Call Admission Control Scheme for Arbitrary Traffic Distribution in CDMA Cellular Systems

Robert Akl
Manju Hegde
Mort Naraghi-Pour
Paul Min
Relative Average Inter-Cell Interference

\[I_{ji} = E \left[\frac{\int_{C_j} r_j^m(x,y) 10^{\zeta_j/10}}{r_i^m(x,y)/\chi_i^2} \omega_j dA(x,y) \right] \]

\(m \) is the path loss exponent.

\(\zeta_i \) is the decibel attenuation due to shadowing, and has zero mean and standard deviation \(\sigma_s \).

\[E[\chi_i^2 | \zeta_i] = 10^{-\zeta_i/10} \]

\[\omega_j = \frac{n_j}{\text{Area}(C_j)} \]
Inter-Cell Interference Factor

\[\kappa_{ji} \] per user inter-cell interference factor from cell \(j \) to cell \(i \).

\[n_j \] users in cell \(j \) produce a relative average interference in cell \(i \) equal to \(n_j \kappa_{ji} \).
Capacity Region

\[
\frac{E_b}{\alpha(n_i - 1)E_bR/W + \alpha \sum_{j=1}^{M} n_j \kappa_{ji} E_b R/W + N_0} \geq \left(\frac{E_b}{I_0} \right)_{\text{req}}
\]

for \(i = 1, \ldots, M \).

\[
n_i + \sum_{j=1}^{M} n_j \kappa_{ji} \leq \frac{W}{R} \left(\frac{1}{\left(\frac{E_b}{I_0} \right)_{\text{req}}} - \frac{1}{\frac{E_b}{N_0}} \right) + 1 = c_{\text{eff}}
\]

for \(i = 1, \ldots, M \).
Our Model

- New call arrival process to cell i is Poisson.
- Total offered traffic to cell i is:

$$
\rho_i = \lambda_i + \sum_{j \in A_i} \nu_{ji}
$$

where λ_i is the rate of the Poisson Process, ν_{ji} is the handoff rate from cell j to cell i, A_i is the set of cells adjacent to cell i.
Handoff Rate

\[v_{ji} = \lambda_j (1 - B_j) q_{ji} + (1 - B_j) q_{ji} \sum_{x \in A_j} v_{xj} \]

\[= (1 - B_j) q_{ji} \rho_j \]

where \(B_j \) is the Blocking probability for cell \(j \),

\(q_{ji} \) is the probability that a call in progress in cell \(j \), after completing its dwell time, goes to cell \(i \).
Blocking Probability

\[B_i = B(A_i, N_i) = \frac{A_i^{N_i}}{N_i!} \frac{1}{\sum_{k=0}^{N_i} \frac{A_i^k}{k!}}, \text{ where } A_i = \frac{\rho_i}{\mu_i}, \]

\[N_i + \sum_{j=1}^{M} N_j k_{ji} \leq c_{\text{eff}} \text{ for } i = 1, \ldots, M. \]
Fixed Point

- Given values of λ_i for $i = 1, \ldots, M$
- Assume initial values for v_{ij} for $i, j = 1, \ldots, M$
- Calculate ρ_i for $i = 1, \ldots, M$
- Calculate B_i for $i = 1, \ldots, M$
- Calculate the new values of v_{ij} for $i, j = 1, \ldots, M$

and repeat
Net Revenue H

- Revenue generated by accepting a new call
- Cost of a forced termination due to handoff failure

\[
H = \sum_{i=1}^{M} \left\{ w_i \lambda_i (1 - B_i) - c_i (\rho_i - \lambda_i) B_i \right\}
\]

- Finding the derivative of H w.r.t. the arrival rate and w.r.t. N is difficult.
Maximization of Net Revenue

\[
\max_{(N_1,\ldots,N_M)} \sum_{j=1}^{M} \left\{ w_j \lambda_j (1 - B_j) - c_j (\rho_j - \lambda_j) B_j \right\}
\]

subject to

\[
B(A_i,N_i) \leq \eta,
\]

\[
N_i + \sum N_j \kappa_{ji} \leq c_{\text{eff}},
\]

for \(i = 1,\ldots,M \).
3 Mobility Cases

No mobility

\[q_{ii} = 0.3 \] and \[q_{i} = 0.7 \]

<table>
<thead>
<tr>
<th>Low Mobility</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[</td>
<td></td>
<td>A_{i}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.020</td>
<td>0.24</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>0.015</td>
<td>0.24</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>0.012</td>
<td>0.24</td>
<td>0.7</td>
</tr>
<tr>
<td>6</td>
<td>0.010</td>
<td>0.24</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Mobility</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[</td>
<td></td>
<td>A_{i}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.100</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>0.075</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>0.060</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>6</td>
<td>0.050</td>
<td>0.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>
[]: Total offered traffic
• : Cell id
(): Max number of calls admitted
High mobility

[]: Total offered traffic
♦: Cell id
(): Max number of calls admitted

A

B
Low Mobility

- **Blocking probability**
- **Cell id**

Graph showing comparison between Traditional CAC and Our CAC.