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CHAPTER 1 

Introduction 

Microwave filters, especially band-pass (BP) filters, are widely used in communication 

systems (including transmitter and receiver components) to select and shape signals of 

particular frequency band of interest. The increasing requirements, such as higher working 

frequency and lower power consumption for the communication systems make the selectivity 

more restricted. The implementation of BP filter requires manual tuning during the practical 

design and implementation stages.   

However, manual tuning highly depends on human experiences and is not scalable. 

Recent years, more attentions have been devoted to the computer-aided tuning (CAT) of 

microwave filters [1]. Through comparing the extracted parameters of the implemented filter 

and the original parameters of the designed filter, the difference between the implemented 

and theoretical designs can be revealed, which helps to tune each element of the filter. As such, 

the accuracy of filter parameter extraction is essential. The Cauchy method has been applied in 

extracting the characteristics polynomials of scattering parameters of the microwave filters [2], 

[3], [4], [5], based on the assumption that the filter is lossless or that all the resonators share 

the same quality factor (Q). This method does not work when each resonator has different loss. 

To address this issues, in [12], the coupling matrix (CM) is extracted in two steps: 1) applying 

the Cauchy method to roughly construct the coupling matrix, and 2) the loss information for the 

each resonator captured in the diagonal matrix is estimated. However, this method can not 

extract the quality factors accurately when the losses are uneven. 
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In this thesis, we explore possible methods to extract the coefficients quickly and 

accurately even when uneven losses exist. An enhanced Cauchy method and two optimization 

models are proposed. They all have good performance on extracting the characteristic 

polynomials. An optimization model based on the filter structure can also successfully estimate 

the loss information. Though a model for the high order case still needs to be further improved, 

the methods proposed in this thesis show a possible direction. 

The thesis is organized as follows: In Chapter 2, theories and techniques for synthesizing 

microwave filter’s are described, including the microwave resonator fundamentals, filter design 

techniques, network theory, etc. In Chapter 3, the Cauchy method for parameter extraction is 

described. A two-step optimization method using Cauchy method and CM is also proposed. 

Some examples are then illustrated to test the accuracy and efficiency of these techniques. 

Then the advantages and disadvantages of these current methods are also discussed. In 

Chapter 4, some new methods to extract the S-parameters from measured data of the filters 

with different unloaded quality factors are explored. Examples are also illustrated throughout 

this chapter to test and compare the results using different methods. In Chapter 5, we conclude 

the thesis and provide a brief discussion of future work. 
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CHAPTER 2  

SYNTHESIS OF MICROWAVE FILTER 

2.1    Introduction 

In this chapter, the theories and techniques for synthesizing microwave filter’s are 

described. The background knowledge of the microwave resonator, network theory, LP 

prototype filter design and LP to BP transform that have been well established in some classic 

textbooks are reviewed [6]. In addition, the procedures to construct a coupling matrix are 

described [7]. 

  

2.2     Microwave Resonators 

Microwave resonators are widely used in amplifiers and microwave filters. Close to the 

resonant frequency, a resonator can be modeled as a RLC equivalent circuit. The basic 

properties and characteristics of the circuit are discussed here to ease understanding. 

As is well known, the resonant circuits can be modeled in two forms: the series RLC 

circuit and the parallel RLC circuit. A typical series resonant circuit is shown in Fig. 2.1. 

 

Figure 2.1 A series RLC resonant circuit 

The input impedance of this circuit is: 

Zin = R + jωL + 1
jωC

                                                              (2.1) 
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The resonant frequency is:   

ω0 = 1
√LC

                                                                                 (2.2) 

 

           An important parameter of the resonant circuit is the Q factor, or the quality factor, 

which indicates the loss of a circuit. Q factor is defined as: 

Q = ωAverage  Energy Stored
Average Energy Loss

                                                    (2.3) 

According to the definition, the higher Q is, the lower loss rate the circuit is. It is worthy 

to point out that the loss of the circuit can be caused by many factors: radiation loss, conductor 

loss, etc. These can be captured by the resistance R in the prototype circuit. If an external 

network be connected to the resonator circuit, the loss will be higher. As such, to describe the 

properties of the circuit itself, another parameter is introduced. Q0, the unloaded Q, defines 

the loss of the circuit itself only, ignoring the external sourcing/loading structures.  

At the resonant frequency, the unloaded Q can be calculated as [6], page 272-278: 

Q0 = ω0
L
R

= 1
ω0RC

                                                               (2.4) 

           It shows from Equation (2.4) that if the loss factor, R, increases, the unloaded Q will 

decrease. 

           A parallel RLC resonant circuit is shown in Figure (2.2) 

 

Figure 2.2 A parallel RLC resonant circuit [6] 
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The input impedance of the parallel circuit is: 

Zin = (1
R

+ 1
jωL

+ jωC)−1                                                      (2.5) 

The resonant frequency is the same as that in Equation (2.2):   ω0 = 1
√LC

 .     

The input impedance of the parallel circuit will be:  

Zin = R                                                                        (2.6) 

And the unloaded Q of the parallel circuit will be: 

Q0 = R
ω0L

= ω0RC                                                              (2.7) 

 

2.3       Lossy filters and Q factor  

            As discussed above, the loss of the resonant filter at the resonant frequency can be 
captured by the unloaded Q factor, Q0. But what if the frequency is not at the resonant 
frequency? In most practical BP filters, the passband is very small compared to the center 
frequency, and hence the working frequency is usually not far from the resonant frequency. As 
such, the properties of resonators are mostly concerned around the resonant frequency. Let 
the actual frequency, ω, be slightly different from the resonant frequency ω0: ω = ω0 + Δω, 
Δω ≪ ω, and 𝜔2 − 𝜔0

2 = (𝜔 + 𝜔0)(𝜔 − 𝜔0) = ∆𝜔(2𝜔 − ∆𝜔), then the input impedance of 
the series circuit will be: 

Zin = R + jωL + 1
jωC

= R + jωL �ω
2−ω0

2

ω2 � = R + jL ∙ (2ω − Δω)Δω/ω                   (2.8) 

            For Δω ≪ ω, ∆𝜔(2𝜔 − ∆𝜔) ≅ ∆𝜔 ∙ 2𝜔, and from Equation (2.4), 𝐿 = 𝑄0𝑅/𝜔0, and 

substitute 𝐿 = 𝑄0𝑅/𝜔0 and ∆𝜔(2𝜔 − ∆𝜔) ≅ ∆𝜔 ∙ 2𝜔 into Equation 2.8, the input impedance 

can be represented as: 

Zin ≅ jL ∙ ∆𝜔 ∙ 2𝜔
𝜔

= R + jL ∙ 2Δω = R + j 2RQ0∆ω
ω0

                                               2.9) 

            Particularly, this series lossy resonator can be transformed to a lossless form, where the 

resonant frequency, ω0, is replaced by an adjusted resonant frequency, ω0
′ : 
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ω0
′ = ω0(1 + j

2Q0
)                                                            (2.10) 

             As the adjusted form is lossless, the input impedance will be: 

Zin = jL ∙ 2Δω = j2L(ω−ω0
′ )                                       (2.11) 

Substitute Equation (2.10) into Equation (2.11), then the input impedance is: 

 Zin = j2L(ω−ω0
′ ) = j2L �ω − ω0(1 + j

2Q0
)� = ω0L

Q0
+ j2L(ω−ω0) = R + jL ∙ 2Δω      (2.12) 

              Here the expressions of the input impedance in Equation (2.12) and Equation (2.9) are 

identical.  

              Now consider the case of a parallel circuit. Similarly, let ω = ω0 + Δω, Δω ≪ ω, then 

the form of the input impedance of the parallel circuit, by applying the Taylor expansion, will be: 

Zin ≅ (1
R

+
1−∆ωω0
jω0L

+ jω0C + j∆ωC)−1 = R
1+2j∆ωRC

= R
1+2jQ0∆ω/ω0

.                  (2.13) 

             Again, substitute Equations (2.7) & (2.10) into Equation (2.13), and make R to be infinite 

(lossless), then the input impedance expression will be simplified as: 

          Zin = 1
j2C(ω−ω0)

                                                                (2.14) 

             It is noticed that in the practical cases, the Q factor can be included in the adjusted 

resonant frequency, and then the lossy resonators can be considered as lossless resonators, 

which provides great convenience. Furthermore, this effective resonant frequency contributes 

to the adjustment of the complex frequency domain and extraction of the lossy factors, which 

will be denoted later. 

      2.4 Network Analysis and S-parameter 

            In this part, the definition and calculation of scattering parameters and network theory 
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are introduced.  

Consider a generalized N-port microwave network shown in Figure 2.3, 

 

Figure 2.3 A generalized N-port microwave network, obtained from David. M. Pozar. Microwave 

Engineering, pp174 

where Vn+ is the incident voltage wave’s amplitude to port n, and Vn− is the voltage wave’s 

amplitude from port n. Then the scattering matrix, usually called [S] matrix, is defined as: 

   

And for each parameter of the scattering matrix can be defined as [15]: 

Sij = Vi
−

Vj
+�
Vk
+=0 for k≠j

.                                                      (2.15) 

The voltage and current on each port can be written as: 

Vi  = Vi+ + Vi−                                                               (2.16a) 

Ii = Y0(Ii+ − Ii−)                                                          (2.16b) 

        From the two above equations,  
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Vi + Z0Ii = Vi+ + Vi− + Vi+ − Vi− = 2Vi+                                        (2.16c) 

Vi − Z0Ii = Vi+ + Vi− − Vi+ + Vi− = 2Vi−                                        (2.16d) 

For a 2-port network with reciprocal structure, the S parameters can be written as: 

S21 = V2−

V1
+�
V2+=0 

                                                          (2.17a) 

S11 = V1−

V1
+�
V2+=0 

                                                          (2.17b) 

The S parameters S21 and S11 are the transfer and reflection characteristics parameters 

of the 2-port network respectively.  

            For a nonreciprocal network, which means the impedance at each terminate is different, 

the normalized voltage wave, are determined as[13], page 23-30, [15], page 174-180: 

S21 = V2−

V2
+
�Z0,1

�Z0,2
�
V2+=0

= 2V2
V1+Z0I1

�Z0,1

�Z0,2
                                       (2.17c) 

S11 = V1−

V1
+
�Z0,1

�Z0,1
�
V2+=0

= V1−Z0I1
V1+Z0I1

                                               (2.17d) 

where Z0,i is the characteristic impedance at terminal i, Z0 is the input impedance at the 

loading port[13], [15]. 

2.5 Design of Chebyshev Filter 

     Chebyshev filter is a widely used in practical microwave filters. In this session, its 

theoretical design and implementation are introduced. 

2.5.1    Theoretical Design of Chebyshev Filter 

The gain (or amplitude) response as a function of angular frequency of an N-order LP 

filter is [6], [8] :  
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Gn(ω) = |Hn(jω)| = 1

�1+ε2Tn2( ωω0
)
                                             (2.18) 

where ϵ  is the ripple factor, ω0 is the cutoff frequency, and Tn is a Chebyshev polynomial of 

the 𝑛th-order.  

Then the transfer function is given by 

H(s) = 1
2n−1∈

∑ 1
(s−spm− )

n
m=1 ,                                                     (2.19) 

where spm−  are only those poles with a negative real part for the poles of G(ω). 

The ripple, determined by ϵ, is often given in dB: Ripple in dB = 10lg (1 + ϵ2).   For 

example, the ripple is 0.5dB when ϵ = 0.3493. 

2.5.2   LP Prototype Filter Design and LP to BP Transformation 

            Fig.2.4 shows the commonly used structures for LP prototype filter. The values of the 

elements, g0, g1, … , gN+1, can be determined by the insertion loss method which is well 

established in [6].  

 

Fig. 2.4 Ladder structures for low-pass filters prototypes, derived from David. M. Pozar. 

Microwave Engineering, pp403 
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After the LP filter prototype is designed, the BP filter can be obtained in two steps: 1)  

impedance &.frequency scaling and 2) LP to BP transformation. 

In the prototype design, the source resistance is unity. If the source resistance is R0, the 

new LP filter’s component values after impedance scaling can be obtained by multiplying or 

dividing all the component values of the prototype design.  

The new filter’s component values, after both impedance and frequency scaling, are [6]: 

Lk′ = R0Lk
ωc

,                                                                       (2.20) 

Ck′ = Ck
R0ωc

.                                                                      (2.21) 

 

The design of LP prototype filter can then be transformed to obtain the BP filter. If ω1 and 

ω2 are the lower and upper frequencies of the passband, then the LP to BP transformation can 

be obtained after the frequency substitution: 

ω ←  ω0
ω2−ω1

� ω
ω0
− ω0

ω
� = 1

∆
� ω
ω0
− ω0

ω
�                                              (2.22) 

where  ∆= ω0
ω2−ω1

  is the fractional bandwidth and ω0 = √ω1ω2 is the center frequency of the 

passband, or the resonant frequency. Note that during the LP to BP frequency transformation, 

the series inductor, 𝐿𝑘, in the  LP prototype are replaced by a series LC circuit;  the shunt 

capacitor, 𝐶𝑘, in the  LP prototype are replace by a shunt LC circuit.   

After both impedance & frequency scaling and LP to BP frequency transformation, the new 

component values are: 

Lk′ = Lk R0
ω0Δ

 ,   Ck′ = Δ
ω0L1R0

 for series inductor                           (2.23) 

and 
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Lk′ = ΔR0
ω0Ck

,  Ck′ = Ck
ω0ΔR0

   for shunt capacitor.                          (2.24) 

        The LP to BP transform will be: 

 

Fig.2.5 LP to BP transformation 

 

2.5.3 Implementation Example 

Here we use the 2-order Chebyshev filter as an example to illustrate the BP filter design. 

According to Section 2.5.1, when n=2, ω0=1, ripple= 0.5 dB, the gain response is: 

G(ω) = 1
�1+ε2[2ω2−1]2

,                                                       (2.25) 

and the transfer function is: 

𝑆21(s) = 1.4314
s2+1.4256s+1.5162

                                                   (2.26) 
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Then it is easy to obtain the reflection function: 

S11(s) = s2+0.5
s2+1.4256s+1.5162

                                                   (2.27) 

 

An ideal Chebyshev prototype filter can be implemented as a RLC circuit. The circuit 

implementation of this filter with unity input impedance is shown in Fig. (2.6):                  

 

Fig. 2.6 2-order Chebushev filter prototype [6] 

Then the S-parameters can be written as: 

𝑆11(𝑠) = 𝑍0,1−𝑍𝑖𝑖
𝑍0,1+𝑍𝑖𝑖

 =
𝑅∥� 1𝑠𝑠�+𝑠𝑠−1

𝑅∥� 1𝑠𝑠�+𝑠𝑠+1
=

𝑠2+� 1
𝑅𝑠−

1
𝐿�𝑠+

1
𝐿𝑠(1−1𝑅)

𝑠2+� 1
𝑅𝑠+

1
𝐿�𝑠+

1
𝐿𝑠(1+1𝑅)

                                     (2.28a) 

𝑆21(𝑠) = 2𝑍0,2
𝑍0,1+𝑍𝑖𝑖

�𝑍0,1

�𝑍0,2
 =

2�𝑅∥� 1𝑠𝑠��

𝑅∥� 1𝑠𝑠�+𝑠𝑠+1
�𝑍0,1

�𝑍0,2
= 2

𝑠𝐿𝑠2+�𝐿+𝐿𝑅�𝑠+�1+
1
𝑅�

�𝑍0,1

�𝑍0,2
                    (2.28b) 

        The elements’ values can be calculated by comparing Equations (2.26), (2.27) , (2.28a) & 
(2.28b) as:𝑅 = 1.9840557, 𝐿 = 1.4028939,𝐶 = 0.7070839. Then plug the RLC elements’ 
values into (2.23) & (2.24), it can be seen that the implemented filter’s reflection and transfer 
function 𝑆11(s) &𝑆21(s) fulfill the design of the ideal filter. 

         Then a 2-order BP Chebyshev filter can be implemented in Advanced Design System (ADS). 

Here the BP filter is of a 0.1 GHz band-width and a resonant frequency at 1 GHz, the schematic 

and simulation result are shown below in Fig. 2.6. 
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(a) 

 

(b) 

Fig. 2.7 (a) Schematic of a 2-order BP Chebyshev filter (b) Simulated S-parameters 

responses of a 2-order BP Chebyshev filter 

 

2.6 Coupling Matrix Synthesis 

2.6.1 Low-pass prototype of a lossless coupled resonator filter 

A general 2-port cross-coupled lossless network is shown below. All the resonators/cavities are 

tuned at the same normalized resonant frequency. The source impedance 𝑅1 is connected to 

the port 1 and the load impedance 𝑅𝑁 is connected to the port 2. 
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Figure 2.8 The general network of a two-port cross-coupled filter, derived from A. Atia and A. 

Williams, “New types of waveguide bandpass filters for satellite transponders,” Comsat Tech. 

Review, vol. 1, no. 1, pp. 23, 1971. 

         Applying the Kirchhoff Circuit Laws in the different cavities, it’s easy to demonstrate the 

equations as below [9]: 

[𝑅1𝛿1𝑖 + 𝑅𝑁𝛿𝑁𝑖 + 𝑗𝜔]𝐼𝑖 + 𝑗 ∑ 𝑀𝑖𝑘𝐼𝑘 = 𝑒1𝛿1𝑖𝑁
𝑘=1
𝑘≠𝑖

,   𝑖 = 1,2,3, … ,𝑁                         (2.29) 

where 𝐼𝑖 is the loop current in the 𝑖th cavity;𝛿𝑖𝑖 is the Kroneeker delta; 𝑒1 is the input voltage 

(which is normalized to unity);  𝑀𝑖𝑖 is the coupling coefficient between the 𝑖th and the 𝑗th 

cavities. Note that the coupling coefficients𝑀𝑖𝑖 are all real and are independent of frequency. 

Equation (2.29) can be rewritten as:  

𝑗[𝑀− 𝑗 ∙ 𝑠 ∙ 𝐼 − 𝑗𝑅] ∙

⎣
⎢
⎢
⎢
⎡
𝐼1
𝐼2
𝐼3
⋮
𝐼𝑁⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑒1
0
0
⋮
0 ⎦
⎥
⎥
⎥
⎤
                                                     (2.30) 
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𝑗 ∙ 𝐴 ∙

⎣
⎢
⎢
⎢
⎡
𝐼1
𝐼2
𝐼3
⋮
𝐼𝑁⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑒1
0
0
⋮
0 ⎦
⎥
⎥
⎥
⎤
                                                              (2.31)     

where 𝑅𝑁×𝑁 = 𝑑𝑖𝑑𝑑[𝑅1, 0,0, … ,0,𝑅𝑁]; 𝐼𝑁×𝑁is anidentity matrix; 𝑀𝑁×𝑁 is the coupling matrix 

which is reciprocal: 𝑀𝑖𝑖 = 𝑀𝑖𝑖. 

2.6.2 Construction of the admittance 

       Then the admittances of the network can be determined [10], [11]:  

𝑦21(𝑠) = 𝑖𝑖
𝑒1

|𝑅1=𝑅2=0 = 𝑗[−𝑀 −𝜔𝐼]𝑁,1
−1                                            (2.32a)                                           

𝑦21(𝑠) = 𝑗 ∙ [𝑇 ∙ Λ ∙ 𝑇𝑡 − 𝑤𝐼]𝑁,1
−1 = 𝑗 ∙ ∑ 𝑇𝑁𝑁𝑇1𝐾

𝜔−𝜆𝑁
𝑁
𝑘=1                                   (2.32b) 

𝑦22(𝑠) = 𝑖𝑖
𝑒1

|𝑅1=𝑅2=0 = 𝑗[−𝑀 −𝜔𝐼]𝑁,𝑁
−1                                            (2.32c) 

𝑦22(𝑠) = 𝑗 ∙ [𝑇 ∙ Λ ∙ 𝑇𝑡 − 𝑤𝐼]𝑁,𝑁
−1 = 𝑗 ∙ ∑ 𝑇𝑁𝑁2

𝜔−𝜆𝑁
𝑁
𝑘=1                                    (2.32d) 

where 𝑇 ∙ Λ ∙ 𝑇𝑡 is the eigen-decomposition of –𝑀; Λ = diag[𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑁 , ], 𝜆𝑖 is the 

eigenvalue of –𝑀. 

        The driving point impedance can be written as [10], [11]: 

𝑍11(𝑠) = 𝑧11[1 𝑦22⁄ +𝑅𝑁]
𝑧22+𝑅𝑁

= 𝑧11[1 𝑦22⁄ +1]
𝑧22+1

                                          (2.33) 

         Also, it can be expressed as  

𝑍11(𝑠) = 1−𝑆11(𝑠)
1+𝑆11(𝑠)

= 𝐸(𝑠)+𝐹(𝑠)
𝐸(𝑠)−𝐹(𝑠)

= 𝑚1+𝑛1
𝑚2+𝑛2

                                          (2.34) 

where 𝑚1, 𝑚2, 𝑛1, and 𝑛2 are complex-even and complex-odd polynomials, respectively. 

         When N is even, from Equation (2.34) it can yield that 

𝑍11(𝑠) = 𝑛1(𝑚1 𝑛1⁄ +1)
𝑚2+𝑛2

                                                         (2.35)  
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         Comparing Equation (2.33) and Equation (2.34), it can be found that 

𝑦22(𝑠) = 𝑛1
𝑚1

                                                                     (2.36)        

         As 𝑦22(𝑠) and 𝑦21(𝑠) share the same denominator, and the transmission zeros of 

𝑦21(𝑠)are exactly the same as those of 𝑆21(𝑠), then  

𝑦21(𝑠) = 𝑃(𝑠)
𝑚1

                                                                   (2.37) 

         Similarly, when N is odd, it can be obtained that 

𝑦22(𝑠) = 𝑚1
𝑛1

                                                                    (2.38) 

𝑦21(𝑠) = 𝑃(𝑠)
𝑛1

                                                                   (2.39) 

        Then, from (2.34), 𝑚1 and 𝑛1 can be constructed as: 

  𝑚1 = 𝑅𝑒[𝑒𝑠(0) + 𝑓𝑠(0)] ∙ 𝑠0 + 𝑗 ∙ 𝐼𝑚[𝑒𝑠(1) + 𝑓𝑠(1)] ∙ 𝑠1 + 𝑅𝑒[𝑒𝑠(2) + 𝑓𝑠(2)] ∙ 𝑠2 + ⋯⋯ 

(2.40) 

      𝑛1 = 𝑗 ∙ 𝐼𝑚[𝑒𝑠(0) + 𝑓𝑠(0)] ∙ 𝑠0 + 𝑅𝑒[𝑒𝑠(1) + 𝑓𝑠(1)] ∙ 𝑠1 + 𝑗 ∙ 𝐼𝑚[𝑒𝑠(2) + 𝑓𝑠(2)] ∙ 𝑠2 + ⋯⋯ 

(2.41) 

where 𝑒𝑠(𝑖) and 𝑓𝑠(𝑖), 𝑖 = 0, 1, 2, 3, … ,𝑁 are the coefficients of 𝐸(𝑠) and 𝐹(𝑠). These 

procedures guarantee that the coefficients of the highest order term 𝑠𝑁 in 𝐸(𝑠) and 𝐹(𝑠) are 

all purely real. 

       After all the procedures above, the coupling matrix  𝑀(𝑁+2)×(𝑁+2) can be then constructed 

as shown in Fig. 2.8: 
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Fig. 2.9 N+2 symmetric coupling matrix [11] 

where    S—Source,  L—Load,𝑀𝑆𝑠 = 𝑀𝑠𝑆 are the Source-Load coupling coefficients,𝑀𝑠𝑘 =

𝑀𝑘𝑠 = 𝑇𝑁𝑘 , 

𝑀𝑆𝑘 = 𝑀𝑘𝑆 = 𝑇1𝑘 , 

𝑀𝑘𝑘 = −𝜆𝑘. 
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CHAPTER 3  

PARAMETER EXTRACTION METHODS 

3.1 Introduction 

        In this chapter, classical theories and some existing methods for parameter extraction are 

described. Some examples are illustrated in the end of this chapter to test the accuracy and 

efficiency of these techniques. Meanwhile, the advantages and disadvantages of these current 

methods are also be discussed. 

3.2 Cauchy Method 

   Cauchy method, which is well established in [2], [3], [4], [5], is a widely used technique for 

parameter extraction. As discussed in Chapter 2, a two-port lossless network can be described 

by its scattering parameters 𝑆11(𝑠)and 𝑆21(𝑠), whose three characteristic polynomials 𝐹(𝑠), 

𝑃(𝑠), and 𝐸(𝑠) can completely determine a rational model for a LP prototype filter. The 

characteristic polynomials are: 

𝑆11(𝑠) = 𝐹(𝑠)
𝐸(𝑠)

= ∑ 𝑎1𝑁(𝑠)𝑁𝑖
𝑁=0
∑ 𝑏𝑁(𝑠)𝑁𝑖
𝑁=0

                                                    (3.1) 

𝑆21(𝑠) = 𝑃(𝑠)
𝐸(𝑠)

= ∑ 𝑎2𝑁(𝑠)𝑁𝑖𝑛
𝑁=0
∑ 𝑏𝑁(𝑠)𝑁𝑖
𝑁=0

                                                    (3.2) 

where 𝑆11(𝑠) is the reflection function and 𝑆21(𝑠) is the transmission function; 𝑛 represents the 

order of the filter and 𝑛𝑧 represents the number of  finite transmission zeros (TZs); 𝑠 = 𝑗Ω is 
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the complex domain where Ω is the normalized frequency for the LP prototype. The 

relationship between the BP frequency 𝑓and the normalized frequency Ω is described as: 

𝑠 = 𝑓0
𝐵𝐵

(𝑓
𝑓0
− 𝑓0

𝑓
)                                                              (3.3) 

where 𝐵𝐵 is the bandwidth of the band-pass filter;𝑓0 = 𝜔0/2𝜋 is the resonant frequency. 

  The Equations (3.1) and (3.2) can be formulated in the matrix form as: 

[𝑆21𝑉𝑛    − 𝑆11𝑉𝑛𝑧] �
𝑑1
𝑑2� = 0                                                 (3.4) 

where 𝑑1 = [𝑑1,0, 𝑑1,1, … ,𝑑1,𝑛]𝑇,𝑑2 = [𝑑2,0, 𝑑2,1, … ,𝑑2,𝑛𝑧]𝑇 are the coefficients vectors; 

𝑆11 = 𝑑𝑖𝑑𝑑{𝑆11(𝑠𝑖)},𝑆21 = 𝑑𝑖𝑑𝑑{𝑆21(𝑠𝑖)} , 𝑖 = 1,2, …𝑁𝑠, are the measured values at 𝑁𝑠 

different sampling frequency points;  and 𝑉𝑚 is an increasing-power 𝑚-order Vandermonde 

matrix whose size is 𝑁𝑠 × (𝑚 + 1) and elements are  𝑣𝑚,𝑘 = (𝑠𝑚)𝑘−1,𝑘 = 1, 2, … , 𝑖 + 1. 

  In order to guarantee that the system matrix has a reasonable solution, 𝑁𝑠must be greater 

than or equal to(𝑛 + 𝑛𝑧 + 1).  The coefficients of the numerators can be solved with TLS (total 

least square) method. Once the polynomials F(s) and P(s) have been computed, the poles (roots 

of E(𝑠) ) can be computed using the Feldkeller's equation, based on precondition that the filter 

is lossless: 

𝐹(𝑠)𝐹∗(−𝑠) + 𝑃(𝑠)𝑃∗(−𝑠) = 𝐸(𝑠)𝐸∗(−𝑠)                                           (3.5) 

The roots of the LHS part of Equation (3.5) appear in pairs with opposite real parts. 

Selecting the roots with negative real part, the poles of the filter can be found. Then the 
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coefficients of𝐸(𝑠)can be determined from those selected poles. By this way, the characteristic 

polynomials,𝐹(𝑠), 𝑃(𝑠) and 𝐸(𝑠), are all obtained.  

3.3   Q Factors and The Adjustment of Complex Domain 

It is noticed that Cauchy method requires a lossless network, which makes it hard to obtain 

the accurate extraction for the lossy filter. Some works have been done in the literature to 

address the problem [2], [3], [4], [10]. However, a unique transformation of 𝑠 domain is 

established in [5], which can conclude the loss in the complex domain𝑠′.  

In Section 2.3, it is proved that for a resonant circuit, a lossy resonator can be modeled as a 

lossless resonator, after replacing the resonant frequency, 𝜔0, with a new complex resonant 

frequency 𝜔0 �1 + 𝑖
2𝑄0

�, where 𝑄0is the unloaded quality factor. Applying this result on the 

transformation from the BP domain to LP domain, the complex domain 𝑠 for the LP prototype 

filter, can be replaced by a new complex domain 𝑠′[5]: 

𝑠′ = 𝑓0
𝐵𝐵

1
𝑄0

+ 𝑗 𝑓0
𝐵𝐵

( 𝜔
𝜔0
− 𝜔0

𝜔
)                                                     (3.6) 

where 𝐵𝐵 is the bandwidth of the BP filter, 𝑓0 is the resonant frequency. Note that the 

characteristic polynomials are in the same domain, as is based on the assumption that all the 

resonators are of the same 𝑄0. The unloaded factor 𝑄0 can be obtained by the best matching 

between measured and evaluated 𝑆11 values at the resonant frequency 𝑓0 [5]. 

3.4 A Parameter Extraction Method with Coupling Matrix and Cauchy Method 
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         A two-stage optimization method is established in [12]. As described in Section 2.6, the 

first step is to construct the source-load coupling matrix. Note that the coupling matrix is built 

based on the precondition that the filter is lossless. To guarantee this, the Cauchy method with 

the adjusted complex domain is applied first, then the coupling matrix, 𝑀(𝑁+2)×(𝑁+2), is built 

from the characteristics polynomials extracted by the Cauchy method. To take the loss into 

account, let  

𝐴(𝑁+2)×(𝑁+2)(𝑠) = [𝑅 − 𝑗 ∙ 𝑀 + 𝐺 − 𝑠 ∙ 𝑈]                                       (3.7) 

          where 𝐺(𝑁+2)×(𝑁+2) = 𝑑𝑖𝑑𝑑[0,𝐺1,𝐺2,⋯ ,𝐺𝑁 , 0], 𝐺𝑖 = 𝐵𝐵
𝑓0
∙ 1
𝑄0

, represents the loss, 𝑄0 is 

the common unloaded 𝑄, 𝑈(𝑁+2)×(𝑁+2) = 𝑑𝑖𝑑𝑑[0, 1, 1,⋯ ,1,1,0],  

𝑅(𝑁+2)×(𝑁+2) = 𝑑𝑖𝑑𝑑[1, 0, 0,⋯ ,0,0,1].   

          Then 𝑆11(𝑠) and 𝑆21(𝑠) are extracted [9], [12]: 

𝑆11𝑒𝑒𝑡(𝑠) = 1 + 2𝑗 ∙ [𝐴−1]1,1 ,                                                    (3.8) 

 𝑆21𝑒𝑒𝑡(𝑠) = −2𝑗 ∙ [𝐴−1]𝑁+2,1.                                                    (3.9) 

     Then in the second step a range of 𝑄 is set as ± 30% of the 𝑄0 value obtained in the first 

step and the new different 𝑄𝑖  values of each resonator can be calculated by minimizing the 

cost function: 

𝐹𝐹𝑛 = ∑ �𝑆21𝑒𝑒𝑡(𝑠(𝑖)) − 𝑆21𝑚𝑒𝑎(𝑠(𝑖))�
2𝑚

𝑖=1 + �𝑆11𝑒𝑒𝑡(𝑠(𝑖)) − 𝑆11𝑚𝑒𝑎(𝑠(𝑖))�
2
                     (3.10) 
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        𝑆21𝑚𝑒𝑎(𝑠(𝑖)) and 𝑆11𝑚𝑒𝑎(𝑠(𝑖)) are known values which are the measured 𝑆21 and 𝑆11 values 

at 𝑚 different sampling  𝑠(𝑖);  𝑠(𝑖) = jΩ(𝑖) is the complex domain; Ω(𝑖) is the normalized 

sampling frequency for the LP prototype. 

3.5 Examples and Analysis 

            In this section, several different filters will be illustrated to test the methods discussed 

above. The simulation results will be shown and the performances will be discussed. 

Furthermore, the disadvantages of each method will be analyzed, which motivate our new 

development.  

3.5.1 Testing of Cauchy Method in Lossless Condition 

            First, the transfer function 𝑆21(𝑠) for an ideal 2-order Chebyshev filter, with the ripple of 

0.5 dB, was plotted in Section 2.5.3. Using the BP filter S-parameters simulated in ADS, and 

applying the Cauchy method in Matlab to extract the S-parameters, we obtain the transfer 

function plot using the extracted values. The comparison of the two plots are shown below: 
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Fig. 3.1 Simulation and extraction results of a lossless BP filter. 

              The blue curves is simulated using the real S-parameters and the red curves are the 

simulated using the extracted S-parameters. The curves match very well, showing that the 

Cauchy method works well in the lossless case. 

3.5.2 Testing of Cauchy Method in Lossy Filters 

            First, a lossy filter model is constructed. As discussed previously in Chapter 2, a BP filter 

can be constructed by the impedance scaling, frequency scaling and frequency transformation 

from the LP prototype. The loss, due to various reasons, can be modeled as a resistor in each 

resonator. And the resistors presenting the loss in the LP prototype can also be transformed 



24 
 

into BP filters. For a resonator in the lossy BP filter, from Equations (2.4), (2.7), (2.23) & (2.24), 

the Q factor can be calculated in the equation as:  

𝑄𝑘 = 𝜔0𝑟𝑘𝐶 ʹ = 𝜔0𝑟𝑘
𝐿𝑁
∆𝑅0

= 𝐿𝑁𝑟𝑁
Δ𝑅0

     for a shunt capacitor                         (2.11a) 

and 

𝑄𝑘 = 𝜔0
𝑠𝑁
ʹ

𝑟𝑁
= 𝜔0

𝑠𝑁𝑅0
𝑟𝑁∆𝜔0

= 𝑠𝑁𝑅0
Δ𝑅𝑁

     for a series inductor                          (2.11b) 

whereLk and Ck are the 𝑘th component’s value of the LP prototype filter; the 𝐿𝑘′  andCk′  are the 

components’ values of the 𝑘th resonant cavity of the BP filter; Δ is the normalized bandwidth, 

which is defined asΔ = 𝐵𝐵
𝑓0

; 𝑄𝑘 is the quality factor of the 𝑘th resonator.  

            Fig. 3.2 (a) shows the schematic of the 2-order band-pass Chebyshev filter designed 

based on the LP filter in Figure 2.6 (a). Figure 3.2 (b) shows the simulation response and the 

extracted results with and without adjustment of complex domain. The filter is of 0.5dB ripple, 

the resonant frequency,𝑓0 = 1𝐺𝐺𝐺, and the bandwidth:𝐵𝐵 = 100𝑀𝐺𝐺. The two resonant 

cavities have the same quality factor: 𝑄1 = 𝑄2 = 70.1.  
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(a) 

 

(b) 

Fig. 3.2 (a) Schematic of the 2-order BP Chebyshev filter with the same Q factors (b) Measured 

and extracted results of the 2-order BP lossy filter. 
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            The green curves shows the original measured S-parameters, and the blue curves and 

red curves are the extracted results with and without adjustment of 𝑠 domain. It shows that the 

common Cauchy method fails to extract the loss of the filter, but after the adjustment of 𝑠 

domain, the Cauchy method is able to cover the loss and have a great match with the measured 

data. 

             Note that the extraction result above is based on the same unloaded Q. To further test 

the Cauchy method, an example of un-even unloaded Qs is illustrated here: one resonator’s Q 

is 35 and the other one’s Q is 701. To get the best match at the resonant frequency, the 

effective quality factor, Q=70, is used here to present the loss of the resonators. The schematic 

and extraction result of this example are shown below: 

 

(a) 
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 (b) 

Fig. 3.3 (a) Schematic of the 2-order BP Chebyshev filter with the different Qs (b) Measured and 

extracted results of the 2-order BP lossy filter. 

           The green curves show the original measured S-parameters, and the blue curves and red 

curves are the extracted result with and without adjustment of 𝑠 domain. The comparison 

shows that the original Cauchy method fails to extract the loss of the filter. After the 

adjustment in 𝑠 domain, the result based on extracted parameters and the measured data are 

close, but with some mismatches.  
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           To further test the Cauchy method, some higher order filter examples are illustrated 

below: 

           Fig. 3.4 (a) shows a 3-order BP filter with resonant frequency,𝑓0 = 1𝐺𝐺𝐺, and the 

bandwidth:𝐵𝐵 = 100𝑀𝐺𝐺. The three resonant cavities have the different quality factors: 

𝑄1 = 55,𝑄2 = 548,𝑄3 = 548. The effective common quality factor is simulated as 137. The 

schematic and extraction results are shown below: 

 

(a) 
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(b) 

Fig. 3.4 (a) Schematic of the 3-order BP Chebyshev filter with the different Qs (b) Measured and 

extracted results of the 3-oder BP lossy filter. 

              In Fig. 3.4, the green curves show the original measured S-parameters, and the blue 

curves and red curves are the extracted results using the extracted methods, with and without 

adjustment of 𝑠 domain. 

               Figure 3.5 (b) shows a 5-order BP filter with resonant frequency,𝑓0 = 1𝐺𝐺𝐺, and the 

bandwidth:𝐵𝐵 = 100𝑀𝐺𝐺. The five resonant cavities have the different quality factors: 

𝑄1 = 31,𝑄2 = 62,𝑄3 = 185,𝑄2 = 308,𝑄1 = 532. The effective common quality factor is 

simulated as 125. 

 

(a) 
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(b) 

Fig. 3.5 (a) Schematic of the 5-order BP Chebyshev filter with the different Qs (b) Measured and 

extracted results of the 5-oder BP lossy filter.  

           In Fig.3.5, the green curve is plotted using the original measured S-parameters, and the 

blue curves and red curves show results using the extracted parameters, with and without 

adjustment in the 𝑠 domain.  

           The results from these additional experiments lead to a similar conclusion: 1) if the loss is 

not taken into account, the extraction result is always bad, 2) the Cauchy method works very 

well when the unloaded Qs are equal; and 3) the Cauchy method does not perform very well 
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when the Qs are un-even; in particular, the more un-even the Q factors are, the worse 

extraction performance the Cauchy method will have.   

3.5.3 Testing of the Method with Coupling Matrix and Cauchy Method 

         To compare deferent extraction methods, we use the same lossy used in Section 3.4.2.  

The first two examples are a 2-order BP Chebyshev filters with the same quality factors,  

𝑄1 =  𝑄2 = 70.1; and a 2-order BP Chebyshev filters with the different quality factors  

𝑄1 = 35, 𝑄2 = 701. The third example is a 3-order BP filter with five different quality factors: 

𝑄1 = 55,𝑄2 = 548,𝑄3 = 548.  The last one is a 5-order BP filter with five different quality 

factors: 𝑄1 = 31,𝑄2 = 62,𝑄3 = 185,𝑄4 = 308,𝑄5 = 532.  
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Fig. 3.6 Measured and extracted results of the 2-oder BP lossy filter with the same Qs, using the 

mixed methods. 

            The measured (red curves) and extracted (blue curves) curves match with each other 

very well, and the Q values estimated by the this method are  𝑄1 = 68, 𝑄2 = 69, which are 

close to the settled values. It indicates that this method works well in the case of similar Q 

values. 

 

Fig. 3.7 Measured and extracted results of the 2-oder BP lossy filter with the different Qs, using 

the mixed methods. 
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          The measured (red curves) and extracted (blue curves) curves have significant mismatch, 

and the Q values estimated by the this method are  𝑄1 = 62, 𝑄2 = 234, which are quite 

different from to the settled values, 35 and 701. These show that this method does not work 

well in the case of different Q values in a low-order filter. 

 

Fig. 3.8 Measured and extracted results of a 3-order BP lossy filter with different Qs, using the 

mixed methods. 

          The extracted curves (blue curves) also differ from the measured ones (red curves) 

significantly. The estimated Q values are  𝑄1 = 104, 𝑄2 = 114,𝑄3 = 132, which are quite 
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different from to the settled values, 35 and 701. These results also show that this method does 

not work well in the case of different Q values in a low-order filter. 

 

 

Fig. 3.9 Measured and extracted results of a 5-order BP lossy filter with different Qs, using the 

mixed methods 

          The extracted (blue curves) curves differ significantly from the measured ones (red 

curves). The estimated Q values are  𝑄1 = 131,𝑄2 = 142,𝑄3 = 189,𝑄4 = 168,𝑄5 = 192, 

which are quite different from to the original data. This comparison also shows that this 

method does not work well in the case of different Q values in a higher-order filter. 
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3.6 Analysis of the results 

        The Cauchy method is cost effective and has good performance only when the filter is 

lossless or lossy but with same or similar quality factors. However, when the resonators are of 

different quality factors, Cauchy method fails to get a good extraction.  

          In the 2-step extraction method, Cauchy method is applied first to generate the “lossless” 

characteristics polynomials and construct a coupling matrix, and then the loss can be 

represented in the diagonal terms. This method also works well in the case of lossy filters with 

same or similar Q factors, and provides a possible way to estimate the independent loss for 

each resonator. However, experiments show that it does not perform well in the cases of un-

even quality factors. The reason for this might be that in the first step, the Cauchy method can 

not guarantee that the estimated parameters are a lossless filter’s parameters. In other words, 

some information of the loss are reflected in the coupling matrix but not in the diagonal terms. 

The whole procedures need to be improved. 
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CHAPTER 4  

A NEW OPTIMIZATION METHOD 

4.1     Introduction 

           In this chapter, we explore some new methods to extract S-parameters from measured 

data of the filters with different unloaded quality factors. In Section 4.2, an enhanced Cauchy 

method is proposed first to accurately extract the unloaded Qs and characteristic polynomials. 

Then a  formulation by re-adjusting the parameters to be estimated of the new Cauchy method 

is proposed in Section 4.3. To improve the performance, in Section 4.4, another formulation 

based on the relationship between the characteristics polynomials and the elements in the 

implemented circuit is proposed. Examples are illustrated throughout this section to test and 

compare the results using different methods. 

4.2      An Enhanced Cauchy Method with Change in Characteristic Polynomials 

4.2.1   Changes in the complex frequency domain  

  In the description of Cauchy method in Section 3.1, the scattering parameters 𝑆11(𝑠) and 

𝑆21(𝑠) are expressed in terms of only one variable: 𝑠. To take the loss of the resonators into 

account, the complex domain 𝑠 for the low-pass prototype filter is replaced by a new complex 

domain 𝑠′: 

𝑠′ = 𝑓0
𝐵𝐵

1
𝑄0

+ 𝑗 𝑓0
𝐵𝐵

( 𝜔
𝜔0
− 𝜔0

𝜔
)                                                      (4.1) 
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         As the new variable 𝑠′ requires the same unloaded quality factor, all the resonators are 

assumed to have the same unloaded 𝑄. So when the resonators are of different 𝑄s, an effective 

or best approximated 𝑄 is used to conclude the loss. This method works well when the 𝑄s are 

the same or very close. But for the case of un-even 𝑄s, the accuracy is not very good.  

         Note that variable 𝑠′ is related to unloaded quality factor of the resonator, so that for each 

resonator, its loss can be concluded in one variable 𝑠′ with its own unloaded 𝑄𝑖: 

𝑠′𝑖 = 𝑓0
𝐵𝐵

1
𝑄𝑖

+ 𝑗 𝑓0
𝐵𝐵

( 𝜔
𝜔0
− 𝜔0

𝜔
)                                                       (4.2) 

Then for an n-order filter, its scattering parameters can be represented as: 

𝑆11(𝑠1, 𝑠2, … , 𝑠𝑛) = 𝐹(𝑠1,𝑠2,…,𝑠𝑖)
𝐸(𝑠1,𝑠2,…,𝑠𝑖)

=
∑ 𝑎𝑁(𝑠1)𝑡1𝑁(𝑠2)𝑡2𝑁…(𝑠𝑖)𝑡𝑖𝑁𝑚1
𝑁=1

∑ 𝑏𝑁(𝑠1)𝑡1𝑁(𝑠2)𝑡2𝑁…(𝑠𝑖)𝑡𝑖𝑁𝑚3
𝑁=1

                             (4.3.1) 

𝑆21(𝑠1, 𝑠2, … , 𝑠𝑛) = 𝑃(𝑠1,𝑠2,…,𝑠𝑖)
𝐸(𝑠1,𝑠2,…,𝑠𝑖)

=
∑ 𝑐𝑁(𝑠1)𝑡1𝑁(𝑠2)𝑡2𝑁…(𝑠𝑖)𝑡𝑖𝑁𝑚2
𝑁=1

∑ 𝑏𝑁(𝑠1)𝑡1𝑁(𝑠2)𝑡2𝑁…(𝑠𝑖)𝑡𝑖𝑁𝑚3
𝑁=1

                             (4.3.2) 

where 

𝑠𝑖 = 𝑓0
𝐵𝐵

1
𝑄𝑖

+ 𝑗 𝑓0
𝐵𝐵

( 𝜔
𝜔0
− 𝜔0

𝜔
)                                                    (4.3.3) 

is the new variable of 𝑆11 and 𝑆21;𝐹(𝑠1, 𝑠2, … , 𝑠𝑛), 𝑃(𝑠1, 𝑠2, … , 𝑠𝑛) and 𝐸(𝑠1, 𝑠2, … , 𝑠𝑛) are 

characteristic polynomials with 𝑚1,𝑚2 and 𝑚3 different terms respectively; 𝑡1𝑘 + 𝑡2𝑘 + ⋯+

𝑡𝑛𝑘 ≤ 𝑛. 
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In this way, the loss of each resonator is accounted in the polynomials and all the 

information of the filter are included too. 𝑠𝑖 can also be expressed in terms of 𝑠: 

𝑠𝑖 = 𝑓0
𝐵𝐵

1
𝑄𝑖

+ 𝑗 𝑓0
𝐵𝐵

� 𝜔
𝜔0
− 𝜔0

𝜔
� = 𝑠 + 𝑓0

𝐵𝐵
1
𝑄𝑖

                                      (4.3.4) 

   In this way, the polynomials 𝐹(𝑠1, 𝑠2, … , 𝑠𝑛), 𝑃(𝑠1, 𝑠2, … , 𝑠𝑛) and 𝐸(𝑠1, 𝑠2, … , 𝑠𝑛) with multi 

variables can be converted into the presentation of 𝐹(𝑠), 𝑃(𝑠), and 𝐸(𝑠), with a  single variable 

after all the coefficients are determined.  

         To get the best approximation of the loss, the quality factors can be determined by a 

recursive approach: 1) a common quality factor 𝑄0 can be obtained by the best matching of the 

S-parameter values at the resonant frequency 𝑓0, 2) according the common quality factor, set a 

recurring range for each quality factor, and then get the best combination of the quality factors 

by the best matching of the overall curves. Then the coefficients of the filter can be obtained by 

Cauchy method established in [3]. 

         The coefficients approximation approaches and results are discussed in the following using 

several different case studies. 

4.2.2 Case Analysis of 2-order Chebyshev filter 

For the 2-order Chebyshev filter, the scattering parameters are: 

𝑆11(𝑠1, 𝑠2) = 𝐹(𝑠1,𝑠2)
𝐸(𝑠1,𝑠2)

= 𝑎1𝑠12+𝑎2𝑠22+𝑎3𝑠1𝑠2+𝑎4𝑠1+𝑎5𝑠2+𝑎6
𝑏1𝑠12+𝑏2𝑠22+𝑏3𝑠1𝑠2+𝑏4𝑠1+𝑏5𝑠2+𝑏6

                              (4.4.1) 

𝑆21(𝑠1, 𝑠2) = 𝑃(𝑠1,𝑠2)
𝐸(𝑠1,𝑠2)

= 𝑐1
𝑏1𝑠12+𝑏2𝑠22+𝑏3𝑠1𝑠2+𝑏4𝑠1+𝑏5𝑠2+𝑏6

                               (4.4.2) 

These equations can be represented as: 
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[𝐴1 −𝑆11𝐴1] �𝑑𝑏� = 0         [𝐵 −𝑆21𝐴1] �𝑐𝑏� = 0                                 (4.4.3)                    

where               𝐴1(𝑚×6) = �
𝑠12(1) 𝑠22(1) 𝑠1(1) ∙ 𝑠2(1) 𝑠1(1) 𝑠2(1)  1
⋮ ⋮ ⋮

 𝑠12(𝑚) 𝑠22(𝑚) 𝑠1(𝑚) ∙ 𝑠2(𝑚)

⋮ ⋮ ⋮
𝑠1(𝑚) 𝑠2(𝑚) 1

�,  

                            𝐵(𝑚×1) = [1, 1, … , 1]𝑇,  

                        𝑆11(𝑚×𝑚) = 𝑑𝑖𝑑𝑑[𝑆11�𝑠1(1), 𝑠2(1)�, 𝑆11�𝑠1(2), 𝑠2(2)�, … , 𝑆11�𝑠1(𝑚), 𝑠2(𝑚)�], 

                        𝑆21(𝑚×𝑚) = 𝑑𝑖𝑑𝑑[𝑆21�𝑠1(1), 𝑠2(1)�,𝑆21�𝑠1(2), 𝑠2(2)�, … , 𝑆21�𝑠1(𝑚), 𝑠2(𝑚)�], 

                             𝑑(6×1) = [𝑑1,𝑑2,𝑑3,𝑑4,𝑑5,𝑑6]𝑇,  

                             𝑏(6×1) = [𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6]𝑇, 

                             𝑐(1×1) = [𝑐1]𝑇. 

        𝑆11�𝑠1(𝑖), 𝑠2(𝑖)� and 𝑆21�𝑠1(𝑖), 𝑠2(𝑖)� are the measured scattering parameters at different 

sampling frequencies; 𝑑, 𝑏 and 𝑐 are the polynomial coefficients vectors. 

  Note that unlike the method in Section 3.1, where the polynomial coefficients of 𝐹(𝑠) and 

𝑃(𝑠) are solved first and then the coefficients of 𝐸(𝑠) can be fixed, it is difficult to relate the 

coefficients of 𝐹(𝑠1, 𝑠2) and 𝑃(𝑠1, 𝑠2) to the coefficients of (𝑠1, 𝑠2) . To solve this problem, the 

matrix equations in Equation (4.4.3) can be represented as: 

�
𝐴1(𝑚×6) 0(𝑚×1) −𝑆11𝐴1
0(𝑚×6) 𝐵(𝑚×1) −𝑆21𝐴1

� �
𝑑
𝑐
𝑏
� = 0                                               (4.4.4) 

Then the complex coefficients 𝑑, 𝑏, 𝑐 in system (4.4.4) can be solved by the method 

presented in [3] with least square method (TLS) and singular value decomposition (SVD) at one 

time.  To guarantee that Equation (4.4.4) has reasonable solutions, 𝑚 must be greater or equal 

to (6+1+6=) 13.   
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For the schematic in Fig. 2.3, a 2-order Chebyshev filter with different quality factors of 35 

and 701, 301 different sampling frequencies between 0.7GHz and 1.3 GHz are selected to 

generate the measured data. Then approach the procedures described above, the 

approximated coefficients vectors are:  

𝑑 =  [0.1103,−0.0822 + 0.0160𝑖,−0.0281 − 0.0160𝑖,−0.5283 + 0.3782𝑖,

0.5805 −  0.3826𝑖,−0.1515 + 0.1027𝑖]𝑇;  

𝑏 =  [−0.0045 +  0.0181𝑖,−0.0164 −  0.0041𝑖, 0.0210 − 0.0140𝑖, 0.1391

+ 0.0111𝑖,−0.1359 − 0.0051𝑖, 0.0381 + 0.0017𝑖]𝑇;    

𝑐 =  [ −2.2500𝑒 − 014,−1.2023𝑒 − 014𝑖]𝑇 . 

And the quality factors are approximated as 35 and 706.Then the relationships between 𝑠1, 

𝑠2 and 𝑠, which are revealed by Equation (4.3.4), are: 

𝑠1 = 𝑠 + 1
3.5

, 𝑠2 = 𝑠 + 1
70.5

                                                         (4.4.5) 

Convert the multi-variable polynomials into single-variable polynomials, by substituting 

Equation (4.4.5) and the coefficient values into  Equation (4.4.1) & (4.4.2), the characteristic 

polynomials are extracted as: 

 𝐹(𝑠) = (1.0045 − 0.0031𝑖) ∙ 𝑠2 + (0.3088 − 0.0054𝑖) ∙ 𝑠 + (0.3105 − 0.0054𝑖) 

 𝑃(𝑠) = (1.4360 + 0.0010𝑖) 

 𝐸(𝑠) = 1 ∙ 𝑠2 + (1.7339 − 0.0027𝑖) ∙ 𝑠 + (1.7455 − 0.0074𝑖)                                   (4.4.6) 

Then the extracted responses can be plotted: 
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Fig. 4.1 Measured and Extracted Responses of a 2-order lossy filter, using the enhanced Cauchy 

method 

 The red curves are the measured data, and the blue curves are the extracted responses. It 

can be seen that the performance has been improved significantly comparing with that of the 

former Cauchy method. At the same time, the quality factors, which represent the loss, are 

approximated to be close to the real values.  

 

4.2.3 Case Analysis of 3-order Chebyshev filter 

For the 3-order Chebyshev filter, the scattering parameters are in the form of: 
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       𝑆11(𝑠1, 𝑠2, 𝑠3) = 𝐹(𝑠1,𝑠2,𝑠3)
𝐸(𝑠1,𝑠2,𝑠3) 

=   
𝑎1𝑠13+𝑎2𝑠23+𝑎3𝑠33+𝑎4𝑠12𝑠2+𝑎5𝑠12𝑠3+𝑎6𝑠22𝑠1+𝑎7𝑠22𝑠3+𝑎8𝑠32𝑠1+𝑎932𝑠2+𝑎10𝑠1𝑠2𝑠3+

𝑎11𝑠12+𝑎12𝑠22+𝑎13𝑠32+𝑎14𝑠1𝑠2+𝑎15𝑠1𝑠3+𝑎16𝑠2𝑠3+𝑎17𝑠1+𝑎18𝑠2+𝑎19𝑠3+𝑎20
𝑏1𝑠1

3+𝑏2𝑠2
3+𝑏3𝑠3

3+𝑏4𝑠12𝑠2+𝑏5𝑠12𝑠3+𝑏6𝑠22𝑠1+𝑏7𝑠22𝑠3+𝑏8𝑠32𝑠1+𝑏932𝑠2+𝑏10𝑠1𝑠2𝑠3+
𝑏11𝑠12+𝑏𝑠22+𝑏13𝑠32+𝑏14𝑠1𝑠2+𝑏15𝑠1𝑠3+𝑏16𝑠2𝑠3+𝑏17𝑠1+𝑏18𝑠2+𝑏19𝑠3+𝑏20

                                  

(4.5.1) 

          𝑆21(𝑠1, 𝑠2, 𝑠3) = 𝑃(𝑠1,𝑠2,𝑠3)
𝐸(𝑠1,𝑠2,𝑠3) 

= 𝑐1
𝑏1𝑠1

3+𝑏2𝑠2
3+𝑏3𝑠3

3+𝑏4𝑠12𝑠2+𝑏5𝑠12𝑠3+𝑏6𝑠22𝑠1+𝑏7𝑠22𝑠3+𝑏8𝑠32𝑠1+𝑏932𝑠2+𝑏10𝑠1𝑠2𝑠3+
𝑏11𝑠12+𝑏𝑠22+𝑏13𝑠32+𝑏14𝑠1𝑠2+𝑏15𝑠1𝑠3+𝑏16𝑠2𝑠3+𝑏17𝑠1+𝑏18𝑠2+𝑏19𝑠3+𝑏20

                                    

(4.5.2) 

 Similarly, a matrix equation can be formed as: 

�
𝐴2(𝑚×20) 0(𝑚×1) −𝑆11𝐴2
0(𝑚×20) 𝐵(𝑚×1) −𝑆21𝐴2

� �
𝑑
𝑐
𝑏
� = 0                                               (4.5.3) 

where 

𝐴2(𝑚×20) = �
𝑠13(1) 𝑠23(1) 𝑠33(1) 𝑠12(1) ∙ 𝑠2(1) … 𝑠1(1) 𝑠2(1) 𝑠3(1)  1
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

 𝑠12(𝑚) 𝑠22(𝑚) 𝑠33(𝑚) 𝑠12(𝑚) ∙ 𝑠2(𝑚) … 𝑠1(𝑚)

⋮ ⋮ ⋮
𝑠4(𝑚) 𝑠3(𝑚) 1

�, 

            𝐵(𝑚×1) = [1, 1, … , 1]𝑇, 

          𝑑(20×1) = [𝑑1,𝑑2, … ,𝑑20]𝑇,  

          𝑏(20×1) = [𝑏1,𝑏2, … , 𝑏20]𝑇, 
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            𝑐(1×1) = [𝑐1]𝑇. 

         The quality factors are approximated as 56, 467 and 491, then the relationship between 𝑠1, 

𝑠2, 𝑠3 and 𝑠 are: 

𝑠1 = 𝑠 + 1
5.6

, 𝑠2 = 𝑠 + 1
4.67

, 𝑠3 = 𝑠 + 1
4.91

                                         (4.5.4) 

          Applying the same technique presented in Section 4.2.1, the characteristic polynomials 

can be approximated: 

 𝐹(𝑠) = 1 ∙ 𝑠3 + (0.3050 + 0.0014𝑖) ∙ 𝑠2 + (0.5391 + 0.0071𝑖) ∙ 𝑠 + (0.0.1582 −

0.0170𝑖) 

 𝑃(𝑠) = (1.0416 + 0.0003𝑖) 

 𝐸(𝑠) = 1 ∙ 𝑠3 + (2.1293 + 0.0121𝑖) ∙ 𝑠2 + (2.2751 + 0.0360𝑖) ∙ 𝑠 + (1.2221 +

0.0196𝑖)                                                                                                                                              (4.5.5) 

         The curves of measured and extracted scattering parameters are shown in Fig. 4.2: 
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Fig. 4.2 Measured and Extracted Responses For the 3-Order Filter, using the enhanced Cauchy 

method 

 The red curves are the measured responses, the blue curves are the extracted responses 

using enhanced Cauchy method. The curves also have a very good matching. For the quality 

factors, the estimated values are close to the original values, but the differences are larger 

comparing to those in the 2-order case.  

 

4.2.4 Cases of high order filters 
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        From the above examples, it can be seen that the enhanced Cauchy method has good 

performance as reflected in the well matched curves. However, the accuracy is associated with 

a cost in the increasing quantity of polynomials’ terms. In fact, if the number of the filter’s order 

increases to 5, the number of the polynomial 𝐸(𝑠1, 𝑠2, … , 𝑠𝑛)’s order will reach to 252. It 

becomes difficult to implement the method for higher order filters. At the same time, the 

recursive approach used to extract the quality factors becomes more and more time consuming 

as the order increases. As such, this method seems to be only suitable for low order filters. 

           

 

4.3 Another model for parameter extraction  

4.3.1 Parameter Re-arrangement of the 2-Order Chebyshev Filter  

For the 2-order Chebyshev filter, the scattering parameters are: 

𝑆11(𝑠1, 𝑠2) = 𝐹(𝑠1,𝑠2)
𝐸(𝑠1,𝑠2)

= 𝑎1𝑠12+𝑎2𝑠22+𝑎3𝑠1𝑠2+𝑎4𝑠1+𝑎5𝑠2+𝑎6
𝑏1𝑠12+𝑏2𝑠22+𝑏3𝑠1𝑠2+𝑏4𝑠1+𝑏5𝑠2+𝑏6

                              (4.6.1) 

𝑆21(𝑠1, 𝑠2) = 𝑃(𝑠1,𝑠2)
𝐸(𝑠1,𝑠2)

= 𝑐1
𝑏1𝑠12+𝑏2𝑠22+𝑏3𝑠1𝑠2+𝑏4𝑠1+𝑏5𝑠2+𝑏6

                               (4.6.2) 

        Plug the equations  𝑠1 = 𝑠 + 𝜎1 = 𝑠 + 𝑓0
𝐵𝐵

1
𝑄1

 , 𝑠2 = 𝑠 + 𝜎2 = 𝑠 + 𝑓0
𝐵𝐵

1
𝑄2

 into Equation (4.6.1) 

and Equation (4.6.2), the characteristic polynomials can be rewritten as: 
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        𝐹(𝑠) = (𝑑1 + 𝑑2 + 𝑑3)𝑠2 + (2𝑑1𝜎1 + 2𝑑2𝜎2 + 𝑑3𝜎1 + 𝑑3𝜎2 + 𝑑4 + 𝑑5)𝑠 + (𝑑1𝜎12 +

𝑑2𝜎22 + 𝑑3𝜎1𝜎2 + 𝑑4𝜎1 + 𝑑5𝜎2 + 𝑑6)     

𝐸(𝑠) = (𝑏1 + 𝑏2 + 𝑏3)𝑠2 + (2𝑏𝜎1 + 2𝑏2𝜎2 + 𝑏𝜎1 + 𝑏3𝜎2 + 𝑏4 + 𝑏5)𝑠 + (𝑏1𝜎12 + 𝑏2𝜎22

+ 𝑏3𝜎1𝜎2 + 𝑏4𝜎1 + 𝑏𝜎2 + 𝑏6) 

 𝑃(𝑠) =  𝑐1                                                                                                                                    (4.7.1) 

               Then the S-parameters can be rewritten as: 

𝑆11(𝑠) =
𝐹(𝑠)
𝐸(𝑠)

=
𝑑1(𝑠 + 𝜎1)2 + 𝑑2(𝑠 + 𝜎2)2 + 𝑑3(𝑠 + 𝜎1)(𝑠 + 𝜎1) + 𝑑4(𝑠 + 𝜎1) + 𝑑5(𝑠 + 𝜎2) + 𝑑6
𝑏1(𝑠 + 𝜎1)2 + 𝑏2(𝑠 + 𝜎2)2 + 𝑏3(𝑠 + 𝜎1)(𝑠 + 𝜎1) + 𝑏4(𝑠 + 𝜎1) + 𝑏5(𝑠 + 𝜎2) + 𝑏6

          

=

(𝑑1 + 𝑑2 + 𝑑3)𝑠2 + (2𝑑1𝜎1 + 2𝑑2𝜎2 + 𝑑3𝜎1 + 𝑑3𝜎2 + 𝑑4 + 𝑑5)𝑠 +
(𝑑1𝜎12 + 𝑑2𝜎22 + 𝑑3𝜎1𝜎2 + 𝑑4𝜎1 + 𝑑5𝜎2 + 𝑑6)

(𝑏1 + 𝑏2 + 𝑏3)𝑠2 + (2𝑏1𝜎1 + 2𝑏2𝜎2 + 𝑏3𝜎1 + 𝑏3𝜎2 + 𝑏4 + 𝑏5)𝑠 +
(𝑏1𝜎12 + 𝑏2𝜎22 + 𝑏3𝜎1𝜎2 + 𝑏4𝜎1 + 𝑏5𝜎2 + 𝑏6)

 

      (4.7.2) 

𝑆21(𝑠) =
𝑃(𝑠)
𝐸(𝑠)               

=
𝑐1

𝑏1(𝑠 + 𝜎1)2 + 𝑏2(𝑠 + 𝜎2)2 + 𝑏3(𝑠 + 𝜎1)(𝑠 + 𝜎1) + 𝑏4(𝑠 + 𝜎1) + 𝑏5(𝑠 + 𝜎2) + 𝑏6

=
𝑐1

(𝑏1 + 𝑏2 + 𝑏3)𝑠2 + (2𝑏1𝜎1 + 2𝑏2𝜎2 + 𝑏3𝜎1 + 𝑏3𝜎2 + 𝑏4 + 𝑏5)𝑠 +
(𝑏1𝜎12 + 𝑏2𝜎22 + 𝑏3𝜎1𝜎2 + 𝑏4𝜎1 + 𝑏5𝜎2 + 𝑏6)

 

(4.7.3) 

   Rearrange the parameters,  

𝐸(𝑠) = 𝐵1𝑠2 + (𝐵2𝜎1 + 𝐵3𝜎2 + 𝐵4)𝑠 + (𝐵5𝜎12 + 𝐵6𝜎22 + 𝐵7𝜎1𝜎2 + 𝐵8𝜎1 + 𝐵9𝜎2 + 𝐵10) 
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𝐹(𝑠) = 𝐴1𝑠2 + (𝐴2𝜎1 + 𝐴3𝜎2 + 𝐴4)𝑠 + (𝐴5𝜎12 + 𝐴6𝜎22 + 𝐴7𝜎1𝜎2 + 𝐴8𝜎1 + 𝐴9𝜎2 + 𝐴10) 

𝑃(𝑠) = 𝐶0                                                                                                                                               (4.8) 

          Totally there are 23 parameters need to be approximated. The parameters have some 

unique properties:  

           1) parameters 𝜎1,𝜎2 are positive real while the others could be complex; 

           2) parameter 𝐵1 is unity; 

           3) deducting all the terms referring to 𝜎1,𝜎2 in 𝐸(𝑠), 𝐹(𝑠) and 𝑃(𝑠), the system will be 

lossless; 

 

4.3.2 Problem formulation  

           Then this problem can be formulated as an optimization problem: 

           Parameters vector (PV) to be approximated:    

           PV = [𝐴1,𝐴2,𝐴3,𝐴4,𝐴5,𝐴6,𝐴7,𝐴8,𝐴9,𝐴10,𝐵1,𝐵2,𝐵3,𝐵4,𝐵5,𝐵6,𝐵7,𝐵8,𝐵9,𝐵10,𝜎1,𝜎2,𝐶0]  

(4.9.1) 

           Cost function:  

𝐹𝐹𝑛 = ∑ �𝑆21𝑒𝑒𝑡(𝑠(𝑖)) − 𝑆21𝑚𝑒𝑎(𝑠(𝑖))�
2𝑚

𝑖=1 + �𝑆11𝑒𝑒𝑡(𝑠(𝑖)) − 𝑆11𝑚𝑒𝑎(𝑠(𝑖))�
2
                     (4.9.2) 

           𝑆21𝑚𝑒𝑎(𝑠(𝑖)) and 𝑆11𝑚𝑒𝑎(𝑠(𝑖)) are known measured 𝑆21 and 𝑆11 values at 𝑚 different 

sampling  𝑠(𝑖);  𝑠(𝑖) = jΩ(𝑖) is the complex domain; Ω(𝑖) is the normalized frequency for the low-

pass prototype. The normalized frequency Ω(𝑖) has the relationship with the band-pass 

frequency 𝑓(𝑖): 

Ω(𝑖)  = 𝑓0
𝐵𝐵

(𝑓(𝑖)

𝑓0
− 𝑓0

𝑓(𝑖)
)                                                         (4.9.3) 
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where 𝐵𝐵 is the bandwidth of the band-pass filter; 𝑓0is the resonant frequency. 

          𝑆21𝑒𝑒𝑡(𝑠(𝑖)) and 𝑆11𝑒𝑒𝑡(𝑠(𝑖)) are the extracted transmission function and reflection function 

values at different 𝑠(𝑖),   where 

𝑆21𝑒𝑒𝑡�𝑠(𝑖)� = 𝑃�𝑠(𝑖)�
𝐸�𝑠(𝑖)�

,      𝑆11𝑒𝑒𝑡�𝑠(𝑖)� = 𝐹�𝑠(𝑖)�
𝐸�𝑠(𝑖)�

                                  (4.9.4) 

and 

𝐸�𝑠(𝑖)� = 𝐵1𝑠(𝑖)
2 + (𝐵2𝜎1 + 𝐵3𝜎2 + 𝐵4)𝑠(𝑖) + (𝐵5𝜎12 + 𝐵6𝜎22 + 𝐵7𝜎1𝜎2 + 𝐵8𝜎1 + 𝐵9𝜎2 + 𝐵10), 

𝐹�𝑠(𝑖)� = 𝐴1𝑠(𝑖)
2 + (𝐴2𝜎1 + 𝐴3𝜎2 + 𝐴4)𝑠(𝑖) + (𝐴5𝜎12 + 𝐴6𝜎22 + 𝐴7𝜎1𝜎2 + 𝐴8𝜎1 + 𝐴9𝜎2 + 𝐴10) , 

𝑃�𝑠(𝑖)� = 𝐶0,                                                                                                                                      (4.9.5) 

            Constraints: 

            1)    𝐵1 = 1; 

            2)    𝜎1,𝜎2 are purely real, and 0 < 𝜎1,𝜎2 < 1; 

            3)    Let 𝐸��𝑠(𝑖)� = 𝐵1𝑠(𝑖)
2 + 𝐵4𝑠(𝑖) + 𝐵10, 𝐹��𝑠(𝑖)� = 𝐴1𝑠(𝑖)

2 + 𝐴4𝑠(𝑖) + 𝐴10, and 

𝑃��𝑠(𝑖)� = 𝐶0, then  𝐸��𝑠(𝑖)�𝐸�∗�−𝑠(𝑖)� + 𝐹��𝑠(𝑖)�𝐹�∗�−𝑠(𝑖)� = 𝑃��𝑠(𝑖)�𝑃�∗�−𝑠(𝑖)� , here (*) means 

complex conjugation. 

            This optimization problem can be solved by applying Levenberg–Marquardt algorithm 

established in [14]. 

 

 

4.3.3 Numerical Example to test the method: 

          Here is an example to testify the method. For the 2-order BP prototype Chebyshev filter 

cited in Section 3.5.2, where 𝑓0 = 1𝐺𝐺𝐺, 𝐵𝐵 = 100𝑀𝐺𝐺, 𝑄1 = 701.447, 𝑄2 = 35.071. The 
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factors representing the losses are: 𝜎1 = 𝑓0
𝐵𝐵

1
𝑄1

= 1
70.1447

= 0.014256, 𝜎2 = 𝑓0
𝐵𝐵

1
𝑄2

= 1
3.5071

=

0.28513.        

          From Equation (4.8), the theoretical characteristic polynomials are: 

𝐹(𝑠) = 𝑠2 + (𝜎2 + 𝜎1)𝑠 + (𝜎1𝜎2 + 0.7128123𝜎1 − 0.7128123𝜎2 + 0.5000000) 

𝐸(𝑠) = 𝑠2 + (𝜎2 + 𝜎1 + 1.4256246)𝑠 + (𝜎1𝜎2 + 0.7128123𝜎1 + 0.7128123𝜎2

+ 1.5162022) 

𝑃(𝑠) = 1.4313871                                                                                                                          (4.10.1) 

    Compare between Equation (4.10.1) and Equation (4.9.5), the theoretical parameters are: 

 [ 1,1,1, 1.4256246, 0,0,1, 0.7128123,−0.7128123, 0.5000000, 

    1, 1,1, 0,0, 0,1, 0.7128123,0.7128123, 1.5162022,0.014256, 0.28513,  

   1.4313871]                                                                                                                            (4.10.2) 

 Plug the  𝜎1,𝜎2 values into (4.10.1), the characteristic polynomials of the lossy filter will be: 

        𝐹(𝑠) = 1 ∙ 𝑠2 + 0.2988 ∙ 𝑠 + 0.3113 

        𝐸(𝑠) = 1 ∙ 𝑠2 + 1.7244 ∙ 𝑠 + 1.7331 

        𝑃(𝑠) = 1.4314                                                                                                                        (4.10.3) 

       Ignoring the factors related with 𝜎1,𝜎2, the characteristic polynomials will be:  

        𝐹(𝑠) = 1 ∙ 𝑠2 + 0.2993892 ∙ 𝑠 + 0.3109808 

        𝐸(𝑠) = 1 ∙ 𝑠2 + 1.7250138 ∙ 𝑠 + 1.7336751 

         𝑃(𝑠) = 1.4313871                                                                                                                  (4.10.4)                                                                                                                                                                                                                       

         These polynomials in Equation (4.10.5) are exactly the same as the ideal and lossless filter 

designed in Section 2.5, which indicates that the constraints are proper and effective. 
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          Applying the Levenberg–Marquardt algorithm in Matlab, the parameters in Equation 

(4.9.1) are estimated as:   

        𝑃𝑉 = [1.0000, 1.0525, 1.0526, 1.5587, 0.9243, 0.9246, 1.6674, 1.6677, 1.4529, 

1.0000, 0.9619, 0.9620, 0.1474, 0.5114, 0.5118, 0.5119, 0.3321, 0.3316, 0.2490, 0.0780,  

1.4314].                                                                                                                                               (4.10.5) 

         Then the estimated polynomials are: 

         𝐹(𝑠) = 1 ∙ 𝑠2 + 0.2998 ∙ 𝑠 + 0.3113 

         𝐸(𝑠) = 1 ∙ 𝑠2 + 1.7225 ∙ 𝑠 + 1.7331 

         𝑃(𝑠) = 1.4314                                                                                                                          (4.10.6) 

         Comparing the Equation (4.10.6) and Equation (4.10.3), the estimation result is quite close 

to the original design. 

         Here below is the comparing between the original design and the extracted result: 
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Fig. 4.3 Measured and Extracted Responses For the 2-Order Lossy Filter, Using the New 

Optimization Model 

              The red curves are the original data and the blue curves are the extracted responses. It 

can be seen that the matching of the curves is very good.  

              Similar to the method proposed in Section 4.2, the loss information has been accounted 

in the model, but the quality factors are estimated together with the other coefficients at one 

time without the recursive approaches. But due to the fact that the relationship between the 

coefficients are not revealed, the method does not extract the quality factors. 
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4.4 A new optimization model of the lossy filter 

4.4.1 Analysis of the 2-order lossy filter 

         The model proposed in Section 4.3have 23 parameters for a 2-order filter. Is it possible 

to reduce the amount of the parameters? To help analysis, the LP prototype of the 2-order 

filter’s schematic can be generated as below: 

 

Figure.4.4 the 2-order LP prototype filter’s schematic. 

         Then the S-parameters can be concluded as:  

          𝑆11(𝑠) =
𝑅 ∥ � 1

𝑠𝐶� ∥ 𝑟2 + 𝑠𝐿 + 𝑟1 − 1

𝑅 ∥ � 1
𝑠𝐶� ∥ 𝑟2 + 𝑠𝐿 + 𝑟1 + 1

 

                       =
𝑠2 + �1

𝐶
1
𝑟2

+ 1
𝑅

1
𝐶 + 𝑟1

𝐿 −
1
𝐿� 𝑠 + ( 1

𝐿𝐶 (𝑟1𝑟2
+ 𝑟1
𝑅 − 1

𝑟2
− 1
𝑅 + 1))

𝑠2 + �1
𝐶

1
𝑟2

+ 1
𝑅

1
𝐶 + 𝑟1

𝐿 + 1
𝐿� 𝑠 + ( 1

𝐿𝐶 (𝑟1𝑟2
+ 𝑟1
𝑅 + 1

𝑟2
+ 1
𝑅 + 1))

 

(4.11.1) 

         𝑆21(𝑠)  =
1
√𝑅

2 �𝑅 ∥ � 1
𝑠𝐶� ∥ 𝑟2�

𝑅 ∥ � 1
𝑠𝐶� ∥ 𝑟2 + 𝑠𝐿 + 𝑟1 + 1

=

2
𝐿𝐶√𝑅

𝑠2 + �1
𝐶

1
𝑟2

+ 1
𝑅

1
𝐶 + 𝑟1

𝐿 + 1
𝐿� 𝑠 + ( 1

𝐿𝐶 (𝑟1𝑟2
+ 𝑟1
𝑅 + 1

𝑟2
+ 1
𝑅 + 1))

 

(4.11.2) 
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         where 𝑠 = 𝑗Ω is the complex domain, Ω is the normalized frequency; the impedance of 

termination 1 on the left side is normalized as unity, 1;  𝑅 is the impedance of termination 2 

on the right side;   𝐿,𝐶 are the inductor and capacitor; 𝑟1, 𝑟2 are the resistors in the 

resonators, which represent the losses. 

     Let  𝑡1 = 1
𝑠

, 𝑡2 = 1
𝐿

, 𝑡3 = 1
𝑅

, 𝑡4 = 𝑟1, 𝑡5 = 1
𝑟2

,  then the S-parameters can be written as: 

       𝑆11(𝑠) =
𝐹(𝑠)
𝐸(𝑠) =

𝐹2 ∙ 𝑠2 + 𝐹1 ∙ 𝑠 + 𝐹0
𝐸2 ∙ 𝑠2 + 𝐸1 ∙ 𝑠 + 𝐸0

 

                    =  
𝑠2 + (𝑡1𝑡4 + 𝑡2𝑡5 + 𝑡2𝑡3 − 𝑡1)𝑠 + �𝑡1𝑡2(𝑡3𝑡4 + 𝑡4𝑡5 − 𝑡3 − 𝑡5 + 1)�
𝑠2 + (𝑡1𝑡4 + 𝑡2𝑡5 + 𝑡2𝑡3 + 𝑡1)𝑠 + �𝑡1𝑡2(𝑡3𝑡4 + 𝑡4𝑡5 + 𝑡3 + 𝑡5 + 1)�

 

(4.11.3) 

       𝑆21(𝑠) =
𝑃(𝑠)
𝐸(𝑠) =

𝑃0
𝐸2 ∙ 𝑠2 + 𝐸1 ∙ 𝑠 + 𝐸0

 

                     =  
2𝑡1𝑡2�𝑡3

𝑠2 + (𝑡1𝑡4 + 𝑡2𝑡5 + 𝑡2𝑡3 + 𝑡1)𝑠 + (𝑡1𝑡2(𝑡3𝑡4 + 𝑡4𝑡5 + 𝑡3 + 𝑡5 + 1))
 

(4.11.4) 

          where 𝐹(𝑠),𝐸(𝑠) and 𝑃(𝑠) are the characteristic polynomials. From Equations (4.11.3) 

and (4.11.4), the coefficients of these polynomials can be represented as: 

          𝐹2 = 1;  

          𝐹1 = 𝑡1𝑡4 + 𝑡2𝑡5 + 𝑡2𝑡3 − 𝑡1; 

          𝐹0 = 𝑡1𝑡2(𝑡3𝑡4 + 𝑡4𝑡5 − 𝑡3 − 𝑡5 + 1);   

          𝐸2 = 1; 

          𝐸1 = 𝑡1𝑡4 + 𝑡2𝑡5 + 𝑡2𝑡3 + 𝑡1; 

          𝐸0 = 𝑡1𝑡2(𝑡3𝑡4 + 𝑡4𝑡5 + 𝑡3 + 𝑡5 + 1); 

         𝑃0 = 2𝑡1𝑡2�𝑡3;                                                                                                                       (4.11.5) 
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          Actually, 𝐹2 and 𝐸2 are all normalized as unity, 𝐹2 = 𝐸2 = 1,  and they are fixed before 

being be approximated.  

