Precession Electron Diffraction Assisted Characterization of Deformation in α and α+β Titanium Alloys

PDF Version Also Available for Download.

Description

Ultra-fine grained materials with sub-micrometer grain size exhibit superior mechanical properties when compared with conventional fine-grained material as well as coarse-grained materials. Severe plastic deformation (SPD) techniques have been shown to be an effective way to modify the microstructure in order to improve the mechanical properties of the material. Crystalline materials require dislocations to accommodate plastic strain gradients and maintain lattice continuity. The lattice curvature exists due to the net dislocation that left behind in material during deformation. The characterization of such defects is important to understand deformation accumulation and the resulting mechanical properties of such materials. However, traditional techniques ... continued below

Physical Description

xvii, 164 pages : illustrations (chiefly color)

Creation Information

Liu, Yue August 2015.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 67 times , with 8 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Liu, Yue

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Ultra-fine grained materials with sub-micrometer grain size exhibit superior mechanical properties when compared with conventional fine-grained material as well as coarse-grained materials. Severe plastic deformation (SPD) techniques have been shown to be an effective way to modify the microstructure in order to improve the mechanical properties of the material. Crystalline materials require dislocations to accommodate plastic strain gradients and maintain lattice continuity. The lattice curvature exists due to the net dislocation that left behind in material during deformation. The characterization of such defects is important to understand deformation accumulation and the resulting mechanical properties of such materials. However, traditional techniques are limited. For example, the spatial resolution of EBSD is insufficient to study materials processed via SPD, while high dislocation densities make interpretations difficult using conventional diffraction contrast techniques in the TEM. A new technique, precession electron diffraction (PED) has gained recognition in the TEM community to solve the local crystallography, including both phase and orientation, of nanocrystalline structures under quasi-kinematical conditions. With the assistant of precession electron diffraction coupled ASTARÔ, the structure evolution of equal channel angular pressing processed commercial pure titanium is studied; this technique is also extended to two-phase titanium alloy (Ti-5553) to investigate the existence of anisotropic deformation behavior of the constituent alpha and beta phases.

Physical Description

xvii, 164 pages : illustrations (chiefly color)

Language

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 2015

Added to The UNT Digital Library

  • March 4, 2016, 4:14 p.m.

Description Last Updated

  • May 18, 2017, 9:37 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 8
Total Uses: 67

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Liu, Yue. Precession Electron Diffraction Assisted Characterization of Deformation in α and α+β Titanium Alloys, dissertation, August 2015; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc804946/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .