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In 1927, Nobel prize winning physicist, E. Schrodinger, in correspondence with
Ehrenfest, wrote the following about the new theory: “What is unpleasant here, and indeed
directly to be objected to, is the use of complex numbers. Psi is surely fundamentally a real
function.” This seemingly simple issue remains unexplained almost ninety years later.

In this dissertation | elucidate the physical and theoretical origins of the complex
requirement. | identify a freedom/constraint situation encountered by vectors when,
employed in accordance with adopted quantum representational methodology, and
representing angular momentum states in particular. Complex vectors, quite simply, provide
more available adjustable variables than do real vectors. The additional variables relax the
constraint situation allowing the theory’s representational program to carry through.

This complex number issue, which lies at the deepest foundations of the theory, has
implications for important issues located higher in the theory. For example, any unification of
the classical and quantum accounts of the settled order of nature, will rest squarely on our

ability to account for the introduction of the imaginary unit.
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CHAPTER 1
INTRODUCTION

In this dissertation | present an explanation of the requirement for complex numbers in
the mathematical formulation of quantum mechanics.

This problem is located deep in the foundations of quantum theory and historically, it is
raised by the founding fathers within “the first moments” after the birth of the theory.

There are a number of ways one can formulate the complex numbers issue. Complex
numbers and the imaginary unit are encountered throughout the mathematical theory. One
can choose any occurrence and ask there for an explanation. Why does the Schrodinger

IIIII

equation of motion prominently display the imaginary unit? Why is an “I” encountered in the

llIII

operators associated with physical observables? Why is “I” encountered in the operator
commutation relations, in the components of the state vector, etc.?

The problem can be seen, however, in a quite stark way by formulating it in full
generality as a point of logic. Consider the following list of four propositions. Each seems
obviously true, yet the four generate a contradiction.

A Point of Logic:

1. Physical theories describe physical objects, object interactions, and evolutions.

2. All description of physical objects, object interactions, and evolutions, requires real numbers
only.

3. It follows from 1 and 2 that physical theories require real numbers only.

4. Quantum theory, however, requires complex numbers.

Presumably, if one starts from a clean slate and undertakes to logically reconstruct the
guantum mathematical formal structure, then there will come some specific point and some

specific reason for which complex numbers must be introduced into the theory. In this

dissertation, | will identify that point and make clear the origin of the complex requirement.



It will be a central point of the dissertation that quantum theory adopts a methodology
of using vectors (mathematical objects) to represent object states (physical phenomena) that is
different from the way that vectors are used in previous physical theories. | will show that it is
this method of using vectors that has a traceable connection to the requirement that the
vectors be complex.

The theory’s adopted representational conventions, adopted by postulate, provide a
useful separation line for the following explanation. The explanation | give in chapter 3 begins
with the postulates and demonstrates the requirement for complex state vectors. Chapter 4
considers the other side of the separation line, that is, the origins of the postulates. It is useful
explanatory headway to see the complex requirement demonstrated from the postulates (and
certain features of the observed phenomena). However, additional explanatory insight is
provided if we also have some understanding of the physical and representational principles
which underlie and motivate the postulates. Chapters 3 and 4 address both sides of the
separation line.

Before the business of explaining, chapter 2 collects together some of the reasons why
this issue, the requirement for complex numbers in quantum theory, is an important issue.
Chapter 2 introduces other research both contemporary and historical which either addresses
directly or is related to the complex number requirement.

Please enjoy.



CHAPTER 2
IMPORTANCE AND RELATED ISSUES

2.1 Importance of the Complex Requirement

In this section, | discuss the importance of the issue of complex numbers in quantum
theory. The issue is, of course, important in its own right. In addition, however, it has tight
connections and implications for important secondary issues. These points are discussed
below. | also introduce other related research both contemporary and historical acknowledging
the ongoing importance of this issue. In the following | separate out and discuss individually

several of these points.

2.1.1 Familiarity versus Understanding

In the introduction, | listed four propositions which starkly present the complex number
issue as a point of logic. The four propositions seem obviously true, yet, nonetheless, are
obviously inconsistent. It is therefore a remarkable fact that at this moment in history, there is
little awareness of or interest in this issue. Only a very small contingent would consider the
issue important.

This, | think, is because of the particular history of the issue. The apparent requirement
for complex numbers attracted the attention of the founding fathers. Without quick resolution,
however, it was put aside and physicists went about the business of actually using the theory.
Now generations of physicists have begun and ended professional careers with the issue well

buried in the background.



What has happened is that physicists have grown accustomed to the presence of
complex numbers in the theory. Given this comfort, inquiry from a student can be interpreted
as a student’s discomfort arising from lack of familiarity with complex numbers rather that as a
legitimate question about the theory. Consequently, even opening the question for discussion
is, in effect, discouraged. This situation is particularly puzzling because in the context of other
theories, it is considered important that the student understand the role of any complex
numbers present. Typically that role is to provide a convenience in mathematical
manipulations. The situation is different, however, in introducing quantum theory. The
student takes the lesson that apparently some things are opaque and no explanation will be
forthcoming. Fundamental features of the theory become essentially established theory
dogma. This process does not serve the student well in shaping an intellectual and scientific
mindset.

It is essential therefore that we recognize the following distinction. To grow
accustomed to something is different from understanding that thing. That a physicist is
comfortable with the complex numbers or has grown accustomed to them is of no concern.
None of physics is about the psychological state of the physicist or her comfort level with this or
that feature of the theory. The issue is whether what the theory says is, in fact, understood. In

awsn
|

this case, the significance of the “i” in the theory is not understood.
That the psychological considerations blind us to our failure to recognize the complex
guestion can be seen clearly by considering the situation confronting Schrodinger. He was

clearly an intelligent, thoughtful, physicist who certainly had some good insight into quantum

physics. For him, however, the complex requirement was new. He had not “grown



accustomed”. It is important, therefore, to weigh heavily this Nobel prize winning physicist’s
analysis of the apparent requirement for complex numbers in the theory. Clearly he recognized
an issue that required explanation.
About (a), Schrodinger said that he had abandoned the expression lIi(alll*/at) of his
earlier manuscript (Schrodinger, 1926f), and was now focusing on WY for the electric
charge density in real space. He then continued: “What is unpleasant here, and indeed
directly to be objected to, is the use of complex numbers. W is surely fundamentally a
real function.” There followed an involved suggestion of how to generate a complex W
from its real part ¥,, a suggestion clearly not quite satisfactory to Schrodinger himself.*
The history of science provides us with stark examples of the conflation of familiarity
with understanding. There is an important lesson to be learned from those who took the earth

to be flat yet observed the sun’s daily passage. To be accustomed to something is not to

understand that thing.

2.1.2 The Value of Paradox

The obvious importance of the complex numbers in the theory is that, presumably, they
are not there gratuitously. That is, they are there for a reason. They are therefore a large red
flag indicating that here is an open question that requires explanation. The theory is saying
something. What is it saying?

Professor Yakir Aharonov emphasizes the value of these red flags. He makes the point
in terms of the value of paradox in physics. By paradox, he intends, for example, the set of four
apparently true but inconsistent propositions which | listed in the introduction.

We will use paradox to probe quantum physics. Can paradox be useful? The history of
physics shows how useful. As Wheeler put it, “No progress without a paradox!”? ...

A paradox is an argument that starts with apparently acceptable assumptions and leads
by apparently valid deductions to an apparent contradiction. Since logic admits no



contradictions, either the apparently acceptable assumptions are not acceptable, or the

apparently valid deductions are not valid, or the apparent contradiction is not a

contradiction. A paradox is useful because it can show that something is wrong even

when everything appears to be right. It does not show what is wrong. But something is
wrong — something we thought we understood — and a paradox moves us to reexamine
the argument until we find out what is wrong.?

2.1.3 Anlssue Located in the Foundations

In this dissertation, | explain that the complex number requirement is introduced in
construction of the state vector. This means that if we do not understand the complex
requirement, then essentially we do not understand the quantum state. The fact that the
guantum state is not fully understood is not, in fact, news. It is the accepted status quo. Until
students are trained to not ask, they do wonder about the “cloud” around the atom, and
whether the wave function is something like an E or B field only somehow complex valued.

To fail to understand something about the quantum state is to introduce
misunderstanding at the deepest levels of the theory. Reason dictates that incomplete or
incorrect understanding at this level will have consequences throughout the theory.

First consider the importance of the complex number issue for understanding the state.
This offers a perfect example of the usefulness of the complex number issue. In the following
chapters, | explain that the complex number issue is, in fact, a secondary issue located in the
context of the larger issue of how the theory employs vectors to represent states of objects.
That is, the theory first makes a commitment to the use of vectors to represent states. It is

then a secondary consideration why those vectors must be either real or complex. Itis the

complex number issue that draws our attention to the more general issue that the quantum



concept of state is importantly different from the classical state. | discuss the particular
guantum concept of state in chapter 4.

As mentioned, the implications of the complex number issue are not limited to insights
at the level of the state. As we go higher in the theory from the state to the equation giving the
motion of the state, we again see the importance of the complex number requirement. It has
been an important program since the birth of the theory to give some account of the
connection between quantum and classical theory. In particular, there have been a variety of
attempts to explain the Schrodinger equation of motion in terms of classical equations of
motion and vice versa. It is a point of logic, however, that any explanation of one in terms of
the other must include some account of why the imaginary unit is introduced in the
Schrodinger equation. That is, this unification can not go forward without some explanation for
the requirement for complex numbers in quantum theory. Presumably, the unification can not

successfully go forward without a correct explanation.

2.2 Related Issues

To provide some broader sense of the importance of the complex requirement, | briefly
mention some questions and issues that are intimately linked.

First: Quantum theory adopts a new way of using vectors to represent physical
phenomena that is different from the use of vectors in previous theories. Failure to recognize
this fundamentally different representational use of vectors constitutes a confusion about the

state vector and the representational methodology employed by the theory. As | discuss, the



requirement for complex vectors is closely associated with and a consequence of this new
methodology.

Second: Are the complex numbers present in the theory because they reflect some
complex feature of the observed physical phenomena? If so, what does this mean for the
observed phenomena to be complex? Are they present instead to provide some mathematical
convenience? If so, what is the specific nature of the convenience? Do they simplify
mathematical manipulation of oscillatory expressions as they do in classical theories?

Third: Are complex numbers somehow required in expressing the dynamics of the
physical phenomena? | discuss that this is an explanation avenue that has been considered by a
variety of researchers. Whether the complex requirement is associated with dynamics or prior

to dynamics can have sweeping implications for this long and distinguished research program.

2.3 Related Research
In this section, | briefly review two important lines of research which rest squarely on

the complex number issue.

2.3.1 Logical Reconstruction of the Quantum Mathematical Formal Structure

There is an ongoing line of research that undertakes to provide a full explanation of all
features of the quantum mathematical formalism. The driving methodology is to elucidate the
physical origins of all structural details of the mathematical theory. One part of this program, of
course, would be to explain the requirement of the complex numbers in the theory. This

particular issue is addressed by Goyal, Knuth, and Skilling in an article entitled, “Origin of



complex quantum amplitudes and Feynman’s rules”.* The article abstract describes their
program.

Complex numbers are an intrinsic part of the mathematical formalism of quantum

theory, and are perhaps its most characteristic feature. In this paper, we show that the

complex nature of the quantum formalism can be derived directly from the assumption
that a pair of real numbers is associated with each sequence of measurement outcomes,
with the probability of this sequence being a real-valued function of this number pair. By
making use of elementary symmetry conditions, and without assuming that these real
number pairs have any other algebraic structure, we show that these pairs must be
manipulated according to the rules of complex arithmetic. We demonstrate that these
complex numbers combine according to Feynman's sum and product rules, with the
modulus-squared yielding the probability of a sequence of outcomes.*

In this article, the authors introduce by postulate the real number pairs and then
propose an explanation why the pairs obey the complex number combination rules. They state
that the explanation relies not just on “elementary symmetry conditions” but also on physical
assumptions.

Using symmetry and consistency conditions that arise naturally in an operational

framework, and making a few elementary physical assumptions, we show that this

postulate leads to Feynman’s rules of quantum theory. Most importantly, we show that
the number pairs assigned to each sequence of measurements outcomes must be
manipulated according to the rules of complex arithmetic, without assuming this at the
outset.”

How does this work relate to the complex number explanation that | provide in this
dissertation? My explanation takes as a starting point that the theory adopts a particular
methodology for using vectors to represent a certain class of physical phenomena. | explain
that an essential requirement for use of this methodology is the use of vector spaces with a
defined L? vector norm. It is this commitment to the L? vector norm that explains why, if the

vectors have two real variables per component, then they must obey the complex number

combination rule. On my explanation, the combination rule is a consequence of the



representational choice to use an L? vector space. Goyal, however, explains the combination
rule using “symmetry and consistency conditions ... and a few elementary physical
assumptions.””

Consequently Goyal and | offer fundamentally different explanations for the complex
number requirement. It would be an important topic for a follow on analysis to determine
whether Goyal’s symmetries, consistency conditions, and physical assumptions, in fact, also
import a requirement that the vector space be defined as L% That is, does Goyal’s explanation

assume the quantum representational methodology without explicitly acknowledging doing so?

2.3.2 Unification of Classical and Quantum Equations of Motion

As mentioned, unification of quantum and classical theory has been an ongoing
historically, and conceptually important program. A main focus of the program is to
interchangeably derive the classical from the quantum equations of motion. A recent article, by
Schleich, Greenberger, Kobe, and Scully revisits this program.’

In the course of relating the two theories’ equations of motion, Schleich et. al. introduce
the imaginary unit as follows:

In the past, Stiickelberg®, Wheeler’, and many others have addressed the question of
why the imaginary unit appears so prominently in quantum mechanics but not in
standard formulations of classical mechanics. However, the complex-valued function {
(cl), which obeys the nonlinear Schrodinger equation, demonstrates that the
appearance of the imaginary unit i is not a characteristic feature of quantum mechanics
but, rather, reflects the fact that the underlying dynamics rest on two equations rather
than one: the continuity equation and the Hamilton— Jacobi equation. At this point, it is
of no importance that the latter implies the former. Therefore, complex numbers are
just a useful tool to combine two real equations into a single complex equation. We
conclude our discussion of classical matter waves by noting that the appearance of i in
guantum mechanics as a mathematical convenience rather than a necessity is also

10



confirmed by the formulation in terms of the Wigner phase space distribution function®.
Indeed, this quantity is always real. We return to this point in Conclusions and Outlook.”

How does this account of the origin of the complex requirement relate to the one that |
give in the dissertation? On the Schleich account, the dynamics of the system “rest on two
equations rather than one”. It is therefore an issue of the dynamics of the system that is the
origin of the imaginary unit requirement. In the explanation that | give, the requirement for the
imaginary unit arises prior to any consideration of dynamics. Instead, the complex numbers are
introduced in the logical construction of the state vector (for a particular moment in time) for
the purpose of relaxing a constraint encountered in vector pairwise relationships.

In this program, ie., presenting a unified understanding of the equations of motion, the
correct origins of the complex requirement play a crucial role. If the complex requirement is, in
fact, prior to dynamics, then we can say, in one stroke, that any introduction of the complex
requirement as due to dynamics would appear to be incorrect. If the state is complex prior to
dynamics, then the explanatory connection must go the other way. It is the complex state that
explains the combining of the two equations, not the combining of the equations that explains
the complex state.

This issue is much larger than just the Scheich article. The Schleich article is one link in a
very traceable chain employing the same mathematical machinery although sometimes to

15910 early

make different points. The same mathematical arguments can be observed in Bohm
hidden variable program and in Holland’s"! later revisit of that program.
With respect to this entire historically important line of research, much rests on

whether the complex requirement is associated with system dynamics or whether, in fact, it is

prior to dynamics as | propose.
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CHAPTER 3
THE COMPLEX NUMBER EXPLANATION

3.1 Preliminary Comments

This chapter presents the explanation of the requirement for complex vectors in the
guantum mathematical formal structure. The explanation takes as starting points, 1., the
theory’s adopted conventions for using vectors to represent observed state transition
probabilities, and, 2., empirically observed features which characterize angular momentum
states of physical objects. The chapter begins with some preliminary comments regarding the

explanation.

3.1.1 The Principle of Unique Causes

The focus of this chapter is on the vectors used by the theory to represent states of
physical objects. The dissertation task, however, is to explain the presence of complex
numbers not just in association with a particular theoretical feature, but in full generality
throughout the theory. How can this task be fulfilled if attention is restricted to just state
vectors?

| take the view, seemingly demanded by reason, that there is some single explanation
requiring the introduction of complex numbers into the theory. All other occurrences
throughout the theory are then simply mathematical consequences. This “principle of unique
causes” seems a point of general principle and governing across physics. As an example,
suppose the reason a planet orbits a sun is due to a gravitational relationship. Does reason

allow a second genuinely logically distinct reason for the orbit? If a second were proposed, we

12



would expect that they were not genuinely logically distinct but only seemingly so and, in fact,
explainable one in terms of the other.

In a logical reconstruction of quantum theory, presumably there is some specific point
at which, and reason for which the theorist must introduce complex numbers. The position
that | take here is to say that once required, there is no second, additional, genuinely logically
distinct reason that would again require their introduction. A corollary to this would be that
given two seemingly different reasons for complex numbers in the theory, the two are in fact
the same and each can be explained in terms of the other.

In the remainder of the chapter | explain that the point at which complex numbers are
introduced into the theory is in the logical construction of the state vector. It is at this point
that we can identify reasons external to the theory that require their introduction. Occurrences
of complex numbers in other mathematical structures associated with the theory are then
simply mathematical consequences of the state vector being a complex vector. That is, the
imaginary unit is present in the equation of motion, the operators, the commutation
expressions, etc., only as a mathematical consequence of the state vector being a complex
vector.

| therefore continue with full attention turned to the state vector.

As a second preliminary comment, | mention to the reader that the explanation is
presented in two parts. The dividing line that separates the two is the set of conventions
adopted by the theory for the mathematical representation of physical phenomena.

What exactly do | mean by the theory’s representation conventions? Any mathematical

physical theory undertakes to represent physical phenomena by using mathematical structures

13



and objects. To do this, the theory must adopt some convention for the representation, that is,
exactly how it will mathematically represent physical phenomena. Since a convention is just
that, a convention, any such choices made by the theorist must be introduced or adopted by
postulate. We therefore recognize two classes of postulate in theory construction. First, a
postulate must be present to adopt any chosen representational convention. The quantum
convention to represent object states by using Hilbert space vectors is adopted by such a
postulate. Alternatively, we see that the postulate that the state evolve in accordance with the
Schrodinger equation is of a different class. This postulate states a matter of physical fact. In
theory construction, it is the theorist’s choice how to mathematically represent the state.
Having done so, however, how the state evolves is a matter of empirical fact.

In order to identify the representational conventions adopted by quantum theory, we,
therefore, turn to the postulates. Quantum theory makes a very early and fundamental
commitment to, 1., the use of vectors to represent states, and, 2., a “Born Rule” principle to
represent state transition probabilities.

As stated above, | separate the complex vector explanation into two parts. Using the
theory’s adopted representational conventions, ie., the representational postulates, as the

separation line, | separate the explanation as follows.

3.1.2 This Chapter — The Requirement for Complex Vectors
In this chapter, the explanation runs from the conventions to the complex vectors. That
is, the explanation takes as the starting point that the theory adopts the representational

conventions just mentioned. From this starting point, (and a secondary consideration, ie., the

14



requirement that the representational vectors vary as the actual physical states vary), | explain

why the vectors need to be complex.

3.1.3 Next Chapter — The New Quantum Representational Methodology

One could say that the above explanation is open to a somewhat valid criticism. That is,
the explanation is anchored only in the theory postulates. With respect to the task of
“explaining”, that is, “answering the why question”, the criticism is, the postulates are left as
impenetrable and unexplained. In one sense, this is as far as one can go in explaining. To say
that a method of representation is adopted by convention, ie., by postulate, means that it is
fundamentally nothing more than a choice made by the theorist during theory construction. A
different theorist might have made different choices. No where do we see the adoption of
alternative conventions by different theorists more clearly demonstrated than in the historical
development of quantum theory. The explanation, therefore, could respectably end by simply
saying “theorist’s choice”.

On the other hand, conventions, presumably, are not adopted whimsically. It seems
reasonable that a theorist would choose a representational convention that is in some way well
suited to the features of the physical phenomena to be represented.

If our program is to explain the quantum requirement for complex numbers, we
certainly have the right to anchor the explanation in the conventions. If however, some insight
is possible regarding why the particular conventions are adopted, then a broader understanding

of the complex requirement may be available.
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For this reason, the next chapter looks “behind the curtain” and discusses the
considerations which motivate the adoption of the quantum conventions. The dissertation is
meant to be explanatory, that is, provide insight, understanding, and some intuitive feel for the
complex requirement. That goal is furthered by not simply recognizing that the theory adopts
particular conventions, but also shining light on why these conventions are adopted.

This chapter, together with the “look behind the postulates curtain” provided in the

next chapter, fully explain the quantum requirement for complex vectors.

3.2 The Requirement for Complex Vectors® *?
3.2.1 Section Intro

In this section, as just discussed, | take as the starting point that the theory adopts, by
postulate, certain conventions for the use of mathematical objects for the representation of
physical phenomena. That is, the theory is committed to the use of vectors to represent states,
and the Born rule to represent state transition probabilities. From this starting point, | then
explain why the vectors representing the states must be complex vectors.

| have constructed the explanation around a set of four requirement statements, R1-R4.
These are meant to provide a solid vantage point on which the reader can stand and survey the
explanation logic. This vantage point provides two perspectives meant to be considered
independently.

Perspective 1 — Satisfying the Requirements: From one perspective, the four

requirements can be considered simply a set of abstract requirements on the vectors of a

 Material from section 3.2 is reproduced in part from, Maynard, G., Lambert, D.,
Deering, W. D., (2015), (ref. endnote 12), with permission from Physics Education (IAPT).

16



vector space. Taking this perspective one can follow, as a purely mathematical issue of vector
structure, that the set of requirements is not satisfied by real vectors, but can be satisfied if the
vectors used are complex.

Perspective 2 — Origins of the Requirements: Taking the second perspective, | put aside
considerations of mathematical consequences and instead trace the origins of the four
requirements. | show that two of the requirements, R1 and R2, originate in the conventions
adopted by the theoretician during theory construction. The remaining two requirements, R3
and R4, originate from physical considerations, in particular, the requirement that a vector
employed to represent a physical state must have the ability to vary as the physical state itself
varies.

To begin, | list the set of four requirements, R1 — R4. | then discuss, in turn, first

satisfying the requirements, and then the origins of the requirements.

3.2.2 The Set of Requirements: R1-R4

Let V be an arbitrary vector in a finite dimensional vector space. R1— R4 are
requirements on vector V.

R1: Vector, V, is subject to n independent constraints with respect to an orthonormal basis set
of vectors { b; }i-1,n) . Each constraint is of the form, pi=1(V, b;) | 2 (where the parenthesis
indicates inner product).

R2: Vector V is n-dimensional.

R3: Vector V must vary with two real variables, r and c.

R4: The set of constraints mentioned in R1 vary parametrically with the variable r above. That

is, pi=pi(r)

17



3.2.3 Satisfying the Requirements

Here | consider the four requirements simply as a set of abstract requirements on the
vectors of a vector space. | want to show, as a mathematical issue, that the set of requirements
is not satisfied by real vectors, however, may be satisfied by complex vectors.

| show first that real vectors do not satisfy these requirements:

Point 1 - Number of variables present: Assume vector V is a real vector. Real vectors vary with

one real variable per vector dimension. Requirement R2 requires that V is n-dimensional.
Therefore, V varies with n variables.

Point 2 - Number of constraints present: We see from R4 that the set of R1 constraints vary

parametrically with variable r. If we consider any fixed value of r, then the R1 constraints
impose n independent constraints on V (with respect to the orthonormal basis set { b; }).

Points 1 and 2 imply: It follows that vector V is fully specified with respect to the basis set { b; }

(for any fixed r). There are n variables and n independent constraints. All variables present are
assigned values by the constraints.
Therefore: If vector V is real, and satisfies requirements, R1, R2, and R4, then it:

a. Is fully specified by r, and

b. Varies as a function of r.
Therefore: Having satisfied requirements, R1, R2, and R4, vector V cannot satisfy requirement
R3. Vector V varies with and is fully specified by r. Consequently, it is not possible for the
vector to vary (nontrivially) in the second variable, c, as is required by requirement R3.

| have shown that if vector V is real then it does not satisfy the set of requirements.

Having done this analysis, however, one sees how substituting complex vectors for real vectors
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avoids the constraint limitation. The constraint encountered by real vectors is due to the
availability of only n variables in the face of n constraints. A complex vector, however, provides
2n independent real variables. In the face of only n constraints, a 2n variable complex vector

provides sufficient freedom to vary in both r and c degrees of freedom.

3.2.4 Origins of the Requirements

| next return to the set of four requirements and consider where the requirements
originate. | show that the four requirements have two origins, two vector requirements from
one origin and two from the other. Requirements, R1 and R2, are consequences of the theory’s
adoption of a particular representational convention. Their origin is therefore from particular
choices made by the theoretician during theory construction. Requirements R3 and R4 are
consequences of observed physical phenomena. Here | invoke the general principle that to
mathematically represent a physical state, the mathematical object chosen for the
representation must have the ability to vary as the actual physical state varies. In the present
situation, the quantum state vectors must have the ability to vary with the freedom of angular
momentum states.

| discuss the requirements R1-R4 in turn and identify their individual origins.

3.2.4.1 Origin of Requirement R1

Requirement R1: Vector, V, is subject to n independent constraints with respect to an

orthonormal basis set of vectors { b; }i-1,n) . Each constraint is of the form, p; = 1(V, bi)lz.
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In constructing the mathematical structure of any physical theory, some convention
must be adopted for the representation of physical phenomena by mathematical structures.
Quantum theory adopts, by postulate, the following representational convention:

P1: States of physical objects are represented by unit vectors, V.

P2: The probability for a transition between two states is represented by the “Born
Rule”. The “Born Rule” yields the probability as an inner product function on two vectors, V
and b, which represent the two physical states involved in the transition, p=1(V,b)1?2.

The important point that we recognize in this section is that adoption of the Born Rule,
in fact, imposes a constraint on vector V relative to vector b.

The familiar use of the Born Rule is to enter with the two state vectors, V and b, and
obtain the transition probability, p. Here, we are recognizing a different perspective. It is the
probability value that is the observed physical fact. The vectors are merely mathematical
structures employed to represent physical states. By adopting the Born convention to
represent transition probabilities we are required to choose vectors which yield the correct
inner product value equal to the probability represented. From this perspective, the Born Rule,
in fact, defines the vector pair (a partial definition) by specifying their inner product
relationship. Consequently, we recognize a Born Rule expression as a “Born Constraint” on a
state vector, V, relative to a transition state vector, b.

In addition to recognizing that the Born Rule imposes Born Constraints, requirement R1
also claims that there are n independent Born Constraints (with respect to the basis set). How

do we know this?
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A Born expression, p=1(V, b) 12, represents the probability for a single transition from
one state to another. It is observed physical fact, however, that an object in a given state can
transition into one of some number, n, of alternative possible transition states. Each transition
has some observed probability, p;, and since they are mutually exclusive and exhaustive, -1,
n) (pi) =1. This fact about probabilities imposes a requirement on the set of Born expressions
representing the probabilities for the set of possible transitions.

That is:

1=%(-1,m(p)=Zg=0,m (1(V,b)1%), (Eqn.1)

We can recognize this as, in fact, a requirement on the vector space used to represent
states by the Born rule. That is, the vector space must come equipped with a defined L? vector
norm.

The L? vector norm is defined as follows:

IVI= Zgoa,m(1(V,bi)1%).

If vector V is a unit vector, then,

1=go1,0 (1(V,bi)172). (Eqn. 2)

We see then that the choice to represent a set of transition probabilities by the Born
Rule (Egn. 1) has imposed the requirement that the vector space must be defined to have an L?
vector norm (Eqn. 2).

Recognizing that the vector space has an L% vector norm is useful as follows. The set of
vectors { b; }i-=1,n) in (Eqn. 2) are an orthonormal basis set. Consequently there is a set of n

individual Born Constraints on vector V, one associated with each basis vector. These
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constraints are independent because each is relative to a basis vector that is orthogonal to all of
the others.

We therefore have the result R1 stated above. Any vector V used by the theory to
represent the state of an object must satisfy requirement R1.

| note, in passing, an interesting and pedagogically useful point. The explanation of why
quantum theory employs Hilbert space vectors to represent states is sometimes opaque. Here
we understand that the theory makes an, early and fundamental commitment to the use of
vector spaces which have an L? structure. If one generalizes the structure of a vector space in
every way, dimensionality, etc., but retains the L2 structure, then that is the set of Hilbert
spaces. Quantum theory employs Hilbert spaces because the theory makes use of and

therefore requires the L? structure.

3.2.4.2 Origin of Requirement R2

Requirement R2: The vector is n dimensional.

Having done the work of the previous section, we immediately recognize this
requirement on any state vector. As explained, vector V is in a vector space spanned by the n

orthonormal basis vectors { b; }i-1,n). Consequently, V is n dimensional.

3.2.4.3 Origin of Requirement R3

Requirement R3: Vector V must vary with two real variables, V (r, c).

It is observed physical fact that angular momentum states vary as a function of
orientations or directions in physical space. The point is general, but can be seen by

considering a simple example of two spin 1/2 objects. Suppose one object interacts with a
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Stern-Gerlach apparatus oriented in the z direction and deflects up along that direction. The
second object interacts with a machine oriented along the ( 8, ¢ ) direction and deflects up
along that direction. Subsequent to the interactions, these two objects are in objectively
different physical states. What does it mean to be in different states? It means that
subsequent observations made on the objects will yield different results (observations are on
ensembles). They are observably different. We can state this same physical fact in another
way by saying that angular momentum states vary with orientations in physical space.

It is a general point that in constructing a mathematical theory, for any mathematical
object chosen to represent the physical state, then that mathematical object must have the
ability to vary as the physical state does. In particular, any vector we employ to represent
angular momentum states must have the ability to vary with orientations in physical space. We
can recognize this explicitly by writing the state vector as a function of orientation, V(O ),
where “0”, see Figure 1, is an orientation in physical space.

Orientations in three dimensional physical space vary with two degrees of freedom.
Typically, polar coordinates, (0, ¢ ), are chosen to label spatial orientations. Here it is useful to
choose different coordinates as depicted in Figure 1. Select an arbitrary orientation, O, , then
let real variables ( r, c ) label variation in radial and circumferential degrees of freedom relative

to 02.
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Figure 1. Physical space orientations O, and O. Defined coordinates r and c.
Coordinates r, (radial) and c (circumferential) are defined relative to O,.
We can explicitly recognize this variation in two degrees of orientation freedom by
writing the above state vector, V(0 ), as V (r, c) with r and c coordinates as defined.
We therefore have requirement R3 as given above. Note that the point here is to
recognize that any vectors representing angular momentum states must have the ability to vary

as the actual physical state varies, i.e., with two orientation degrees of freedom.

3.2.4.4 Origin of Requirement R4
Requirement R4: The set of constraints mentioned in R1 vary parametrically with the
variable r above. Thatiis, pi=pi(r)

(Since requirement R4 references the R1 Born Constraints, we copy again R1.
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Requirement R1: Vector, V, is subject to n independent constraints with respect to an
orthonormal basis set of vectors {bi}i-1,n). Each constraint is of the form, pi=1(V, bi)lz)

In the last section, we recognized the physical fact that angular momentum states vary
with physical space orientations. Here, we recognize a second empirically observed fact
characterizing angular momentum states. That is, for two angular momentum states associated
with two different physical space orientations, O;, and O, , the probability for a transition from
one state to the other varies as a function of the separation angle between the two
orientations.

Here is where we can take advantage of the r and c coordinates defined earlier. If we
take O, to be our arbitrary fixed reference, then the separation angle between the two
orientations, O1, and O, is given by the coordinate r. Consequently, pi=p;i(r).

For the Born Constraints to vary parametrically with r we have made an assumption.
That is, vector V is associated with one spatial orientation, O1, and all of the transition state
vectors, { b; } are associated with a single orientation, O, . This is appropriate for angular
momentum observations. Suppose an object is in the state represented by vector, V(O ). The
object then interacts with a Stern-Gerlach apparatus oriented along O, . In this case, there are
a set of n possible transition states, but we note the important fact that they are all associated
with physical space orientation, O, .

Consequently, we have the result that the initial state vector is subject to a set of Born
Constraints relative to the transition state vectors, { b; }, and these constraints all vary

parametrically with the separation angle parameter .
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CHAPTER 4
THE NEW QUANTUM REPRESENTATIONAL METHODOLOGY
4.1 Introductory Comments

The previous chapter provided an explanation of why the state vectors employed by the
theory must be complex vectors. | used as a starting point for this explanation the
representational postulates, ie., the fact that the theory adopts a particular method of using
vectors to represent states and state transition probabilities.

In this chapter, | turn attention to those adopted conventions. It is a central point in the
following discussion that quantum theory employs vectors to represent physical phenomena in
a way that is different from previous physical theories. Here, | discuss how this new
methodology works and why it is adopted by the theory.

What do we need to understand about the quantum adopted vector use methodology?
Recall that the explanation of the last chapter rested on two stated requirements, R1 and R2,
that trace their origins to the theory’s adopted conventions. | emphasized that the main insight
leading to R1 is that the Born rule convention employed by the theory also, in fact, constitutes a
Born rule constraint on one vector with respect to another. It is this fact that the theory’s
methodology imposes vector pairwise constraints that | showed leads quite directly to the
requirement for complex vectors when, in particular, the vectors are employed to represent
angular momentum states. It is therefore of some explanatory use to understand the origins of
the Born rule. What considerations would prompt a theorist, in theory construction, to adopt

this representation convention?
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Adoption of the Born rule is fundamentally the exploitation of the L vector norm
structure defined on a vector space for the purpose of representing probability distributions.
That is, there is an isomorphism in structure that is available relating the two, ie., probability
distributions and the L? vector norm, that can be employed as the basis for a representational

technique. The principle can be shown in an intuitive way by using a simple example.

4.2 The Simple Intuitive Example

In order to get some intuition for the new quantum use of vectors, | begin with a simple
example.

Consider a physical object which can undergo probabilistic transitions from some initial
state into one of some set of alternative possible transition states. To construct a simple
visualizable example, we can consider the slightly contrived situation where we toss a six-sided
die, but disregard all tosses which yield other that one, two, or three. For an ensemble of
tosses, there is some observed probability, p1, p2, and p3, associated with each of the possible
alternatives, one two, and three.

We can mathematically represent this set of alternative possible transitions and the
associated probabilities by using vectors in the following way.

First - Select an arbitrary orthonormal basis set of vectors in a three dimensional real
vector space which is equipped with the familiar Euclidean, ie., L%, vector norm.

Second - Define a pairwise association between the three possible transitions, ie.,
outcomes, one, two, and three, and the three basis vectors, B1, B2, and B3, as depicted in

Figure 2 below. By doing this, we employ a vector to represent a possible toss outcome.
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Vector B3
(outcome 3)

Vector V

Vector B2
(outcome 2)

Vector B1 (outcome 1)

Figure 2. The quantum representational methodology

- Associate three possible outcomes with three basis vectors

- Construct vector V by defining relationships with the basis set.

Third - We then construct a fourth unit vector, V. (See Figure 1) We define this vector
by “orienting” it with respect to the basis set such that the square of the inner product of this
fourth vector with each basis vector is equal to the probability for the toss outcome associated
with that basis vector.

We therefore assign: I(V,B1)I?=P1, I(V,B2)I>=P2,and, I(V, B3 )’ = P3.

The set of probabilities, by assigning the pairwise inner product relationships, fix the
orientation of the fourth vector with respect to the three orthonormal basis vectors.

We can now proceed by highlighting particular points regarding the example and this

methodology of using vectors to represent probability distributions.
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4.3 Point 1: The L*> - Probability Isomorphism

By far, the most important point to recognize is that this method of using vectors is
different from the conventional way in which vectors are used in physical theories.

In previous physical theories, vectors are typically employed to represent physical
phenomena that are characterized by a direction and a magnitude. In order to represent
physical phenomena characterized in this way, one employs the norm of an individual vector
and its angular relationship with some arbitrarily chosen reference vector.

Here, we see vectors being used in a different way. Here the vector structure is
employed to represent a physical situation characterized by an observed probability
distribution.

We note that it is a defining feature of probability distributions, that for any set of
mutually exclusive exhaustive possible outcomes or transitions, the observed probabilities must
sum to one. The L? vector norm of a unit vector displays this same structure.

Algebraic structure characterizing probabilities: 1=p1 +p2 +...

Algebraic structure defining the L? vector norm (for a unit vector): IVI=1=1(V,B1)I?
+1(V,B2) 1>+ ... (where V is a unit vector, and { B, } is an orthonormal basis set of n-
dimensionality.)

Given this structural isomorphism, we can make pairwise assignments associating each
probability in the sum with an inner product in the other sum, thereby representing one by
using the other. We see that any possible probability distribution can be represented by

assigning the inner product relationships of V with the basis vectors as necessary.
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Note that this usage differs from the conventional by employing different structural
features of the vectors and vector space. In this usage, it is the inner product relationship
between a pair of unit vectors that actually does the representational work, ie., carries the
information characterizing the physical situation. In particular, the vectors are used pairwise
and not individually. A pair of vectors represents a pair of states (states of the die before and
after the toss). The vector pairwise relationship represents a pairwise relationship that exists
between the states. The relationship between the state pair is the scalar transition probability.
The relationship between the vector pair is the scalar inner product modulus squared.

To note the substantial difference between the conventional use of vectors and this new
use, note the different role of the norm of the vector. In conventional use, the “length” or
norm of the vector plays a working role of representing the magnitude of the physical quantity.
In quantum theory, however, every vector norm is assigned by the representational

methodology to equal one. The norm carries no information characterizing the phenomena.

4.4 Point 2: Generalizability

The absolutely essential point prerequisite to understanding or explaining the quantum
use of vectors is the recognition that the vectors are employed in the new and uniquely
guantum way described above. From that, much of the particulars to be explained follow
easily.

For example, seeing the fundamental representational principle at work in the example,
it is apparent how it can be richly generalized. If the probability distribution to be represented,

has n rather than three alternative possible transitions, then one selects a vector space of n
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dimension that has the required L? structure. The continuum case is also possible. In fact, it is
only the L? structure doing representational work and so in any other respects, the vector space
can be generalized. We have used real vectors to make the example intuitive. As long as the L?
structure is retained, real, complex, or, more exotic vector spaces are usable in this way. The

set of vector spaces generalized so as to retain the L’ structure is the set of Hilbert spaces.

4.5 Point 3: Adopted Quantum Conventions

The example above employed a contrived situation using die tosses. The essential
feature, however, is the presence of a probability distribution which one would like to
represent mathematically. That we have the same requirement in quantum theory is apparent.
For example, observations of spin component on a spin one object display the same set of three
alternative possible transitions each with an observed probability.

We can see more explicitly, however, the theory’s adoption of this convention by
turning to the postulates. The theory adopts the following two:

P1: The state of an object is represented by a vector in a Hilbert space.

P2: The probability of a transition from one to state to some other state is given by the
“Born Rule”. The Born rule represents the transition probability as an inner product function on
two vectors that represent the two physical states involved in the transition.

We see therefore, quite explicitly, that quantum theory adopts the representational

method of using vectors demonstrated in the example above.
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4.6 Point 4: Understanding R1 and R2

Recall from the beginning of this chapter, that our goal here is to understand the origins
of the two requirements, R1 and R2, that played such an important role in the last chapter.
That is, we want to have some intuition for the origins of the Born rule which is the heart of R1.
As mentioned above, having explicitly and clearly acknowledged that the theory is using vectors
in a new way, the remaining explanatory particulars follow easily. | provide again R1 and R2.

R1: Vector, V, is subject to n independent constraints with respect to an orthonormal

basis set of vectors { b; }i-1,n). Each constraint is of the form, pi=1(V, b;) | 2,

R2: Vector V is n-dimensional.

We now see the following regarding R1. The theory undertakes to represent a new class
of physical phenomena not within the domain of classical physics, ie., probabilistic state
transitions. That means the theory has an interest in mathematically representing probability
distributions as a “best we can do” attempt to describe the state of an object. To do this, the
guite reasonable choice is adopted to represent these probability distributions by exploiting the
probability — L% structural isomorphism. Consequently, vectors are employed to represent
states rather than phase space points. This commits the theory to representing a probability
relating a state pair by using an inner product function on a vector pair. This is the origin of the
Born rule that the theory adopts by postulate. In the explanation provided in the last chapter,
what was done was to recognize that the Born rule is also, in fact, a pairwise vector constraint.
It is this constraint situation that the theory relaxes by using complex vectors when required.

