Glucose Induces Sensitivity to Oxygen Deprivation and Alters Gene Expression in Caenorhabditis Elegans

PDF Version Also Available for Download.

Description

An organisms’ diet represents an exogenous influence that often yields colossal effects on long-term health and disease risk. The overconsumption of dietary sugars for example, has contributed to significant increases in obesity and type-2 diabetes; health issues that are costly both economically and in terms of human life. Individuals who are obese or are type-2 diabetic often have compromised oxygen delivery and an increased vulnerability to oxygen-deprivation related complications, such as ischemic strokes, peripheral arterial disease and myocardial infarction. Thus, it is of interest to identify the molecular changes glucose supplementation or hyperglycemia can induce, which ultimately compromise oxygen deprivation ... continued below

Physical Description

vi, 125 pages : illustrations (some color)

Creation Information

Garcia, Anastacia M. August 2015.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 48 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Garcia, Anastacia M.

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

An organisms’ diet represents an exogenous influence that often yields colossal effects on long-term health and disease risk. The overconsumption of dietary sugars for example, has contributed to significant increases in obesity and type-2 diabetes; health issues that are costly both economically and in terms of human life. Individuals who are obese or are type-2 diabetic often have compromised oxygen delivery and an increased vulnerability to oxygen-deprivation related complications, such as ischemic strokes, peripheral arterial disease and myocardial infarction. Thus, it is of interest to identify the molecular changes glucose supplementation or hyperglycemia can induce, which ultimately compromise oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, I determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide biosynthesis and antioxidant activity, modulates anoxia survival. Additionally, a glucose-supplemented diet induces lipid accumulation. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified are homologous to human genes that are differentially regulated in response to metabolic diseases, suggesting that there may be conserved gene expression responses between C. elegans supplemented with glucose and a diabetic and/or obese state observed in humans. These findings support the utility of C. elegans to model specific aspects of the T2D disease process (e.g., glucose-induced sensitivity to oxygen deprivation) and identify potentially novel regulators of common complications seen in hyperglycemic and T2D patients (e.g., macrovascular complications).

Physical Description

vi, 125 pages : illustrations (some color)

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 2015

Added to The UNT Digital Library

  • March 4, 2016, 4:14 p.m.

Description Last Updated

  • May 1, 2017, 7:42 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 48

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Garcia, Anastacia M. Glucose Induces Sensitivity to Oxygen Deprivation and Alters Gene Expression in Caenorhabditis Elegans, dissertation, August 2015; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc804958/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .