Genetic Analysis of Medicago truncatula Plants with a Defective MtIRE Gene

PDF Version Also Available for Download.

Description

Leguminous plants are able to fix nitrogen by establishing a symbiotic relationship with soil dwelling bacteria, called rhizobia. The model plant Medicago truncatula forms a partnership with Sinorhizobium meliloti whereby the plant gains bioavailable nitrogen and in exchange the bacteria gains carbohydrates. This process occurs within nodules, which are structures produced on the roots of the plants within which nitrogen is fixed. M. truncatula incomplete root elongation (MtIRE) was localized to the infection zone, which is zone II of indeterminate nodules. It was shown to encode a signaling kinase so it was anticipated to play a role in nodulation. Mutants ... continued below

Physical Description

xii, 104 pages : illustration (some color)

Creation Information

Alexis, Naudin August 2015.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 40 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Alexis, Naudin

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Leguminous plants are able to fix nitrogen by establishing a symbiotic relationship with soil dwelling bacteria, called rhizobia. The model plant Medicago truncatula forms a partnership with Sinorhizobium meliloti whereby the plant gains bioavailable nitrogen and in exchange the bacteria gains carbohydrates. This process occurs within nodules, which are structures produced on the roots of the plants within which nitrogen is fixed. M. truncatula incomplete root elongation (MtIRE) was localized to the infection zone, which is zone II of indeterminate nodules. It was shown to encode a signaling kinase so it was anticipated to play a role in nodulation. Mutants of MtIRE in the R108 background, mutagenized with the Tnt1 retrotransposon, were obtained from reverse screen, and were assessed to determine if a disrupted MtIRE gene was the cause of nitrogen fixation defective nodules. Mutant line NF1320, having a mutant phenotype, showed typical Mendelian segregation of 3:1 when backcrossed to R108. Experimental results show that MtIRE gene is not the cause of the mutant phenotype, but was linked to the causative locus. MtIRE co-segregated with the mutant phenotype 83%. Southern blot and the first version of the M. truncatula genome (version 3.5) reported a single MtIRE gene and this was shown to be on chromosome 5 but the latest version of the M. truncatula genome (version 4.0) showed a second copy of the gene on chromosome 4. The genome sequence is based on the A17 reference genome. Both genes are 99% identical. Genetic markers that originate from flanking sequence tags (FSTs) on both chromosome 4 and 5 were tested in an attempt to find an FST that co-segregated with the mutant phenotype 100%. An FST derived from a Tnt1 insertion in Medtr4g060930 (24F) co-segregated with the mutant phenotype closely, with 76% co-segregation. Medtr4g060930 (24F) is on chromosome 4, making it likely that the Tnt1 inserted in the MtIRE gene is also on chromosome 4, and thus the defective gene is on chromosome 4.

Physical Description

xii, 104 pages : illustration (some color)

Language

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • August 2015

Added to The UNT Digital Library

  • March 4, 2016, 4:14 p.m.

Description Last Updated

  • March 14, 2017, 9:46 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 40

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Alexis, Naudin. Genetic Analysis of Medicago truncatula Plants with a Defective MtIRE Gene, thesis, August 2015; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc804830/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .