical method that uses both the

locational and the attribute information. It employs a spatial weighting function assuming

that near places are more similar than distant ones, producing location-specific outputs

that may be used to identify sites for further investigation (Fotheringham 2009a).

The results of our study could contribute to the understanding of spatial variability

of disease risk burden at the local level. This spatially explicit modeling technique may
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be useful in policy-making and decision-making depending on the granularity and

resolution of available data. Identifying the spatial variations in relationships by

estimating local regression parameters allows the spatial distribution and interaction of

predictor variables to be explored. Analyzing local variations in relationships provides

those concerned with public health policy with the ability to target resources and to

achieve improved outcomes through location-specific activities (Comber et al. 2011).

Predictive modelling of disease risk can be enhanced using spatially explicit methods

that account for either spatial autocorrelation (the tendency for pathogen distributions to

be clustered in space) or spatial heterogeneity (the potential for environmental

influences on pathogens to vary predictably in space). Predictions based on spatial

autocorrelation can be very effective when key environmental variables are unknown or

unavailable as geospatial datasets. Spatial heterogeneity can improve predictions by

capturing geographic shifts in the predominant ecological drivers (Wimberly et al.

2008a).

In summary, WNV, a globally emerging infectious disease, was found to be

heterogeneously related to environmental factors at the county level throughout

California during the time that our data were collected. Our findings may assist in the

risk assessment for WNV transmission in local areas and guide local public health

institutes to rationally allocate public health resources and improve their preparedness

for an outbreak according to region-specific conditions.
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CHAPTER 4

USING MULTIVARIATE GEOVISUALIZATION TO MODEL THE RELATIONSHIPS

BETWEEN PLACE VULNERABILITY AND WEST NILE VIRUS RISK

4.1 Abstract

Understanding spatial variations in disease risk across different regions as well

as population groups remains a difficult challenge. This study postulates that

understanding the underlying place characteristics and population composition for the

occurrence of West Nile Virus (WNV) infection is important for mitigating future

outbreaks. While many spatial and aspatial models have attempted to predict the risk of

WNV transmission, efforts to link these factors within a GIS framework are limited. One

of the major challenges for such integration is the high dimensionality and large

volumes typically associated with such models and data. This study uses a spatially

explicit, multivariate geovisualization framework to integrate an environmental model of

mosquito habitat with human risk factors derived from socio-economic and demographic

variables. Our results show that such an integrated approach facilitates the exploratory

analysis of complex data and supports reasoning about the underlying spatial

processes that result in differential risks for WNV.
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4.2 Introduction

Understanding spatial variations in disease risk across different regions as well

as population groups remains a difficult challenge. Oppong & Harold (2009) argue that

vulnerability to disease is inevitably tied to specific places whether it involves risk

behaviors, population, or place characteristics. Further, Diez Roux & Mair (2010) argue

that these factors operate at different spatial scales and attribute differential disease

risks to individual- and group-level characteristics. Individual characteristics can be

summarized as the biological attributes of individuals while group-level characteristics

refer to the context of places to which those populations belong. We stratify group-level

characteristics into contextual and compositional factors. Contextual factors describe

the place characteristics, whereas compositional factors include population

characteristics. Understanding these factors is useful for hypothesis-generation in public

health research, policy-making, and understanding the underlying spatial processes that

produce differential risks. In this study we provide a framework for integrating

compositional and contextual factors for assessing West Nile Virus (WNV) risks.

WNV is an emerging vector-borne disease that was first detected in the United

States in 1999, according to Nash et al. (2001). Cooke et al. (2006) focused on tracing

the connections between WNV human infection risk and contextual settings of

environmental conditions including the presence of streams, vegetation, and roads.

Ruiz et al. (2004) demonstrated that composition factors such as age, income, and

race/ethnicity of the human population can be important predictors of WNV infection risk

in humans. While many spatial and non-spatial models have attempted to predict the

risk of WNV transmission, efforts to link these factors within a GIS framework are
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limited. Thus, the complex relationships existing between WNV human infection risk and

contextual and compositional factors are poorly understood. In this paper, we use

geovisualization techniques to unravel these relationships. A major challenge for such

integration is high dimensionality of the data that makes it difficult to tease out patterns

of interest.

The lack of an integrated approach in understanding the effect of these variables

on WNV limits our ability to discover potential hidden patterns in a large number of

possible combinations from such multivariate datasets. Guo et al. (2005) asserted that

even in a selected subset of the data it is still a challenge to discover hidden

relationships as potential patterns may take various forms - linear or non-linear, spatial

or non-spatial. It is also important that analysis of such complex datasets is performed

using methods that are computationally efficient. Tools developed for geovisualization

can be used to support multivariate analysis of geospatial data. In this particular study

contextual factors affecting WNV risk are modeled using geostatistical and spatial

analysis techniques. The compositional factors affecting WNV risk are then combined

with the contextual model output using self-organizing map (SOM) and parallel

coordinate plot (PCP). When coupled with multivariate visualization, these techniques

can reveal how interactions between the contextual and compositional factors vary

locally across geographic space. The clustering and mapping of these factors is then

analyzed to identify the places vulnerable to WNV risk. This study postulates that

understanding the underlying place characteristics and population composition for the

occurrence of WNV is important for mitigating future outbreaks.
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4.3 Materials and methods

4.3.1 Contextual and compositional factors affecting WNV

Vectors and pathogen reservoirs overlap under favorable conditions of

environmental factors (Rochlin et al. 2011). Contextual factors describe the place

characteristics such as the mosquito species habitat, climatic conditions, topography,

and land-use cover classes such as vegetation, water, and urbanized areas.

Composition factors associated with risk of WNV infection among humans include

population characteristics such as age-sex structure and susceptibility based on socio-

economic status. This study builds on contextual and compositional factors that have

been identified by previous research studies (Table 4-1).

4.3.2 Study area and data

The study area was the state of California, which is the third largest state in area

in the United States and is made up of 58 counties and 8,057 census tracts. WNV was

first detected in California in July 2003 (Reisen et al. 2004) and the state became the

national epicenter of WNV activity in 2004 and 2005 (Jean et al. 2007). This study

utilized coarse-scale data (county level) of WNV human incidence cases and infected

dead bird counts. Fine scale environmental and demographic data (census tract level)

was used to define contextual and compositional factors derived from Table 4-1. The

study was conducted in two phases: (1) mosquito habitat model based on contextual

factors and (2) geovisualization techniques based on compositional factors.
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Table 4-1 Population and place characteristics associated with WNV risk.

Human population characteristics

(composition)

Place characteristics (context:

environmental factors related with vector habitat)

Factors studied

(reference)

Relation to WNV

risk

Factors studied

(reference)

Relation to WNV risk

Old age

(Jean et al. 2007; Ruiz

et al. 2004b)

Weakened

immune system

Stream , Vegetation, Road

(Cooke et al. 2006)

Sites for breeding

and resting.

Male sex

(Murray et al. 2006)

Social history or

lifestyle.

Temperature

(Wimberly et al. 2008b)

Increases growth rate

of vector, decreases

egg development

cycle and shortens

extrinsic incubation

period of vector.

Race/Ethnicity

(Ruiz et al. 2004b)

Increased risk

from behaviors

linked to their

lifestyle.

Surface slope

(Ozdenerol et al. 2008b)

Water stagnation

creating mosquito

breeding ground.

Income

(Ruiz et al. 2004b)

Increased risk

from behaviors

linked to their

lifestyle.

Cultivated land, Developed

land

(Kilpatrick 2011)

Preferred natural

ground pools in

cultivated land and

warmer micro-

climates in developed

lands.



73

4.3.3 Mosquito habitat model

The spatial pattern of WNV risk among human populations was predicted using a

mosquito habitat model. This model was developed using statistically significant

contextual variables such as streams, vegetation, roads, and temperature. GIS,

geostatistical, and spatial analysis techniques were utilized in this study to evaluate

habitat suitability of WNV-carrying mosquitoes. WNV risk is modeled using a

geographically weighted regression (GWR), and WNV risk map is created using a multi-

criteria decision analysis (MCDA) approach. GWR helps to reveal patterns that are

local, and MCDA creates a spatially explicit risk map. Figure 4-1 illustrates the model

framework including the advantages of using this approach.

Figure 4-1 Geovisualization model framework
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4.3.4 Geovisualization techniques

This study utilizes a spatially explicit exploratory approach for identifying the

interaction between different contextual and compositional factors. Such an approach

consists of a combination of risk maps and multivariate visualization techniques to

effectively facilitate the exploration and understanding of complex patterns within data.

The risk surface from mosquito habitat model was further explored for compositional

variables using this approach. The analysis was done using SomVis, which is an

integrated software tool consisting of three interactively linked visualizations that

support human interactions:  (1) Self-Organizing Map (SOM) ( Kohonen 2001) to

perform multivariate analysis, dimensional reduction, and data reduction; (2) Parallel

Coordinate Plot (PCP) (Inselberg 2002) to visualize the multivariate patterns with

display; and (3) Geographic map (GeoMap).

SOM is a unique partitioning clustering method, which segments multivariate

data into non-overlapping clusters and projects them in a two-dimensional layout. Etien

L Koua (2004) indicated that SOM is an unsupervised neural clustering technique that is

useful in situations where the data volumes are large and the relationships are unclear.

Each cluster is represented with a node (circle) whose size is linearly scaled according

to the number of data items that it contains. Nodes are equally spaced in a two-

dimensional space. Behind the nodes, there is a layer of hexagons, which are shaded to

show the multivariate dissimilarity between neighboring nodes. Clusters falling on

bright-tone hexagons are more similar to each other than those in darker tones of these

hexagons.
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PCP maps the n dimensional space onto a two-dimensional layout by using n

equidistant parallel vertical axes. Each axis represents one variable and is linearly

scaled using its minimum and maximum values. Each data element is displayed as a

polyline intersecting each of the axes at the point that corresponds to the respective

attribute value for this data element. The PCP can visualize the data either using

combinations of variables (cluster level) or for each individual variable (data item level).

At the cluster level, the PCP shows each cluster as a polyline, and it has the same color

as the cluster in the SOM. The thickness of this polyline is proportional to the cluster

size. At the data item level, each polyline in the PCP represents an individual data item

with the same color as its containing cluster. The trajectory of the lines in the PCP

serves as a legend for interpreting the meaning of different-colored clusters.

The Geomap is a sketch of multivariate information. The colors in a Geomap

(Figure 4-7) represent the spatial distribution of multivariate patterns. The Geomap

provides a spatial perspective to clusters of similar variables identified using PCPs. The

three visual components allow an array of user interactions such as selection-based

brushing and linking. We used the PCP in conjunction with a selection of clusters in the

SOM to summarize the spatial context and enhance exploratory analysis of WNV risk.

Our contextual mosquito habitat model in conjunction with the compositional

geovisualization approach represents a novel multivariate analysis technique to create a

composite disease risk map that addresses the spatial heterogeneity of epidemiologic

processes.
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Figure 4-2 (left) WNV infection risk map

Figure 4-3 (right) Census tracts enclosed within standard deviation ellipse

Figure 4-4 SOM clusters representing a valid combination of variables
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Figure 4-5 PCP cluster showing population group of highest median age

Figure 4-6 PCP cluster showing the highest mosquito habitat model risk



78

Figure 4-7 Geomap showing the spread of census tracts associated with SOM clusters

4.4 Results and discussion

The best-fitting mosquito habitat model for the whole state had an adjusted R2 of

0.709 (p<0.05). Figure 4-2 shows WNV infection risk map based on the mosquito

habitat model. In this study, we concentrated on a smaller subset of California counties

that contained the highest human WNV incidence rate (mosquito habitat model adjusted

R2 = 0.82, p<0.5). This area was identified using a 1-standard deviation ellipse

constructed with human WNV rates. Compositional variables were extracted for all

census tracts within this area (Figure 4-3). SOM and PCP were used for identifying the
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interaction between different contextual and compositional risk factors. As seen in

Figures 4-5 and 4-6, all compositional factors included in Table 4-1 are represented

using the first 6 vertical axes. The contextual model is represented using the last vertical

axis in the two figures (i.e. ModelRisk). Each SOM cluster shown in Figure 4-4

represents a valid combination of variables that warrant further investigation.

In Figure 4-4, we focus on the node (labelled as cluster 1) that corresponds to

the census tracts with the highest median age; this is the population group that has

been reported as being most vulnerable to WNV risk (Campbell et al. 2002). This cluster

is represented by the highlighted line in Figure 4-5. The trajectory of this line represents

the relationship between attribute values of factors contained in this cluster. This line

suggests that high median age (~58 years) is associated with moderately high mosquito

habitat model risk (~6.4). This relationship has been suggested by other studies

including the one conducted by Hayes et al. (2005a). It may be noted this cluster is also

associated with the population group that belongs to low median household income.

Further, in Figure 4-7, the non-contiguous spread of the census tracts associated with

this cluster (n=19) indicates that they are only similar based on their attribute

characteristics rather than geographical space.

We then selected the cluster with the highest mosquito habitat model risk

(labelled as cluster-2 in Figure 4-4).  In comparison to the previous analysis, we found

that the highest levels of model risk were associated with low median household income

and substantially lower median age. Also, census tracts associated with this cluster

tend to be concentrated in geographic space (Figure 4-7). Study demonstrated that the

integration of factors provides alternate views on the relationship between WNV and its
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risk factors (median age ) and suggests that further investigation is required to fully

understand the relationship between age and WNV risk. Carson et al. (2012) shows that

WNV infection was greatest for the younger population. The approach proposed in this

study provides an exploratory framework for comparing relationships between a variety

of compositional and contextual variables. However, this approach is not intended to

derive causal relationships. Another way to look at this analysis from a public health

perspective is that this approach provides different options to choose from when

resources are limited and helps to design better intervention strategies.

The major challenges for multivariate mapping include large data volumes, high

dimensionality, and the perception of complex patterns (Guo 2009). This research

utilizes a spatially explicit exploratory approach that combines geovisualization, spatial

analysis, and computational methods for identifying the interaction between different

contextual and compositional factors. Our results show that the visualization of similarity

clustering of multivariate attributes facilitates the analysis of complex data. It also

supports reasoning about the underlying spatial processes that result in differential

risks. Another advantage of this approach is that patterns found in voluminous and

complex epidemiological data can provide more focused opportunities for analysis and

interpretation by experts in that field. With an interactive user platform, geovisualization

techniques can efficiently obtain new knowledge from the data and become an

important hypothesis-generating tool in public health research. Understanding the

underlying place characteristics and population composition for the occurrence of WNV

is important for mitigating future outbreaks.
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4.5 Conclusions

The major challenges for multivariate mapping include large data volume, high

dimensionality, the perception of complex patterns, and the availability of data at

multiple spatial resolutions. Geovisualization techniques assist in interpreting the results

in such a multivariate context and are useful for identifying multivariate spatial and non-

spatial patterns, thus providing useful insights into the causes of underlying spatial

processes. We have demonstrated that the integration of both contextual and

compositional factors using geovisualization techniques provides alternate views on the

relationship between WNV and its associated risk factors. Such exploratory analysis

supports hypothesis-generation in public health research and policy-making.
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CHAPTER 5

CONCLUSION

This research postulates that understanding the conditions underlying the

occurrence of WNV is important for mitigating future outbreaks. Environmental factors

serve as correlates of the microhabitats that are the proximal influences on vector and

host populations. The potential for amplification of mosquito vectors and for humans to

become infected may differ greatly from one geographic area to the next depending on

the environmental conditions of the area.  Thus, the intrinsic potential for a human

outbreak of WNV may be very different in areas with similar population density.

One of the frequent technical issues in modeling disease risk is to incorporate the

local rather than global associations in these models. In spatial regression models, a

global model can be used to examine the relationship between disease risk and

potential explanatory factors, which are based on the assumption that the relationship is

a stationary spatial process. For a small and homogenous region of interest, it is

reasonable to assume that the explanatory factors would not change significantly across

the whole region, and the relationship between WNV incidence and the potential factors

would also be unchanged. However, the topography, climate, and population

distribution change greatly when it comes to a large region like California with a territory

over 163,000 square miles. California is geographically diverse and is equally varied in

its range of climates with several climatic sub regions recognized. It would be

unexpected to find that the spatial stationarity assumption holds in such large areas

having a substantial range of climatic conditions. Our results concur that WNV
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epidemiological models with improved predictive ability for risk for exposure to vectors

can be achieved through consideration of spatial heterogeneity. Besides improving

prediction accuracy, spatial heterogeneity can also provide insights into the underlying

ecological processes controlling the distributions of zoonotic pathogens and vector

population.

Predictive modelling of disease risk can be enhanced using spatially explicit

methods that account for either spatial autocorrelation (the tendency for pathogen

distributions to be clustered in space) or spatial heterogeneity (the potential for

environmental influences on pathogens to vary predictably in space). Predictions based

on spatial autocorrelation can be very effective when key environmental variables are

unknown or unavailable as geospatial datasets. Spatial heterogeneity can improve

predictions by capturing geographic shifts in the predominant ecological drivers. The

model described in this paper is a spatially explicit model that used GWR to adjust for

spatial autocorrelation and non-stationarity and produced continuous estimates of

mosquito habitat suitability. The model output may be useful for predicting WNV risk in

human populations, particularly in those areas where outcome data are unavailable.

GWR is a good example of a spatial statistical method that uses both the locational and

the attribute information. It employs a spatial weighting function assuming that near

places are more similar than distant ones, producing location-specific outputs that may

be used to identify sites for further investigation.

This study also postulates that understanding the underlying place characteristics

and population composition for the occurrence of WNV infection is important for

mitigating future outbreaks. The efforts to link these factors within a GIS framework are
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limited. One of the major challenges for such integration is the high dimensionality, large

volumes, and the availability of data at multiple spatial resolutions typically associated

with such models. This research utilizes a spatially explicit exploratory approach that

combines geovisualization, spatial analysis, and computational methods to integrate an

environmental model of mosquito habitat with human risk factors derived from socio-

economic and demographic variables. Geovisualization techniques assist in interpreting

the results in such a multivariate context and are useful for identifying multivariate

spatial and non-spatial patterns, thus providing useful insights into the causes of

underlying spatial processes. We have demonstrated that the integration of both

contextual and compositional factors using geovisualization techniques provides

alternate views on the relationship between WNV and its associated risk factors. Such

exploratory analysis supports hypothesis-generation in public health research and

policy-making.

There are several limitations of this study. First, it is assumed that factors

suitable for mosquito habitat increases the likelihood of WNV spread in human

populations. On the surface this seems to be reasonably sound; however, we do not

have specific evidence that this is true. Second, it is also assumed that the probability of

human infection is higher in counties with multiple confirmed WNV bird cases. Again, a

sound presumption with several references in previous section, but we do not have

specific evidence. A potential problem with this assumption is that human population

density, variations in level of public concern, and resource availability might bias the

reporting of dead birds. Thus, proper surveillance methods that take into consideration

these limitations while collecting infected dead bird data will contribute to more
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meaningful results. Third, the study considers that people are infected within the county

of their residence, ignoring the possibility of contracting an infection while traveling

outside the county limits. Unfortunately, we have no way of gathering any data to

confirm or refute this assumption; we recognize that this can result in an overestimation

of locally occurring WNV infection rate.  Potential future research may include the travel

habits of WNV-infected individuals, i.e. the distance from home and travel frequency.

Such information can be used to filter model inputs to those human cases that occurred

in close proximity to their homes or workplaces. Fourth, human WNV cases may be

under reported because some people may not have access to healthcare services or

the illness presents with mild symptoms (or they are asymptomatic) resulting in

misdiagnosis. Additionally, mosquito control effort information was not integrated into

our model even though active control measures would likely influence the model results.

The unaccounted conditions such as population immunity to WNV risk, public health

measures taken by local health departments, and personal and environmental hygiene

may also contribute to the occurrence, transmission, and spread of WNV among the

community that are not accounted for in our modeling efforts. These factors are

potential covariates and can be included in future research. Fifth, while environmental

data used in this research was of fine resolution, WNV disease human incidence data

and infected dead bird data that is used is available only at coarse county level. This

presented a spatial scale problem that could have been avoided by using fine resolution

or location-specific data; however, due to patient confidentiality and data reporting

issues, these data were unavailable. We had to assume that aggregating the

environmental data up to the county adequately represented the environmental



86

conditions presented in the county, but we know that data aggregation and smoothing

processes were likely to introduce some uncertainty into the model.

In this research, WNV was found to be heterogeneously related to environmental

factors at the county level throughout California during the time that our data were

collected. The results of our study could contribute to the understanding of spatial

variability of disease risk burden at local level. This spatially explicit modeling technique

may be useful in policy-making and decision-making depending on the granularity and

resolution of available data. Identifying the spatial variations in relationships, by

estimating local regression parameters, allows the spatial distribution and interaction of

predictor variables to be explored.

Our results also show that an integrated approach with geovisualization

framework facilitates the exploratory analysis of complex data and supports reasoning

about the underlying spatial processes that result in differential risks for WNV.

Understanding the underlying place characteristics and population composition for the

occurrence of WNV is important for mitigating future outbreaks. Our results show that

the visualization of similarity clustering of multivariate attributes facilitates the analysis of

complex data. Another advantage of this approach is that patterns found in voluminous

and complex epidemiological data can provide more focused opportunities for analysis

and interpretation by experts in that field. With an interactive user platform,

geovisualization techniques can efficiently obtain new knowledge from the data and

become an important hypothesis-generating tool in public health research. The

approach proposed in this study provides an exploratory framework for comparing
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relationships between a variety of compositional and contextual variables. However, this

approach is not intended to derive causal relationships.

These results demonstrate that mosquito habitat modeling provides a valuable

public health tool for assessing the risk of human arboviral infections. Our integrated

approach may assist in the risk assessment for WNV transmission in local areas and

guide local public health institutes to rationally allocate public health resources and

improve their preparedness for an outbreak according to region-specific conditions.

Our methods have made several improvements over the existing research on

WNV risk modeling: 1) we developed a novel technique to model WNV human risk

under data sparse conditions using publically available data; 2) we used MCDA

approach to create spatially explicit risk map by assigning different ranks and weights to

the risk factors; 3) we also incorporated spatial heterogeneity into environmental model

to improve its performance by 16 percent; 4) we developed a geovisualization

framework for integrating compositional and contextual factors that supports multivariate

analysis and hypothesis generation; and 5) our methods improved the specificity of

exposure prediction by improving the spatial resolution of the model results.
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