R2 is similarly understandable having recognized the new vector use method. From the

simple example, we see clearly that the dimensionality of the vector space used is chosen

specifically for the purpose of representing the set of all possible transitions and associated
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probabilities. The dimensionality, therefore, is assigned by the number of alternative
transitions present.

In addition to the above comments on R1 and R2, having considered the origins of the
guantum representational postulates, we now see clearly why in the last chapter, our beginning
point was essentially the option of using either real or complex vectors. This is a consequence
of the theory’s fundamental commitment to the use of a vector space with the L? structure.

The L% requirement is a strong requirement fixing much of the structure of the vector space. In
the present case, the L requirement tells us that if we require two real variables per vector

dimension, then those two must obey the complex number combination rule.

4.7 Point 5: Abstracting the Methodology

Just as a point of interest, there is a useful and more general way to characterize the
new vector use methodology.

What is being represented by this method is the pairwise relationships that are
empirically observed between the possible states of an object. An observed probability for a
transition from one state to another defines a scalar relationship between that pair. Since
every pairing of possible states has some observed transition probability, then that defines a
metric structure of scalar pairwise relationships on the entire space of possible states.

Adoption of the Born rule adopts a methodology of representing pairwise state scalar
relationships by using pairwise vector scalar relationships. The vector scalar relationship is an

inner product function on the vector pair associated with the states.
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What we recognize is this. The physics drives the math. The metric structure of the
state space is a brute physical fact. If we choose to represent this metric structure by using the
metric structure defined by inner products on vector pairs, then this choice imposes a variety of
hard requirements on the metric structure of the vector space.

The complex vector requirement in the representational space is a consequence of one
particular requirement which originates in the state space. It is an issue of pairwise relationship
freedom/constraint. The state space displays multiple interrelated pairwise scalar
relationships. The representational vector space must provide sufficient structural freedom to
represent these same pairwise scalar relationships. Normally, to provide additional required
freedom, if needed, one would be tempted to increase the dimensionality of the vector
representational space. (For example try orienting vectors a, b, and c, in a two dimensional real
vector space at angle(a,b) = 15, angle(a,c) = 30, and angle(a,c) = 20. We can do it, but, by going
to three dimensions.) This is not an option, however, since the methodology assigns a
dimensionality equal to the number of alternative possible transitions. Since the
representational vector space must meet the hard representational demands originating in the
state space, we turn to a second alternative avenue for including additional variables to relax
constraints. That is, rather than increasing dimensionality, one increases the number of

variables per dimension.

4.8 Chapter Concluding Comments
A main point of this chapter is to provide some insight as to the origins of requirements

R1 and R2, which played important roles in the explanation provided in the previous chapter.
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We could have left them as simply matters of convention adopted by the theorist during theory
construction. They are not, however, impenetrable quantum doctrine and are, in fact, adopted
for good reason. This chapter extends the explanation from the last chapter beyond the
postulates and, hopefully, makes good connection with the underlying physical and

representational principles.
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CHAPTER 5
SUMMARY COMMENTS

The main purpose of the dissertation was to provide an explanation for the role of
complex numbers in quantum theory.

| have explained that the point of entry of the complex requirement into the theory is in
the construction of the vectors which represent states of objects. In order to explain why these
vectors are complex, it was necessary to recognize that the theory makes a commitment to the
use of vectors to represent states that is more fundamental than the theory’s commitment to
the use of complex vectors. That is, to ask why the theory requires complex numbers is, in a
sense, the wrong question. In this case, the right question is, given that this methodology of
using vectors is to be employed to represent states, then why must those vectors be complex
vectors?

Turning to the state vectors, we recognize that quantum theory adopts a method of
using vectors to represent physical phenomena that is different from their use in previous
theories. It is attention to this new quantum representational methodology, adopted by
postulate, that then leads quite directly to an explanation of the complex vector requirement.

| have shown, in particular, that the fundamental issue that brings the complex vector
requirement is an issue of freedom versus constraint. The theory represents pairwise
relationships between states of objects by using pairwise relationships between vectors. It was
a key point to recognize that this representation also constitutes a constraint on the
relationship between the two vectors. Consequently, this method of using vectors can only go

so far. Assigning multiple interrelated pairwise vector relationships may not be possible. The
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structure of the vector space may not allow it. So we see that the vector use method faces the
risk of vector space structural limitations. It is in this issue, freedom versus constraint where
the choice of vectors used, real or complex, makes a difference. Complex vectors, quite simply,
provide more available independent variables than do real vectors. More variables translate
into more freedom in the vector pairwise assighnments. It is for this reason, to relax a pairwise
vector relationship constraint, that quantum theory requires complex vectors.

If guantum theory requires complex numbers to relax a constraint situation, then it does
not require them for the other, sometimes suggested, reasons. The complex numbers are not
present in the theory to represent or reflect some complex feature of the observed physical
phenomena. That is, nature is not complex. Similarly, the complex numbers are not present as
a mathematical convenience, ie., to facilitate some mathematical manipulation.

In the dissertation | have made a point to show the complex number issue as a
secondary issue located in the more general context of the theory’s adopted convention for the
use of vectors to represent states. The real issue here and the real insight into the theory is the
recognition of the new quantum principle of vector use. Quantum theory has a different
theoretical task than classical. Quantum theory undertakes to represent physical phenomena
to include probabilistic state transitions. The theory needs, therefore, to mathematically
represent probability distributions. The new use of vectors is a diabolically clever method of
doing just that. To exploit the L? structure of the vector space rather than other features would
be a stroke of genius if done intentionally by a theorist rather than, what seems more likely, by
fortunate historical happenstance.

| hope that you, the reader, have found the discussion of interest. Thank you.
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