 

 

4.4.2 A new formulation of the 2-order lossy filter 

          Based on the analysis in Section 4.4.1, the new formulation of this problem will be: 

          Parameters vector to be approximated:    

PV = [𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5]                                                               (4.11.6) 

          Cost function:  

𝐹𝐹𝑛 = ∑ |𝑆21𝑒𝑒𝑡(𝑠)𝑘 − 𝑆21𝑚𝑒𝑎(𝑠)𝑘|2𝑚
𝑘=1 + |𝑆11𝑒𝑒𝑡(𝑠)𝑘 − 𝑆11𝑚𝑒𝑎(𝑠)𝑘|2                     (4.11.7) 

          𝑆21𝑚𝑒𝑎(𝑠)𝑘 and 𝑆11𝑚𝑒𝑎(𝑠)𝑘 are known which are the measured 𝑆21 and 𝑆11 values at the 𝑘th 

sampling  frequency,  𝑚 is the total number of the samplings;  𝑠 = jΩ is the complex domain; Ω 

is the normalized frequency for the low-pass prototype filter. The normalized frequency Ω has 

the relationship with the band-pass frequency 𝑓: 

Ω = 𝑓0
𝐵𝐵

(𝑓
𝑓0
− 𝑓0

𝑓
)                                                             (4.11.8) 

where 𝐵𝐵 is the bandwidth of the band-pass filter; 𝑓0is the resonant frequency. Then  

𝑠 = jΩ = j 𝑓0
𝐵𝐵

(𝑓
𝑓0
− 𝑓0

𝑓
)                                                        (4.11.9) 

           𝑆21𝑒𝑒𝑡(𝑠)𝑘 and 𝑆11𝑒𝑒𝑡(𝑠)𝑘 are the extracted transmission function and reflection function 

values at the 𝑘th sampling frequency,   where 

𝑆21𝑒𝑒𝑡(𝑠)𝑘 = 𝑃(𝑠)
𝐸(𝑠)𝑘

,      𝑆11𝑒𝑒𝑡(𝑠)𝑘 = 𝐹(𝑠)
𝐸(𝑠)𝑘

                                       (4.11.10) 

and 
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         𝐸(𝑠) = 𝑠2 + (𝑡1𝑡4 + 𝑡2𝑡5 + 𝑡2𝑡3 + 𝑡1)𝑠 + �𝑡1𝑡2(𝑡3𝑡4 + 𝑡4𝑡5 + 𝑡3 + 𝑡5 + 1)�; 

         𝐹(𝑠) = 𝑠2 + (𝑡1𝑡4 + 𝑡2𝑡5 + 𝑡2𝑡3 − 𝑡1)𝑠 + (𝑡1𝑡2(𝑡3𝑡4 + 𝑡4𝑡5 − 𝑡3 − 𝑡5 + 1)); 

         𝑃(𝑠) = 2𝑡1𝑡2�𝑡3. 

                (4.11.11) 

        Constraints: 

1) 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 are all purely real, and 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 > 0;  

2) 0 < 𝑡1 ∙ 𝑡4 < 1, 0 < 𝑡2 ∙ 𝑡5 < 1; 

3) Denote 𝐸��𝑠(𝑖)� = 𝑠(𝑖)
2 + (𝑡2𝑡3 + 𝑡1)𝑠(𝑖) + 𝑡1𝑡2(𝑡3 + 1), 𝐹��𝑠(𝑖)� = 𝑠(𝑖)

2 + (𝑡2𝑡3 −

𝑡1)𝑠(𝑖) + 𝑡1𝑡2(−𝑡3 + 1), and 𝑃��𝑠(𝑖)� = 2𝑡1𝑡2�𝑡3, 

then 

          𝑃��𝑠(𝑖)�𝑃�∗�−𝑠(𝑖)� + 𝐹��𝑠(𝑖)�𝐹�∗�−𝑠(𝑖)� = 𝐸��𝑠(𝑖)�𝐸�∗�−𝑠(𝑖)�                                    

where (*) means complex conjugation. 

P�𝑠(𝑖)�𝑃∗�−𝑠(𝑖)� + 𝐹�𝑠(𝑖)�𝐹∗�−𝑠(𝑖)� < 𝐸�𝑠(𝑖)�𝐸∗�−𝑠(𝑖)�                    (4.11.12) 

where (*) means complex conjugation, 𝐸(𝑠),𝐹(𝑠) &  𝑃(𝑠) are defined in (4.11.11) 

  

 

4.4.3 Analysis of the optimization problem       

           Here are some notes for the constraints: 

          For constraint 1, since 𝑡1 = 1
𝑠

, 𝑡2 = 1
𝐿

, 𝑡3 = 1
𝑅

, 𝑡4 = 𝑟1, 𝑡5 = 1
𝑟2

 are all related to physical 

components, these parameters must be positive and real numbers. 
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          For constraint 2, there are 𝑡1 ∙ 𝑡4 = 1
𝑠
∙ 𝑟1 = 𝑓0

𝐵𝐵
1
𝑄1

,  and 𝑡2 ∙ 𝑡5 = 1
𝐿
∙ 1
𝑟2

 = 𝑓0
𝐵𝐵

1
𝑄2

, where 

𝑄1,𝑄2 are the unloaded quality factors for each resonators; 𝐵𝐵 is the bandwidth of the band-

pass filter; 𝑓0 is the resonant frequency. Meanwhile, the quality factors are usually larger than 

several tens, even several thousands, and 𝐵𝐵
𝑓0

 is usually than 30%. Then 𝑡1 ∙ 𝑡4 and 𝑡2 ∙ 𝑡5 are 

smaller than 1, in the reality.  

          For constraint 3, 𝐸��𝑠(𝑖)�, 𝐹��𝑠(𝑖)� and 𝑃��𝑠(𝑖)� are the characteristic polynomials without 

the parameters 𝑡4 = 𝑟1 & 𝑡5 = 1
𝑟2

, which represent the losses. In other words, these are the 

lossless filter’s polynomials. According to the law of energy conservation, the transfer function 

𝑆21� (𝑠) and the reflection function 𝑆11� (𝑠) have the relationship as: 

�𝑆11� (𝑠)�
2

+ �𝑆21� (𝑠)�
2

= 1 

then                                                              �𝐹
�(𝑠)
𝐸�(𝑠)�

2
+ �𝑃

�(𝑠)
𝐸�(𝑠)�

2
= 1 

So that  𝐸��𝑠(𝑖)�, 𝐹��𝑠(𝑖)� and 𝑃��𝑠(𝑖)� must fulfill the condition: 

�𝐹��𝑠(𝑖)��
2

+ �𝑃��𝑠(𝑖)��
2

= �𝐸��𝑠(𝑖)��
2
 

            

           For constraint 4, 𝐸(𝑠),𝐹(𝑠) &  𝑃(𝑠) are the characteristic polynomials of the lossy filter. 

For a lossy filter, the transfer function 𝑆21(𝑠) and the reflection function 𝑆11(𝑠) have the 

relationship as: 

|𝑆11(𝑠)|2 + |𝑆21(𝑠)|2 < 1 

then                                                       �𝐹(𝑠)
𝐸(𝑠)�

2
+ �𝑃(𝑠)

𝐸(𝑠)�
2

= 1 

so that 𝐸(𝑠),𝐹(𝑠) &  𝑃(𝑠) must fulfill that:            
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�𝐹�𝑠(𝑖)��
2

+ �𝑃�𝑠(𝑖)��
2

< �𝐸�𝑠(𝑖)��
2
 

       It can be seen that if the parameters to be approximated, 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, are directly used in 

the cost function, the terms of the polynomials will be too complex and very hard to be 

operated. To simplify the analysis, notice that the coefficients of 𝐹(𝑠),𝐸(𝑠) and 𝑃(𝑠) shown in 

(4.11.5), 𝐹2,𝐹1,𝐹0,𝐸2,𝐸1,𝐸0,𝑃0 , can directly determine the cost function. Furthermore, if these 

coefficients are fixed, the parameters 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 are also determined. 

. 

 

4.4.4 Parameter Estimation Examples 

          From the problem formulation in Section 4.4.2, the estimation problem is a typical non-

linear least square problem. It can be seen that the cost function in Equation (4.11.7) is related 

to division and it is not easy to apply the estimation algorithm. Then the cost function can be 

rearranged as: 

 𝐹𝐹𝑛 = ∑ |𝑃(𝑠)𝑘 − 𝐸(𝑠) ∙ 𝑆21𝑚𝑒𝑎(𝑠)𝑘|2𝑚
𝑘=1 + |𝐹(𝑠)𝑘 − 𝐸(𝑠) ∙ 𝑆11𝑚𝑒𝑎(𝑠)𝑘|2                (4.12) 

          Then the estimation procedure will be simplified. 

          Here the Levenberg–Marquardt algorithm is applied in Matlab to estimate the parameters. 

A 2-order BP Chebyshev filter with the different quality factors  𝑄1 = 35, 𝑄2 = 701 is 

illustrated to test the method. Then the estimation parameter vector is: 

PV = [0.7130, 1.4142, 0.5039, 0.0200, 0.2016]        
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           Then the Q factors of this filter are: 𝑄1 = 𝑓0
𝐵𝐵

∙ 1
𝑡1∙𝑡4

= 702.3,  and 𝑄2 = 𝑓0
𝐵𝐵

1
𝑡2∙𝑡5

=

35.07. The extracted characteristic polynomials are: 

          𝐹(𝑠) = 1 ∙ 𝑠2 + 0.2988 ∙ 𝑠 + 0.3113 

          𝐸(𝑠) = 1 ∙ 𝑠2 + 1.7244 ∙ 𝑠 + 1.7331 

        𝑃(𝑠) = 1.4314                                                                                                                 (4.13) 

          The extracted curves are shown in Fig.4.5: 

 

Fig 4.5 Simulated and extracted results of a 2-order BP lossy filter, using the new method  
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          The red curves are the original S-parameters and the blue curves are the extracted S-

parameters. The curves are matching very well.  

          The results show that this method can accurately extract the parameters of the lossy 

filter, not only the characteristic polynomials, but also the Q factors.  

4.5 Conclusion 

          In this chapter, an enhanced Cauchy method and two optimization models are 

presented and discussed. All these three methods have good performance in the curves 

fitting. But the new Cauchy method proposed in Section 4.2 is not suitable for high order 

systems due to the large number of the coefficients to be estimated. And it can not quickly 

extract the quality factors.  The optimization model proposed in Section 4.3 reduces the 

number of the coefficients, but it can not extract the Q factors. Another optimization model 

for the 2-order filter based on analyzing the prototype schematic is then proposed in 

Section 4.4. This model is able to extract the coefficients and the quality factors with good 

speed and accuracy. More studies are needed to understand how to generalize the results 

to higher order circuits.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

           In this paper, the methods to extract the parameters of the filter have been discussed. 

Cauchy method and a two-stage optimization method have been introduced and tested using 

several different case studies. The results reveal the disadvantage of this this method that 

Cauchy method is not suitable for filters with un-even quality factors. To accurately extract 

coefficients and loss information of a filter, an enhanced Cauchy method and a model based on 

the prototype structure has been proposed. The enhanced Cauchy method has a good 

performance on producing the accurate extraction results but does not quickly extract the 

quality factors. It is also not suitable for high order filters. Then a new optimization model 

which can indicate the relationship of the parameters is posed. The example of the low order 

case shows the efficiency and accuracy of this method. However, more studies are needed to 

generalize the results to higher order filters.  

          In the future work, a more general formulation of filters is required. From the exploratory 

studies conducted in this thesis, further relationship of the parameters should be revealed and 

included in the new model. Meanwhile, more efficient and suitable optimization algorithms 

should be applied to obtain a high-performance extraction.    
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