Identification of Hox Genes Controlling Thrombopoiesis in Zebrafish

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

Thrombocytes are functional equivalents of mammalian platelets and also possess megakaryocyte features. It has been shown earlier that hox genes play a role in megakaryocyte development. Our earlier microarray analysis showed five hox genes, hoxa10b, hoxb2a, hoxc5a, hoxc11b and hoxd3a, were upregulated in zebrafish thrombocytes. However, there is no comprehensive study of genome wide scan of all the hox genes playing a role in megakaryopoiesis. I first measured the expression levels of each of these hox genes in young and mature thrombocytes and observed that all the above hox genes except hoxc11b were expressed equally in both populations of thrombocytes. ... continued below

Physical Description

xi, 137 pages : illustrations (chiefly color)

Creation Information

Sundaramoorthi, Hemalatha December 2015.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 110 times , with 8 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Sundaramoorthi, Hemalatha

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Thrombocytes are functional equivalents of mammalian platelets and also possess megakaryocyte features. It has been shown earlier that hox genes play a role in megakaryocyte development. Our earlier microarray analysis showed five hox genes, hoxa10b, hoxb2a, hoxc5a, hoxc11b and hoxd3a, were upregulated in zebrafish thrombocytes. However, there is no comprehensive study of genome wide scan of all the hox genes playing a role in megakaryopoiesis. I first measured the expression levels of each of these hox genes in young and mature thrombocytes and observed that all the above hox genes except hoxc11b were expressed equally in both populations of thrombocytes. hoxc11b was expressed only in young thrombocytes and not in mature thrombocytes. The goals of my study were to comprehensively knockdown hox genes and identify the specific hox genes involved in the development of thrombocytes in zebrafish. However, the existing vivo-morpholino knockdown technology was not capable of performing such genome-wide knockdowns. Therefore, I developed a novel cost- effective knockdown method by designing an antisense oligonucleotides against the target mRNA and piggybacking with standard control morpholino to silence the gene of interest. Also, to perform knockdowns of the hox genes and test for the number of thrombocytes, the available techniques were both cumbersome or required breeding and production of fish where thrombocytes are GFP labeled. Therefore, I established a flow cytometry based method of counting the number of thrombocytes. I used mepacrine to fluorescently label the blood cells and used the white cell fraction. Standard antisense oligonucleotide designed to the central portion of each of the target hox mRNAs, was piggybacked by a control morpholino and intravenously injected into the adult zebrafish. The thrombocyte count was measured 48 hours post injection. In this study, I found that the knockdown of hoxc11b resulted in increased number of thrombocytes and knockdown of hoxa10b, hoxb2a, hoxc5a, and hoxd3a showed reduction in the thrombocyte counts. I then screened the other 47 hox genes in the zebrafish genome using flow sorting method and found that knockdown of hoxa9a and hoxb1a also resulted in decreased thrombocyte number. Further, I used the dye DiI, which labels only young thrombocytes at specific concentrations and observed that the knockdown of hoxa10b, hoxb2a, hoxc5a, hoxd3a, hoxa9a and hoxb1a, lead to a decrease in young thrombocytes; whereas hoxc11b knockdown lead to increase in number of young thrombocytes. Using bromodeoxyuridine, I also showed that there is increase in release of young thrombocytes into peripheral circulation in hoxc11b knockdown fish which suggests that hoxc11b significantly promotes cell proliferation rather effecting apoptosis. In conclusion, I found six hox genes that are positive regulators and one hox gene is a negative regulator for thrombocyte development.

Physical Description

xi, 137 pages : illustrations (chiefly color)

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2015

Added to The UNT Digital Library

  • March 20, 2016, 10:34 a.m.

Description Last Updated

  • June 6, 2017, 7:18 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 1
Past 30 days: 8
Total Uses: 110

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sundaramoorthi, Hemalatha. Identification of Hox Genes Controlling Thrombopoiesis in Zebrafish, dissertation, December 2015; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc822768/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .