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Trusted computing capability has become ubiquitous these days, and it is being widely

deployed into consumer devices as well as enterprise platforms. As the number of threats is

increasing at an exponential rate, it is becoming a daunting task to secure the systems against

them. In this context, the software integrity measurement at runtime with the support of

trusted platforms can be a better security strategy.

Trusted computing devices like TPM secure the evidence of a breach or an attack. 

These devices remain tamper proof if the hardware platform is physically secured. This type 

of trusted security is crucial for forensic analysis in the aftermath of a breach.

The advantages of trusted platforms can be further leveraged if they can be used 

wisely. RADIUM (Race-free on-demand Integrity Measurement Architecture) is one such 

architecture, which is built on the strength of TPM. RADIUM provides an asynchronous 

root of trust to overcome the TOC (Time of check to time of use) condition of DRTM 

(Dynamic root of trust measurement). Even though the underlying architecture is trusted, 

attacks can still compromise applications during runtime by exploiting their vulnerabilities.

I propose an application-level integrity measurement solution that fits into RADIUM,

to expand the trusted computing capability to the application layer. This is based on the con-

cept of program invariants that can be used to learn the correct behavior of an application. I

used Daikon, a tool to obtain dynamic likely invariants, and developed a method of observing

these properties at runtime to verify the integrity. The integrity measurement component

was implemented as a Python module on top of Volatility, a virtual machine introspection

tool. My approach is a first step towards integrity attestation, using hypervisor-based intro-

spection on RADIUM and a proof of concept of application-level measurement capability.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

The integrity of software plays a key role in minimizing risk from threats of various

kinds. Financial and privacy threats are major concerns of individuals as well as organiza-

tions. Trusted computing based integrity verification platforms can address these concerns.

Trusted platform module (TPM) [16] developed by Trusted Computing Group offer more

security than software-only solutions by adding a layer of trust to the platform. In dynamic

and static trusted architectures, the core root of trust is necessary, on which trustworthiness

of the rest of the components are dependent. TPM has been used as the root of trust in these

systems. On these systems a series of trust measurement events are performed, starting from

the core root of trust to the application layer.

Typically, trusted platforms only provide an environment for measuring trusted be-

havior of applications, but they themselves do not do the application attestation1. The

application layer is more vulnerable to attacks than kernel or hardware layers. A US-CERT

report [37] implies almost 80 % of the security incidents are the result of vulnerabilities

compromising software integrity. My work primarily deals with application level integrity

management.

1.2. Application Behavior

Every application has certain properties that are needed to remain valid at certain

program points during runtime, and those properties are considered to be invariants. Identi-

fying these properties can be useful in understanding application behavior. There are many

different kinds of tools and methods to determine invariants for applications depending upon

the type of application. I used Daikon, [24], [14] an invariant extraction tool, to learn about

the correct behavior of an application. Daikon can obtain invariants from applications writ-

ten in programming languages such as C, C++, Java, Perl, etc. It can also be employed to
1Providing evidence about a system or one of its components
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debug and verify the integrity of C applications, as these are the majority on a typical Linux

platform. A program has to be run through a front end that instruments it and produces

a trace file of a list of variables and their values. Daikon takes the trace files as input and

runs it through its machine learning like algorithms to produce invariants. A training phase

is needed to run applications in various use cases. Various sets of invariants are obtained

in this process. Not all of the invariants produced by the Daikon are useful for security

debugging. Therefore, the obtained invariants have to be consolidated into a required list

depending upon the purpose for which they are being used. Usage of more invariants pro-

duces fine-grained results but incurs considerable performance overhead. The second phase

is the measurement process of observing the application for these properties at runtime. Any

anomaly shall give a hint of a bug or an attack.

The invariants can be broadly classified into two categories: Data invariants [20] and

Structural invariants [21]. Data invariants primarily consist of properties of variables or

logical relationship among variables that must be satisfied during runtime of the program.

Some types are constant invariants, equality (or inequality) invariants, invariants among

elements of an array, etc. Structural invariants are properties of an application based on

program rules. For example, in a stack frame of a function the return address has to point to

the next instruction in a code section of memory, the frame pointer should not change during

the function execution, etc. These properties must remain unchanged during the execution

of any application.

1.3. Integrity Measurement

Observing structural invariants at runtime is a non-trivial task as the properties are

in transient state. Doing this from outside the context of operating system is even more

complex. One existing approach is to run the applications inside debuggers or processor

emulators like VALGRIND. However, this is intrusive and inefficient. Moreover, this is a

host-based approach. If host OS is compromised, the trust of integrity measurements will

be invalid. To overcome this problem I propose introduction of canary variables manually,

which can be linked to structural constraints. I have instrumented applications with canary
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variables and obtained data invariants for their values. The canary (an analogy to canaries

used in coal mines) variables are placed inside every function such that any inconsistencies in

the invariant nature of structural constraints will be reflected in data invariants of the canary

variables. In the training phase, I extracted invariants for a sample application in normal

operation and while it is being exploited. It is evident that the invariant values for canary

is not same in both cases. I would like call my method as Runtime Integrity Verification on

RADIUM or RIVeR, in short.

RADIUM [22] consists of a modified XEN as a bare metal hypervisor on top of physi-

cal hardware with a TPM chip. It has a measuring service Virtual Machine (VM). Upon the

request from an external entity, to determine the trusted status of a VM (termed as mea-

sured VM or target VM) or specific application inside a VM, the measuring service performs

integrity check or rootkit detection. Rootkit detection mechanism was demonstrated in [22].

RADIUM architecture makes sure that measuring service is in a trusted state and its commu-

nication to TPM and from TPM to outside challenger is secure. The integrity measurement

component will be initiated by the measuring service and will perform a runtime check of

an application. The process is explained in detail in the following chapters. The integrity

measurement component is given the invariant data of the application collected during the

training phase on a clean machine. The integrity measurement component compares the

runtime values against their trusted invariant values and decides whether the application is

compromised or not.

Getting access to virtual machine memory is needed for integrity monitoring. I used

LibVMI [23], a memory introspection library for XEN to accomplish this task. I also used

Volatility [39], a memory forensics suite for further analysis of memory access for violations.

The memory image of the application is probed for invariants with the measurement com-

ponent and compared with the invariant values obtained during the training phase. If the

values are different, it indicates that the application has a bug or an attacked has happened.

As the integrity verification is initiated and performed on Measuring VM, which is in trusted

state, the test results are also trusted. Even if the application and measured VM are attacked
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by a malware or rootkit, they cannot hide their presence from memory at runtime. Memory

introspection is a commonly used technique to find rootkits hiding from operation system

and other security mechanisms that work at both system and user level.

Once the application integrity is verified, the measurement component identifies the

trusted state as good or compromised. If it is good, it saves corresponding value to TPM.

If the application is compromised, the trusted state becomes "compromised." Further, the

constraint that is violated is also saved in TPM along with its state. Once Trusted State

is written to TPM, the measurement component communicates the same details to external

challenge via the secure protocol.

1.4. My Contributions

(1) Application data invariants to observer structural invariants:

As hypervisor level measurement of structural constraints is not an efficient pro-

cess, I used data invariants of stack local variables to learn application behavior,

specially the stack. These invariants were later used for detection of runtime in-

tegrity violations of application stack.

(2) Integrity verification of application at hypervisor level:

While many integrity verification mechanisms work at operating system level,

I propose a solution that works at hypervisor level. This makes the integrity ver-

ification a secure and trusted operation. I implemented my solution on RADIUM

architecture (Srujan, Tawfiq et.al.), and have extended RADIUM’s dynamic mea-

surement capabilities to the application level.

1.5. Thesis Organization

The rest of this thesis document is organized into following chapters: Chapter 2

discusses relevant background concepts and presents adversary model, data and structural

invariants, program instrumentation, integrity verification and attestation protocol, and lim-

itations. Chapter 3 explains prototype implementation. Chapter 4 is on related work. Con-

clusion of this work, and future work are discussed in chapter 5.
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CHAPTER 2

RUNTIME INTEGRITY VERIFICATION

2.1. Application Integrity

Integrity of an application [10] can be defined as the assurance that an application is

not modified or accessed in an unauthorized way. Integrity is closely tied with trustworthiness

of an application and any integrity violations lead to the breach of trust. What makes an

application untrusted and how do we identify it? The goal of my research is to try to

answer these questions. A software application is a piece of software code written in a

programming language. Integrity violation of application can be a result of modification of

the application code or its objects in a static or dynamic way. Static attacks include an

attacker changing the application code residing on secondary storage (e.g. hard drives) in

order to gain unauthorized access to data.

Figure 2.1. Stack Overflow

Modifying memory objects of applications at runtime is a typical example of a dy-

namic integrity attack. An integrity violation may also lead to the breach of Confidentiality

and Availability [10]. Usually, attackers exploit vulnerabilities in applications and perform
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runtime attacks to modify the application behavior. This may give privileges to run arbitrary

code on a machine or make the system dysfunctional and may lead to access to system re-

sources and user data. Buffer overflow, format string attack, and double free attack are some

of the well-known attacks. These memory corruption attacks exploit respective vulnerabili-

ties caused by lack of input data validation. A poorly designed application may use certain

library functions, which does not validate input before writing it to memory. Subsequently

command or instruction is copied into memory and executed, giving adversary control over

application. Return address overwriting is a popular way of executing shell code. Typically,

the return address is overwritten with some other value and an arbitrary code is placed in

the memory location pointed by the new return value. The result is an application integrity

violation. Figure 2.1 shows a buffer overflow attack on the stack. The stack grows from a

higher address to lower address. Local variables declared as character arrays are used to

write excess content overwriting return address, which lies next to variables on the stack.

Address Space Layout Randomization (ASLR) [35] and StackGuard [13] are some of

the existing mechanisms to prevent attacks on memory objects. These have become standard

security practices in major Linux distributions like Ubuntu, Red Hat, Debian, etc. In address

randomization, various sections of program like stack, heap, executable code, etc. are laid out

randomly on memory, making it difficult for an attacker to calculate possible address location

for memory objects such as return address or saved frame pointer. If address randomization

is not enforced, the stack allocation for an application is usually the next available location in

memory and it is easy to compute within few trials. StackGuard places canary word on stack

next to return address, to detect overwriting of return address by a buffer overflow exploit.

Runtime memory layout for the Linux application’s Executable and Linkable Format (ELF)

[12] program is shown in figure 2.2.

The code section stores machine level instructions of an application. The stack is for

storage of variables of functions, arguments passed, and other corresponding memory objects

like return address, saved frame pointer, etc. The heap section is for dynamic memory

allocation by "malloc" and other such functions. Exec Shield [28] is an executable space
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protection mechanism, which prevents the execution of an arbitrary code place on writable

sections of memory such as the stack and heap. This cannot prevent from overwriting the

memory, but prevents an executable code written to the stack or heap. There are limitations

Figure 2.2. ELF Memory Layout

to the above-mentioned protective mechanisms. For example, an intelligent attacker can

still be successful, although with reduced probability, in calculating the memory address of

objects on a stack frame. Practically, it is impossible to secure against all attacks. Some

surveys like [40] have shown that above-mentioned protective mechanisms could not prevent

all types of attacks. Developers tend to use non-safe functions because of the flexibility they

provide. The vast majority of open-source software is developed as a collaborated effort

of large groups of programmers. In this context, it is not possible to eliminate bugs in

applications even with the alternative safe library functions (for example strncpy in place

of strcpy). In addition, many libraries and applications were developed a long time ago, in

which the core part of the code is unchanged. New vulnerabilities have been discovered in this

software. Recently discovered Heartbleed [5] vulnerability in SSL library is an example. So,

securing integrity violation evidence is critical after an attack happens for forensic analysis.

Trusted computing is a plausible solution for this software integrity problem.

Trusted platforms depend upon root of trust to achieve trustworthiness. TPM pro-

vides this root of Trust for RADIUM at the hardware level. At the time of system boot, the

trust is propagated to the application level through a chain of trusted state measurements

at BIOS/Firmware level, Kernel level, and application level. This ensures that the integrity

measurement process itself is protected and trusted.
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2.2. Assumptions and Threat Model

The Virtual machine (VM) on which applications run and use for business activities

are called measured VM or target VM, and the VM, which performs attestation at runtime,

is measuring VM or measured service. Both the measured (target) VM and the measuring

service run on a Xen-based hypervisor and the whole architecture along with hardware is

termed as RADIUM. The RADIUM server on which the attestation is performed is assumed

equipped with a TPM. At the time of machine startup, Core Root of Trust Measurement

(CRTM) is used for trusted boot to ensure that the hypervisor is booted in trusted state.

BIOS is where CRTM hardware measurement starts and the chain of measurements propa-

gates from hardware to measuring service. RADIUM uses Asynchronous Root of Trust for

dynamic measurements of hypervisor and measuring service each time it receives an attesta-

tion request. OS of the target VM can still be vulnerable to runtime attacks. Static integrity

of an application is measured before launching it using cryptographic hash functions. Besides

using for integrity evidence protection, TPM is also used for the secure attestation protocol

for communication between challenger and measuring service. Application Invariants have to

be extracted beforehand on clean and verified virtual machine with a configuration identical

to that of target VM.

Figure 2.3. Threat Model
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The adversary is assumed to have no physical access to RADIUM, so the attacker

cannot perform any hardware-based attacks. I also assumed that the attacker does not

have access to the user level privileges to measured VM but can launch remote attacks

on a networked application. With a well-designed buffer-overflow attack on a vulnerable

application, the adversary can gain root level privileges on the target VM. Even though the

VMs are partitioned and isolated, the adversary may gain access to other VMs and launch

network based attacks on target VM. The adversary may try to subvert the communication

between a challenger and measured service. The attacker may also perform off-line attack on

target VM or application by modifying binaries. Attacks on RADIUM are not in the scope

of this research. They are discussed in detail in [22].

2.3. Daikon and Application Invariants

Daikon developers defined invariant as "a property that holds at a certain point or

points in a program" [14]. In general, invariant is a condition that has to be satisfied during

program execution. The context of execution influences invariant definition at a program

point. Based on the source of invariants they are calcified into two types: 1. Data Invariants

and 2. Structural Invariants [20]. Data invariants are properties of individual variables or

(logical or mathematical) relationships among a group of variables. Examples are constant,

original, equality/inequality invariants. Structural invariants are rules that have to be true

during execution. The definitions of the rules are generic in nature and they depend upon

programming language and execution environment. For example, return address of the

stack should always point to a code section of memory and frame pointer of the stack should

not change during function execution. Though the invariants reflect program behaviors at

specific times, not all of them are documented and even developers may not be aware of

their existence.

The invariants are of special interest when it comes to security debugging, vulnera-

bility identification, integrity verification, and understanding program control flow. If one

or more invariants of a program are not holding true then these invariants are said to be

violated and this indicates an anomaly in application behavior. An attack could be the rea-

9



son behind this violation. This implies the invariants can be used for integrity verification.

Nevertheless, the challenge is to define all the set of invariants the program can produce.

In addition, invariant conditions may vary or new invariants may be produced for different

execution instances of the same application. Some invariants may not occur for certain exe-

cutions. Not all invariants of a program can be useful for debugging or integrity verification

as many of them are trivial or cannot affect the core nature of the application, and they will

be useless. So selecting right invariants is key for debugging or measurement

Besides the dynamic invariants, one can also define static invariants for applications,

which should remain unaltered when program is off-line. An example can be the binary

and configuration files of an application. These reside on magnetic or solid state disks in a

digital format defined by the file system of the drives. The integrity of these files can be a

simple measure for static invariant nature of the system. A cryptographic hash value of an

executable binary file that was calculated when it is in a known trusted state can hold this

static invariant nature. By comparing the current value with trusted value, static integrity

can be measured. Static invariant measurements complement dynamic measurements.

There are many tools and methods to extract invariants for applications. For my

research, I used Daikon Invariant detector because of its ability to get invariants for applica-

tions written in C and C++. It is one of the first tools developed for this purpose. Daikon

uses an algorithm similar to machine learning to obtain likely invariants over an execution

instance of a program. Daikon needs a front end for C and C++ applications while it does

not need any for Java based programs. I used the recommended tool, Kvasir for this purpose.

Kvasir is a script which runs on top of a processor emulator called Valgrind [29]. Valgrind

runs applications inside its emulated software processor. Valgrind can interrupt a program

while it is executing and can read its variables and memory objects. Kvasir uses this feature

of Valgrind and produces a trace file with details of variables at function exits and entries.

Sample trace values are shown in Table 2.1

The trace values are written to a file with an extension of ".dtrace". These values

are fed to Daikon, which then run the variable data in its machine-learning algorithm and
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produce actual invariants. The trace values can be directly given to Daikon without the

intermediate step of writing it to a file. The dynamic invariants of an application can be

classified into two types: Data invariants and Structural invariants [20]. Program data invari-

ants deal with properties and relation between the variables of an application while structural

invariants are constraints that have to hold good on meta-data i.e. memory objects of data:

stack, heap, etc. Daikon can only extract data invariants while many popular attacks violate

structural invariants [21]. Buffer overflow on stack and heap are some of these. In order to

obtain meaningful constraints from applications for these meta-properties I used the classical

method of instrumenting application at selected program points. I placed canary variables

inside functions as local variables such that they can be linked with structural properties.

In this research, data invariants of instrumented canary values were used for detection of se-

lected vulnerabilities: buffer overflow and format string vulnerabilities. The data invariants

are connected to the return address constraint. A detailed list of structural constraints can be

found in [21]. Table 2.2 gives a list of invariants from Daikon corresponding to "dtrace" val-

ues of variables. These were extracted from Prozilla, a download accelerator. The "dtrace"

definitions are properties of invariants defined by Kvasir. Corresponding variable values at

entry and exit of the function message() are given in column two and three, respectively.

The last column gives some of the observed invariants of the variables.

Some more invariant relation between variables canary and connections are listed in

Chapter 3. The list of invariant definitions given in Daikon manual [14] is not exhaustive

and new definitions can be added to the list. Daikon was originally developed for extracting

invariants for Java application. It has been extended to get invariants for programs that are

written in C, C++, Perl, etc. with the help of various front-ends, which produces trace files.

Daikon produces invariants taking these trace files as input data.

2.4. Training Phase

As discussed in the previous section, the invariants are execution specific. Therefore,

to obtain all possible invariants, the applications have to be executed in all possible use cases.

The training phase involves the process of identifying these use cases and configuration
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Table 2.1. Daikon Invariants

Dtrace

Definitions

Dtrace (at message()

function entry)

Dtrace (at message ()

function exit)
Daikon Invariant

variable ::canary

var-kind variable

rep-type int

dec-type int

1000 1000

::canary == 1000

(entry)

::canary == 1000

(exit)

::canary == orig(::canary)

(exit)

variable ::connections

var-kind variable

rep-type hashcode

dec-type connect*

0x0

1

0x0

1

::connections[].http_sock

elements <::canary

(exit)

variable ::rt

var-kind variable

rep-type hashcode

dec-type runtime

::rt

0x8064b80

1

::rt

0x8064b80

1

::rt has only one value

(entry)

::rt == orig(::rt)

(exit)

variable ::rt.num_connections

var-kind field num_connections

enclosing-var ::rt

rep-type int

dec-type int

::rt.num_connections

4

1

::rt.num_connections

4

1

::rt.num_connections == 4

(entry),::rt.ftps_mirror_req_n

<orig(::canary)

(exit)

options and obtaining invariants for them. The more use cases the training phase covers

the complete the invariants obtained. I have manually identified frequently used cases and

configuration options and used a script to produce invariants. These test cases are vulnerable

to attacks at run time.

To obtain trace values, the application needed to be compiled with the dwarf-2 de-

bugging format enabled. Usually, application binaries used in a production environment are

not compiled with debugging format enabled as it creates overhead, so access to source code

is required to use the application with Daikon. I used Prozilla [36], a tool for downloading

files from web and FTP servers and Ghttpd [30], a lightweight web server daemon to obtain
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invariants for the applications to do bug detection and integrity analysis, while the applica-

tions are exploited with shell code to gain root privileges. These applications have known

vulnerabilities [2] [3] [1], which I exploited by using publicly available exploit programs from

[8], [7] and [32]. Invariants were collected when the application was running under normal

execution and when they were being exploited. I compared the results to confirm attacks on

the applications. Various use cases and possible executions corresponding to these use cases

Table 2.2. Instances and Invariant Count for Prozilla and Ghttpd

Application Use case
Instance

Count
Vulnerability No. of Invariants

Prozilla 1.3.7
HTTP file download 6 Stack overflow 18

FTP file download 4 Format String 8

Ghttpd 1.4 Web Page access 4 Buffer overflow 12

are tabulated in Table 2.2. The use case details are determined from their documentation.

I collected invariants for these use cases with some possible configurations and situations.

These cases are: limited bandwidth, single thread, different port and interrupted download.

Number of invariants obtained for the tested vulnerabilities are also presented in Table 2.2.

Daikon can be customized to produce invariants for specific function calls, variables, and

types of invariants. A complete list of options can be found in the Daikon user manual [14].

Constant invariant and equality invariant are of interest to me, which were used for detection

of the simulated attacks. I also selected vulnerable functions (ex: message() in Prozilla) and

produced limited number of invariants, so their analysis and runtime verification would be

less tedious and efficient.

Structural constraints are programming rule-based in nature, so data invariants ob-

tained by Daikon are not helpful in detecting attacks that violate structural constraints.

The canary values were introduced in functions as local variables and assigned to them with

global canary value. The global canary has to satisfy "constant" invariant and local ca-

naries have to satisfy "equality" invariant. I have analyzed the source code by debugging it
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and identified the functions, which has known vulnerabilities. The process of placing new

statements into code is known as instrumentation. In general, the instrumented statements

do not interfere with application behavior or their control flow. It is mainly used to debug

the application for logical flaws and for understanding the control flow of the application

code. The performance overhead created by the instrumented statements would be negli-

gible. StackGuard instruments applications with canaries at compile time to detect stack

corruption at runtime. In this research, I demonstrated a way of using RADIUM’s trusted

measuring service for runtime integrity verification. I discussed detailed merits and demerits

of my work at the end of this chapter.

The training shall be conducted in a trusted environment and the invariant data shall

be preserved for later usage at runtime. For this research, I extracted invariants for both

the applications on a clean Ubuntu machine with identical configuration of the VM used to

do measurements.

2.5. Radium Architecture

2.5.1. Background

TPM is a tamper resistant integrated chip that can be used to extend cryptographic

security setup for creating a dynamic trusted measurement architecture. Existing architec-

tures are vulnerable to TOCTOU (Time of check to time of use) and denial of trusted service

[22] attacks. To solve these problems, RADIUM architecture uses asynchronous launch of

measuring service.

A TPM is mounted on the motherboard along with other chips, and it uses a Low

Pin Count (LPC) bus to communicate with the microprocessor. The TPM can store trusted

measurement values and cryptographic keys (which it generates) for secure communication

with a challenger who requests an attestation. It stores these values in special registers

called Platform Configuration Registers (PCRs), which are 160-bits in size. On x86 PC

architecture, a TPM has 24 PCRs (0,1,...,23) and specific range of PCRs store measurements

related to specific system components: PCRs 0-4 store BIOS state, PCRs 5-7 store boot

loaders. PCRs 8-15 are for OS measurements and are called static PCRs. PCRs 17-22 are
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dynamic in nature, which store runtime attestation measurements. TPM performs extend,

binding, sealing, and quote operations. "extend" is the only write operation PCR performs.

The new value is hashed along with existing value and stored. "binding" operation is used

to encrypt the measurements with an asymmetric pair of keys (storage key) with the private

part of the key permanently locked inside TPM. The sealing operation ties the platform

state with the binding operation making the TPM trusted storage. Platform states can be

verified with "quote" operation. The quote is used to attest status of the target (VM or

application) to an external challenger. It provides the challenger with a signed measurement

value stored in the PCRs.

Figure 2.4. SRTM

Static Root of Trust Measurement (SRTM) and Dynamic Root of Trust Measurement

(DRTM) are existing trusted architecture solutions that use TPM capabilities for integrity

measurements. In both the solutions, the TPM serves as hardware CRTM, the starting point

of trust. The measurements are done in a chain of events: CRTM-> BIOS-> OS Kernel->

Application. Each of the components represented in this chain measures the next component

by computing a hash value and extending it to the TPM’s static PCRs. In SRTM’s chain,
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trusted states can only be computed at boot time. So, every time an application has to be

launched in trusted state, the system has to be rebooted to start measurements from CRTM.

In DRTM, a special setup instruction is used to start trust measurement. The setup

instruction is the cue for the processor to suspend running processes and start Measured

Launch environment (MLE), which is an isolated environment. Optionally, Authenticated

Code Module (ACM) can be used as the intermediate measurement component between

setup instruction setting and MLE. In that case, CRTM (TPM) measures ACM and ACM

measures MLE before it will be started with protected virtualization. As MLE is isolated,

it is secured from attacks and trusted. DRTM extends the measurements into the TPM

starting with PCR 17. As the name suggests DRTM can be invoked dynamically at runtime

along with boot time invocation. The measured boot is similar to SRTM but only more

secure with virtualization protection.

AMD Secure Virtual Machine (SVM), Intel Trusted Execution Technology (TXT),

Measured Boot, and Trusted hypervisor are some of the technologies that use SRTM and

DRTM. SKINIT AND GETSEC are instructions used by AMD SVM and INTEL TXT

respectively to launch DRTM environment. AMD SVM does not use any ACM while INTEL

TXT uses ACM. Trusted Grub [6], Oslo [19], and tboot [11] are some examples of measure

boot service. Terra [15] used cryptography to create isolated VMs, and it is a trusted

hypervisor type of solution. Policy-based access control for hypervisors is another kind of

trusted platform solution.

2.5.2. ARTM

DRTM, virtualization technology (VT), access control policy, and measuring ser-

vice(s) are core components of RADIUM. RADIUM uses the on-demand measurement ser-

vice, a novel method, to handle TOCTOU ATTACKS. Applications or measured VMs can

be launched in a trusted environment any time through the Asynchronous Root of Trust for

Measurement (ARTM). This is an asynchronous way of using MLE, which contrasts with the

DRTM-only launch, in which the hypervisor and MLE have to be launched synchronously.

Hypervisor is the root of trust in ARTM. As hypervisor’s footprint is much smaller com-
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pared to kernel of typical commodity operating system, this root of trust can be considered

equivalent to hardware-based CRTM.

Type-1 hypervisor is the one, which runs on top of hardware that forms the trusted

base for RADIUM. This is also called bare metal hypervisor. It creates an isolated envi-

ronment for virtual machines to run on top of it. Hypervisor can run operating systems as

whole, modified, or even applications alone. Modified operating systems are employed to

achieve better functionality. Access Control Policy, a module of hypervisor, controls the VM

and application communication in a secure fashion.

RADIUM can host both trusted and untrusted environments. To prevent TOCTOU

attacks a trusted environment is put to use immediately after it is measured and launched.

On the other hand, a VM launched without measurement is considered an untrusted envi-

ronment. Hypervisor uses unique UUIDs to identify environments. The measuring service

will be measured and launched whenever a VM or an application is needed to be measured.

RADIUM supports multiple measuring services simultaneously. Measuring services may be

used to look for the presence of a kernel rootkit or measure run-time integrity of an ap-

plication. To perform any measuring task, the measuring service will be given necessary

permissions through access control policy defined in ACP module in the kernel.

Figure 2.5. RADIUM Architecture
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2.6. Runtime Integrity Verification

Monitoring applications during runtime is a challenge because, in the transient state

the application memory objects undergo continuous change. The observation has to occur

virtually in no time. Many times the attacks are also transient and may not last long or

may not leave trails after they are done. That is why runtime monitoring has been a very

difficult task to perform effectively. In section, 2.1 of this thesis, some traditional tools and

methods to detection some runtime attacks were discussed. These are operating system and

compiler level mechanisms. StackGuard and ProPolice are two examples. These tools use

compile-time instrumentation to detect attacks on the stack. The stack can also be made

non-executable [28] so that any malicious code placed on it are prevented from execution thus

preventing the attacker from obtaining access to the system. Some other tools instrument

applications dynamically at runtime for monitoring the stack.

In the earlier discussion about Daikon, I mentioned that it produces invariants at

function entries and exits. Therefore, the runtime analysis of invariants has to occur between

the function call and function exit. When a function is called, a few instructions are executed

for the function to setup. The instruction allocates memory for the stack and saves (previous)

frame pointer to the stack. This is called a function prologue. A sample prologue instruction

is given in Table 2.3. The "ebp" and the "esp" refer to CPU registers. They hold the values

for base pointer and stack pointer, respectively. Stack is observed once the function prologue

Table 2.3. Function Prologue

Address main program Instruction

0x8048360 main+0 push ebp

0x8048362 main+1 mov ebp, esp

0x8048365 main+5 sub esp, 0x00000248

0x8048368 main+8 and esp, 0xfff00000

0x804836a main+11 mov eax, 0x0

0x804836f main+16 sub esp, eax
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is set up. The subsequent instructions write data to stack, overwrite some objects, delete

some of them, and so on and so forth. This process continues until the function is returned.

Therefore, the changes made to stack has to be recorded and analyzed for violations. The

application execution takes place in the target VM that is being measured. The measurement

has to be done from the measuring service VM.

I propose to use Volatility [39], a memory introspection tool to do runtime introspec-

tion of the target VM memory for violations. Volatility has many plug-ins written in python

to perform various introspection and forensic tasks. Memory introspection tasks can be per-

formed dynamically on a live machine while it is running or statistically on a memory dump

that was previously extracted. Originally, Volatility is a forensic tool used to analyze the

memory dump. However, my work requires introspection to be performed on a live VM mem-

ory from outside the target VM. Volatility needs LibVMI, a virtual machine introspection

library that provides access to the target VM memory. Some of the Volatility modules used

in this research were: linux_pslist (to print list of processes), linux_memmap (to

print memory map), linux_proc_maps (to print process memory map), and map_dump (to

extract data from application memory dump. The goal of the experiment was to detect

the attack or anomaly as soon as possible, before the transient state of application destroys

attack evidence. Extraction of frequent memory snapshots and analyzing them on they fly

at the speed of application execution is not possible. The application has to be paused to

get the process’ memory dump. This helps minimizing the TOCTOU condition resulting in

better integrity verification. . There would be some time lapse from the time of attack to

the time of detection. This work is based on trusted computing, whose main purpose is to

find integrity verification in trusted fashion and does not offer protection against threats.

The introspection library LibVMI uses measuring service to access the target VM

with the help of hypercalls. A hypercall is a system call equivalent of hypervisor. Measuring

VM makes hypercalls for LibVMI to make memory page snapshots. Hypercalls’ access is

managed by the Access Control Policy. So, the memory access of target application through

measuring service is secure.
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I have developed a Python script for parsing the memory snapshots of the application

for invariant data. The integrity measurement procedure was tested for its efficiency on

Prozilla, Ghttpd, and Nullhttp which have known vulnerabilities, as discussed in section

2.4. As I mentioned earlier, all the functions were instrumented with canary values and

the application was compiled. The invariants specific to the injected canary variables were

obtained. The data was input to integrity monitoring component before the application

was launched. Once I exploited the application with an input with shell code and then the

monitoring component detected buffer overflow attack on a string buffer used in function

message(). The next section outlines the procedure of sealing evidence in TPM and the

attestation procedure. Below is a brief outline of parsing program algorithm:

i n v a r i a n t L l i s t = [ input ] ;

whi l e ( app running )

{

currentFuncName = getCurrentFunct ion ( ) ;

ent ryL i s t , e x i t L l i s t = funcL i s t ( message ) ;

// [ framePointer , returnAddress , canary ]

i f ( funct ionEntry ){

i f ( s tackCurrent == ent ryL i s t )

s t a tu s = true ;

e l s e

s t a tu s = f a l s e ;

}

i f ( f unc t i onEx i t ){

i f ( s tackCurrent == ex i t L i s t )

s t a tu s = true ;

e l s e

s t a tu s = f a l s e ;
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}

}

TpmSeal ( ) ;

Atte s tCha l l enge r ( ) ;

2.7. Integrity Protection and Remote Attestation

Once the evidence of integrity is collected by RIVeR, it will be saved to the TPM

with an "extend" operation. An encryption key is used to seal data into the TPM. As

the hypervisor is trusted, the encryption key generated by it will be immune from attacks.

Hypervisor handles all communication with the TPM for measuring service. Measuring

service sends the measurement details to hypervisor via callstack API. Hypervisor extends

the measurement PCR 23 of the TPM. A challenger may request for attestation any time.

The TPM replies with the latest available measurements.

The communication process of attestation has to be protected from network attacks.

So, a TPM-assisted secure protocol is used for communication between TPM and challenger.

TPM supports authorization protocols like OIAP, OSAP, and DSAP [16]. Challenger re-

quests the TPM for measurements with "quote" operation, which is accessible to challenger

through the TCP/IP network. The challenger sends a random nonce along with a "quote"

request. Attester replies with nonce, PCR value signed with AIK. Basic structure of the

TPM attestation is shown in figure 2.6. The AIKs are generated with an RSA scheme.

TPM is known to be secure from various types of attacks like replay attack, masquerading,

and tampering.

After receiving the reply to quote (measurements) from the RADIUM, challenger

examines the integrity evidence. If the measurements show the target is trusted, challenger

may continue accessing the trusted services on RADIUM.

2.8. Shortcomings and Limitations

A part of my project is dependent on Daikon. Therefore, some shortcomings of Daikon

were also inherited into my work. The main limitation of Daikon is it lacks the capability of
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Figure 2.6. TPM Attestation Protocol

deducing structural constraints. Manually instrumenting application is not a perfect solution

to catch buffer overflow, but using random canaries is closest to the best available solutions.

Direct observation of all the structural constraints can be a more efficient solution.

Data invariants for instrumented code does not reflect all types of structural con-

straints. In addition, this method cannot infer invariants for complex data structures like

linked lists. Another limitation is the incomplete set of dynamic properties. If an attack

violates invariants that are not predefined, they cannot be detected. There is also the theo-

retical possibility of false positives caused by incorrect invariant definitions; although, I have

not observed this in the attack tests I have conducted. Integrity measurement component’s

(RIVeR) primary limitation is performance. The application (or target VM) needed to be

paused before taking a memory snapshot of its stack frames, which imposes some perfor-

mance overhead and increases total runtime. As this is runtime measurement, some transient

attacks may go unnoticed before they are caught.

2.9. Chapter Summary

In this chapter, I have presented methodologies for defining proper behavior of an ap-

plication by extracting invariants. For observing structural constraints, I have instrumented

the application used for testing. This work is aimed at proving integrity measurement ca-

pabilities of RADIUM at the application layer. The integrity measurement tool, RIVeR, is

primarily built to fit into RADIUM. I made use of existing introspection technologies like

LibVMI and Volatility to do the runtime measurements of application. The integrity evi-

dence thus obtained is handed over to TPM by measuring service and further shared with
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challenger from outside using a secure protocol. The scope and limitations of my research

are also presented in this chapter.
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CHAPTER 3

IMPLIMENTATION

Implementation of my project involves the following steps: 1. Setting up RADIUM

with trusted environment. 2. Extracting invariant for application on a clean target VM

on RADIUM. 3. Security debugging with the help of the invariants. 4. Building Integrity

measurement component and testing its efficacy.

3.1. RADIUM Setup

RADIUM was implemented on Xen, a type-1 bare metal hypervisor. Xen 3.2 kernel

is used for this purpose. Both measuring service and target VMs are using Ubuntu 12.04.

The measuring service was implemented as DomU 1 , while Dom0 2 was also using Ubuntu

12.04 OS. The hardware comprised of an Intel I5 processor (4th Generation) with VT-x,

VT-d, and TXT enabled and 4096 Megabytes of RAM.

The setup of RADIUM follows a series of steps in order to put various components

in place. Xen Security Module (XSM) based Access Control Policy is used by RADIUM.

The Xen kernel has to be compiled with customized ACP before installation. Trusted boot,

the launch of measuring service, target-VM measurement, and runtime attestation are high-

level steps of the measurement process. During Trusted boot, when the physical machine is

started, BIOS performs POST, and then control will be handed over to boot loader (tboot)

[11] is used in RADIUM), which then invokes GESTSEC [SENTER], a special instruction

of DRTM. It launches Intel SINIT ACM and TXT hardware. Next, the hypervisor (Xen) is

measured and launched. The DRTM measurements are stored in PCRs 17 and 18 of TPM

this command:

tpm_sealdata −z −I s e c r e t . key −o . / s e c r e t . blob −p17 −p18

1DomU- Unprivileged domain, with no access to hardware
2Dom0- Domain 0 or control domain, which is started first and manages DomUs
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An encryption key was generated in Dom0, used for "seal" operation, and was sealed

by the above command. The key was used for the first and subsequent launches of the

measuring service. The unseal operation has to be used to obtain the key from TPM.

tpm_unsealdata −I . / s e c r e t . blob −o s e c r e t . key −z

The success of the unseal operation is based on the state of the platform. If the state

is untrusted, it is not possible to unseal the key and launch the measuring service. The

measurement of target application will be stored in PCR 19 of TPM. As a physical TPM

was used in RADIUM, only one measuring service could be launched at a time. A virtual

TPM [9] can be used to overcome this limitation, which allows multiple simultaneous mea-

surements using single physical TPM. Figure 3.1 shows prototype implementation of the

integrity measurement.

The measuring environment provided by RADIUM has the advantage of better un-

derstanding of the measured VM. A variety of measurements can be performed on top of

RADIUM. Kernel level measurements were demonstrated on [22] that outlines a methodol-

ogy for detection of kernel rootkit on target VM. My work is application level measurement,

in which I assessed the integrity of application at runtime. It complements the measurement

performed in [22]. Before attesting application at runtime, the trusted behavior of the ap-

plication has to be defined. I used Daikon, an invariant extraction tool to define this trusted

nature of applications at normal executions.

3.2. Invariant Extraction

Daikon is developed in Java, so it needs a Java execution environment to create

invariants. Kvasir is the front-end tool for C and C++ applications that is used to extract

trace values. Kvasir is built as a skin on top of Valgrind, a processor emulator used for

debugging. Valgrind dynamically instruments applications at runtime to print all values of

variables. Kvasir constructs a trace file with the help of Valgrind output. Valgrind has various

modules for various tasks. Kvasir uses the "memcheck" module for profiling of applications.
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Figure 3.1. Integrity Measurement Prototype

For Kvasir and Daikon to work on an application, it has to be compiled with the dwarf-

2 debugging format in the GCC (Gnu C Compiler) [4]. GCC version 4.6.3 was used for

compiling all the applications. The following command was used to extract trace values:

kvas i r−dtrace −−ppt−l i s t − f i l e=input . ppts \

−−dtrace− f i l e=proz . dt race . / proz l o c a l h o s t :80/ index . html

The term "proz" in the above command represents the ELF binary of the application Prozilla.

The application has to be executed on command line in normal fashion and must be preceded

by a "kvasir-dtrace" command along with required command line options. Once trace values

are obtained, the next step is to run the trace file through Daikon to get actual invariants.

java daikon . Daikon −−conf ig_opt ion \

daikon . de r i v e . Der ivat ion . d i sab l e_der ived_var i ab l e s=true \

proz . dt race 2&>1 | t ee new . inv

Once the above command is executed, Daikon runs the trace values through its machine

learning algorithms and writes likely invariants to a file. A set of such invariants were

obtained for various use cases (Table 2.2) of Prozilla and Ghttpd.
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3.3. Debug Testing with Daikon

textttDaikon can also be used for debugging and vulnerability testing of applications.

I tried to find the function with buffer overflow vulnerability on Prozilla using Daikon. The

procedures of Prozilla were instrumented with a canary value. I created a global value, called

it "canary," and assigned it a random value (1000 in my example). A local variable called

"local_can" was also created and assigned the same value as that of global "canary". This

introduction of canaries produced direct invariants: equality and original. This is printed as

[::canary == orig(::canary)]. This invariant has to hold true at function exit. This invariant

occurs in a few functions; message() is one of them, which has the actual vulnerability in

library function "fprintf", which doesn’t check bounds while writing data. Some invariants

were also derived based on the relation of the canary with other variables in the program.

There were many more "invariant relationships" among other variables as well, but they are

not all in the scope of the vulnerable sections of code. Below is a list of canary invariants,

defined in Daikon’s output format. Connections[] is a data structure that holds information

about the total number of connections made by Prozilla.

: : connect i ons [ ] . remote\_bytes\_received e lements < : : canary

: : connect i ons [ ] . hs . cont l en e lements < : : canary

: : connect i ons [ ] . hs . accept \_ranges e lements < : : canary

: : connect i ons [ ] . hs . s ta t code e lements < : : canary

: : connect i ons [ ] . t ry \_attempts e lements < : : canary

Exploit code was compiled and run on a server, which acts like a web or FTP server, accepting

file download requests from Prozilla. While it tried to download a file from this malicious

server, the server exploited the vulnerability on message() procedure, overwrote the return

and other elements on function stack, wrote a shell code stack, executed it, and gained root

to shell. Prozilla had been run inside Kvasir while it was being exploited, and trace values

and invariants for the same were obtained. As expected, the invariant file, missing invariants

for canary values as the function, never returned properly. It gave the clue of violation
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occurred in the function. Further investigation with GDB (GNU Debugger) confirmed the

same.

3.4. Integrity Measurement Component

Integrity measurement at runtime is a two-step process: memory acquisition and pars-

ing. Memory acquisition is the critical step and it is nontrivial. It should not interfere with

application execution. If this is not carefully done, the acquired memory will be corrupted,

making the whole effort a futile exercise. I setup RADIUM server with LibVMI, the memory

introspection library for Xen and KVM. It provides API for reading from and writing to a

virtual machine’s memory. I used volatility on top of LibVMI to run the integrity analysis.

Volatility takes the memory dump of a system as input and performs various introspection

operations on it. With LibVMI API, Volatility can run the analysis of a live VM’s memory.

Volatility needs to have a created profile of the OS kernel memory. The profile is a zip file

of kernel data structures and debug symbols, used to identify critical data in the physical

memory and parse it.

As an initial step, I tried to observe integrity for stack constraint violations, specif-

ically return address constraint. In chapter 2, I explained how I instrumented applications

and obtained data invariants connected to the return address constraint. I used a simple

method of obtaining a memory snap shot of the process at function entry and right before

return. Using a parsing script, the values on the stack (local variables, arguments, frame

pointer, return address, etc.) were extrapolated and verified against invariant data (variable

data from training). Before starting the target-VM, the invariant data was input to the

measurement component from a file. textttLinux_pslist command was used to find the PID

of the application (Prozilla). Linux_proc_maps and linux_mem_maps commands were

executed on the VM to obtain process memory map. From memory map the address range

of the stack of application was identified and extracted that part of the memory as a raw

dump. These commands were run as a part of parsing script. A list of commands in exact

syntax is listed below.
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$sudo python vo l . py −−p r o f i l e LinuxUbuntu1204x86 l i nux_ps l i s t − l

vmi://<Vm name> | grep proz

$sudo python vo l . py −−p r o f i l e LinuxUbuntu1204x86 linux_proc_maps − l

vmi://<Vm name> −p <PID>

To obtain memory, the process has to be halted to avoid corruption of memory dump. This

would induce some performance overhead, but it is necessary for accurate measurement. I

converted the binary format of memory into readable format, using hexdump [27] and gnu

strings [34]. I then parsed it for invariants (values of canary variables). Constraint violations

were observed when the stack was corrupted by simulated attacks. The parser was unable

to find canary values and return addresses, which were overwritten by the malicious buffer

code from the exploit. In this implementation, I only tested one application at a time, so

the evidence sealing to TPM can be as simple as saving a "state" value to TPM’s PCR 17

and 18 using the commands given in section 3.1.

3.5. Security and Efficiency Analysis

Integrity measurements were taken during function execution so that any modifica-

tion of memory objects during the execution phase could be caught. Measuring service

running RIVeR would detect an attack on measured application and secure the evidence in

TPM. Even if an attacker is successful in executing a shell code and gaining access to root

privileges on a measured VM, it will not be possible to access or manipulate the evidence.

These attacks could include network-based attacks from compromised VMs on RADIUM or

from an outside adversary trying to exploit vulnerabilities in OS or applications. InterVM

attacks are prohibited through the access control mechanism of Xen Security Module. The

communication protocol between measured service and challenger is also secure against re-

play and spoofing attacks as random nonces and TPM generated attestation keys are used.

Attack protection on the hypervisor and measuring service and static attestation of target

VM are discussed in detail in [22].

Performance overhead due to integrity measurement was calculated by taking the
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Table 3.1. Results: Performance and Efficiency

Prozilla 1.3.7

Vulnerability CVE-ID Invariant/constraint Use Cases
Attacked

Simulated

Attacks

detected

Performance

overhead

Remote Stack overflow CVE:2004-1120 Return address

Limited

bandwidth
Yes Yes 80%

Interrupted download Yes Yes 102%

Single thread Yes Yes 64%

Different Port Yes Yes 110%

Format string CVE:2005-0523 Data invariant

Limited bandwidth Yes Yes 60%

Interrupted download Yes Yes 60%

Single thread Yes Yes 50%

Different Port Yes Yes 77%

Result handling buffer overflow CVE:2005-2961 Data invariant

Limited bandwidth Yes Yes 65%

Interrupted download Yes Yes 60%

Single thread Yes Yes 54%

Different Port Yes Yes 90%

Ghttpd 1.4

Get request overflow CVE:2001-0820 Return address

Web Page Access Yes Yes 27%

File Not found No - 12%

Virtual Hosts enabled Yes Yes 86%

Deamon Overflow CVE:2002-1904 Caller-Calee

Web Page Access Yes Yes 33%

File Not Found No - 12%

Virtual Hosts enabled Yes Yes 56%

Nullhttp 0.5

Get request overflow CVE:2001-0820 Return address

Web Page Access Yes Yes 27%

File Not found No - 12%

Virtual Hosts enabled Yes Yes 86%

Deamon Overflow CVE:2002-1904 Caller-Calee

Web Page Access Yes Yes 33%

File Not Found No - 12%

Virtual

Hosts enabled
Yes Yes 56%

average speed of application over five executions for downloading different file sizes. Running

time was measured with and without the integrity measurement. Integrity verification has

an average runtime overhead range of 50%-110%. There was some time lapse between the

moment attacks happened and the moment it was detected, as parsing of memory map is

being performed while the application continues execution. This is done to reduce run time.
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Usage of function calls as measurement points also influenced the performance.

I was able simulate and detect two exploit attacks on Prozilla, Ghttpd, and Nullhttp:

buffer overflow and format string vulnerabilities. So far, the procedure has been effective in

detecting attacks. The exploits used to simulate attacks were obtained from www.exploit-

db.com. Verifying an application from inside the host machine would be more efficient, but

this would defeat the advantage of the trust brought in by asynchronous architectures like

RADIUM. The results are shown in Table 3.1.
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CHAPTER 4

RELATED WORK

In this chapter, some of the works related to this thesis is summarized. My work is

inspired by [22] and closely related to [20]. Here, I have presented a summary and analysis

of these works and mentioned other works containing concepts that overlap with my work. I

intended to make my tool work in a very different environment (i.e. on a trusted hypervisor),

while most of the related works I summarized are host-based solutions.

4.1. Remote Attestation to Dynamic System Properties: Towards Providing Complete Sys-

tem Integrity Evidence

Remote attestation is a mechanism used for providing integrity evidence of a platform

to a remote entity. Currently, there are many static remote attestation mechanisms, but to

detect runtime attacks, dynamic attestation is needed. The authors identified that some

stack properties like saved frame pointer, return address, and stack pointer can be useful in

dynamic attestation. The integrity of the system can be measured based on these dynamic

properties. The attestation process must also be protected while measuring the dynamic

properties for integrity.

ReDAS (Remote Dynamic Attestation System) [20] "performs application-level dy-

namic attestation by monitoring running applications and secures integrity violation using

hardware support." The authors classified dynamic properties into two types: Structural and

Global data properties. These properties are extracted from applications during a training

phase. The integrity measurement component observes the application during the execution

phase and verifies whether the dynamic properties are unmodified by comparing their state

with values obtained during the training phase. The application is monitored during system

call time. This gives a fine balance between performance and granularity. Thus, data invari-

ants and stack structural constraints are measured for their integrity. ReDAS uses a TPM

assisted trusted mechanism to secure integrity evidence. TPM’s Platform Configuration Reg-

isters are a tamper-proof form of storage technology. According to TPM Specifications, "The
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measurement values are encrypted with one-way hash function and are extended to PCR

8. (PCRs are numbered from 0-15)" [16]. In the dynamic attestation protocol, challenger

sends the request along with a nonce. "The attestation service responds with a two-part

message; the first one is current integrity evidence and the send one is TPM signature and

nonce received from the requester. Nonce is protection against reply attacks while hashed

value protects against duplication" [20].

The main shortcoming of ReDAS is that it uses a static chain of trust at the time

of boot. Then, the kernel or integrity verification module can be compromised at runtime.

RADIUM, which is a dynamic attestation platform, overcomes this shortcoming. The ma-

chine no longer needs to be restarted every time an attestation is performed. ReDAS also

inherits limitations of Daikon. For example, it cannot infer useful invariants for complex

structures like linked lists. Therefore, ReDAS cannot detect violations that are not covered

by the defined set of invariants. Some violations may be missed due to the transient nature

of applications (i.e. violations may erase the trace before they are captured).

4.2. Automatic Security Debugging Using Program Structural Constraints

Understanding and detecting security bugs in an application is a cumbersome process,

as it needs manual tracing of the runtime behavior of applications. Manual debugging is not

a good solution for detecting unknown vulnerabilities. Oftentimes the attacks last for very

short lengths of time, which makes detection difficult. Program structural constraints make

the debugging process more efficient. These constraints can be observed during the runtime

of an application to find vulnerabilities. The authors used "static analysis methods to deter-

mine structural constraints and dynamic monitoring component to verify if the constraint is

satisfied or not" [21]. The tool is called CBones.

On a Linux platform, an application’s ELF [12] has a memory structure as follows:

Code, Data, Heap, DSO, Stack, and Kernel (Figure 2.2). Of all these segments, stack,

heap, and data are considered the most important areas in which to look for clues of correct

execution. Therefore, the structural constraints are defined for these segments. Some of the

constraints the authors have defined are: caller-callee constraint, return address constraint,
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frame pointer constraint, saved register constraint, saved frame pointer constraint, stack

Limit constraint (Stack), memory allocation/de-allocation request constraint, boundary tag

constraint, heap boundary constraint, chunk boundary constraint, consecutive free chunks

constraints (Heap), shared library function pointer constraint, constructor function pointer

constraint, destructor function pointer constraint.

Choosing the point of time to observe the constraints is key for successful detection

of vulnerabilities. This is the period when the program is in a transient state with respect

to that constraint. For stack constraints, the time for observation is from function call to

time when prologue is setup. This can be continued until the memory de-allocation. To find

constraint violations, a two-step procedure is used. In step one, a coerce grained approached

is used to find the function in which violation occurs. Then, in second step, the exact

violated constraint is determined. CBones implementation has two components: constraint

extractor and monitoring agent. Constraint extractor is essentially a Ruby script 1. For a

C program, it extracts constraint information such as name, address, activation record size,

and saved registers count. The program has to be compiled with debugging flag (-g) in order

to extract this information from binary. The debugging output, obtained in dwarf format,

is parsed with a dwarf-parser written in Ruby. Objdump 2 is used to disassemble the binary

and extraction call instructions for caller-callee constraint. Constraint extractor can only

work on binaries complied without any optimizations.

Integrity monitoring agent was developed as skin to Valgrind [29], a software CPU-

emulator program, which is popularly used as a debugging tool. Valgrind uses its own

intermediate assembly language called Ucode. The constraints extracted are stored in the

monitoring agent in internal data structures. Procedure, CallStack, and ChunkList are some

of those internal data structures. A limitation of this monitoring agent is that it cannot

verify a structural constraint while the program is in a transient state with respect to this

constraint. The monitoring agent deems a situation a "safe point" when no constraint is

1Ruby, a programming language.
2A GNU binary utility used for disassembling to learn about object files.
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violated. It intercepts function calls and returns by capturing "jump" and verifies stack and

heap for violations. Monitoring agent also checks for integrity of memory writes by capturing

responsible system calls.

CBones is mainly a debugging tool used to verify and test for vulnerability presence.

For some applications, it has performance overhead of 15-50 times. High overhead is common

for debugger. While using similar techniques for integrity violation, a trade-off between

performance and efficiency is inevitable.

4.3. DIDUCE

DIDUCE [17] is a bug detection tool based on dynamic likely invariants. It instru-

ments the program dynamically to hypothesize invariants. This tool is developed for program

errors and to identify remote use-cases, which are otherwise hard to find. DIDUCE obtains

and verifies the invariants at runtime to find anomalies. The method of invariant extraction

is similar to Daikon, But DIDUCE was developed for Java programs and is more of a bug

detection tool than an integrity measurement tool.

4.4. Purify

Purify [18], a quality assurance tool, specializes in bugs related to memory leaks and

access errors. Object code is instrumented, with memory access checking instructions, to

verify the legitimacy of every read and write operation on memory. Purify only runs on

SPARC architecture, and, like other debugging tools, it slows down execution.

4.5. Copilot

Copilot [31] uses extended hardware support (PCI Card) to measure runtime kernel

integrity. In Copilot, Memory is accessed dynamically and probed for the malware presence

by computing hashes. This method is unlikely to be adopted in existing systems, as it adds

additional hardware cost.
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4.6. Runtime Detection of Heap Based Overflows

This work [33]is similar to Stack Shield [38] and StackGuard [13], but the solution

is for detection of heap overflows, while [38] and [13] are protection mechanisms against

memory corruption attacks on stack. This method is implemented as a library of C language

and uses the idea of boundary tags for heap management. In C programming, heap is

used for dynamic memory allocations at runtime, using library functions like malloc and

calloc. Free memory blocks on heap are called "chunks," and each chunk header contains

the size of current and previous chunks. "This information is called in-band information,

or boundary tag information," [33] and is used for traversing through all chunks of heap.

Heap overflow exploits target the pointer used to link the available chunks, and it controls

values on chunks. Canary values are introduced into memory chunk structure to detect heap

overflows at runtime. The canary is checksum of the chunk header seeded with a global

variable, which is assigned a random variable at the startup of the program. This is similar

to random canaries used in StackGuard. The heap management algorithms are modified

accordingly to detect any overflow-based attacks that overwrite the canary values. When

the chunk is de-allocated with "free" call, the canary value is calculated and verified. If any

change to the value is detected, the process will be aborted. Though this method is effective

in detecting heap-based overflows, this does not cover protection of stack and is a host-based

approach, which inherits limitations of untrusted environment.

4.7. Flicker

Flicker [26] is an isolated environment for security-sensitive code execution. Trust

is based on the extremely small size of the TCB (Trusted Computing base) code. Flicker

tries to solve the security problems that arise with large sized operating systems, which has

huge attack surface and major part of the OS code is executed in privileged mode. The

vulnerabilities in code are the attack points for adversaries to gain privileged access. The

idea is to separate the part of execution with high privileges from the rest of the execution.

The isolated security-sensitive code, which only have to trust a minimal TCB makes Flicker

a better-trusted platform. Before or after execution of privileged code in Flicker, it is not
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accessible. Integrity of execution can be attested to a challenger from outside. Flicker makes

use of TPM-based sealed storage capabilities for attestation of trusted state.

The downside is the applications have to be redesigned with sensitive code that has

to be executed separate from rest of the application. This approach is not practical for all

types of applications and Flicker has high performance overhead. As Flicker allows untrusted

environments to execute, malicious code can launch DOS attacks.

4.8. TrustVisor

TrustVisor [25] is another attempt to use minimal TCB for creating isolated execution

environments. The isolated, measured environment created by a TrustVisor, which is a

special purpose hypervisor, protects selected parts of applications. In this model the trust

is moved from OS or application to TrustVisor. It uses DRTM based trusted launch. The

secure execution is protected against local adversaries who can run arbitrary code on legacy

application and network based adversaries who can attack network traffic.

4.9. OSLO

Usage of TPM’s on commodity and commercial systems is gaining ground; Microsoft’s

bit locker disk encryption system is an example. The authors evaluated the security of TPM

and root of trust model architectures. Two primary goals of trusted computing were discussed

in this work: remote attestation and tamper evident sealed storage.

Authors identified some bugs in trusted boot loaders and ways to exploit them. One

of the bugs was that kernel image was not completely hashed, which breaks the continuity of

chain in trusted boot loading process. Another bug was hashing and loading of kernel image

was happening independently. In their first attack, authors found out a way to reset TPM

without having to reboot the system. They achieved this by grounding the LRESET pin,

which reset the register. Obviously to perform this attack, physical access to the platform is

required. Cases of this attack include stolen devices as well as device owners resetting their

own TPM to exploit Digital Rights Managements if they are using TPM. The second attack

was exploiting the allowance of unverified BIOS as CRTM. The attack was demonstrated
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on a laptop with TPM 1.2. The authors replaced the BIOS with a modified version where

they removed MPTPMTransmit() from BIOS driver of TPM. As a result, was the machine

lost its trust. These attacks were designed to show that the TPM implementation did not

meet the trusted chain requirements. DRTM based OSLO [19](Open Secure Loader) was

proposed as a solution to above-mentioned bugs and attacks.

OSLO’s DRTM makes PCR 17 resettable any time through a secure process, thus

avoiding the need to reboot the machine every time a measurement is needed. PCR 17 reset

is different from whole TPM reset as a special bus cycle is used to do the reset. Because of

this TPM reset cannot be faked as PCR 17 reset. The fact that BIOS and Bootloader are

no longer part of CRTM trust chain also makes DRTM secure against BIOS and Bootloader

attacks. Secure Loader (SL) is used to initialize CPU and SKINIT instruction to extend

SL into PCR 17 of TPM. OSLO was built on top of AMD’s DRTM technology and was

written in C. Although OSLO was successful in reducing TCB footprint, it is vulnerable to

TOCTOU attacks as discussed in Section 2.6 of this document. It is also worth mention

that RADIUM is built on top of DRTM, an improvement of it.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this thesis, I have tried to solve the problem of runtime integrity of application on

trusted platforms from hypervisor level. First, I presented a way to find a known correct

behavior of application. The concept of program invariants was used to deduce properties

of an application that ensure its integrity. I demonstrated a way of using Daikon invariants

to verify security sensitive bugs in applications, and I developed a method for run time

integrity of application using memory introspection tools. The invariant data from Daikon

and manually formulated structural invariants based on program rules were compared for

verification of application integrity. I developed a Python program for memory page parsing

in order to determine attacks on applications. In the current method, function entries and

exits were used as measuring points. In this process, verifying invariants induced some

overhead. Runtime VM introspection support provided by LibVMI was used to enhance

memory forensics capability of Volatility. On top of these two tools, the Python program

that I developed was used to determine invariants on running applications. The framework

was tested for efficiency on real world applications (Prozilla, Nullhttp, and Ghttpd). The

goal of my research was to present a proof of concept for the runtime integrity measurement

capabilities at application level on RADIUM, and I was successful in detecting runtime

attacks. The current method does incur a high performance overhead, but that is not the

focus of this work.

5.2. Future Work

To increase the performance and efficiency, different measurement points can be used.

Obtaining and observing the invariants system calls reduces the performance overhead con-

siderably compared to the current method of observing at function calls. This reduction in

performance overhead can be achieved by modifying Daikon and Kvasir. As the dynamic

properties used in the current model are not complete, more invariant properties are needed
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to make the integrity verification efficient. For example, there are no invariant definitions

useful in detecting attacks on heap or complex data structures. There is also room for

improvement in the parsing algorithm needed to obtain fine-grained measurements.

Time consumed to pause the VM for memory snapshot extraction can be reduced

by integrating integrity measurement capability into LibVMI, thus reducing performance

overhead. This can be done as library in LibVMI or as a Volatility module. The invariant

extraction process can be further improved by adding control flow behavior of application.

This can be done by using debugging tools like Strace, GDB, or Valgrind and by porting the

data into invariants. This approach can further be used in predicting vulnerable measuring

points of application, in addition to using vulnerable areas as the measurement points.
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