DISTRIBUTED FRAMEWORKS TOWARDS BUILDING AN
OPEN DATA ARCHITECTURE
Ramu Reddy Venumuddala

Thesis Prepared for the Degree of
MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS
May 2015

APPROVED:

Song Fu, Major Professor

Cornelia Caragea, Committe Member

Yan Huang, Committee Member

Costas Tsatsoulis, Dean of the College of Engineering
Mark Wardell, Dean of the Toulouse Graduate School

Venumuddala, Ramu Reddy. Distributed Frameworks towards Building an Open
Data Architecture. Master of Science (Computer Science), May 2015, 47 pp., 6 tables,
33 figures, references, 42 titles.

Data is everywhere. The current Technological advancements in Digital, Social
media and the ease at which the availability of different application services to interact
with variety of systems are causing to generate tremendous volumes of data. Due to
such varied services, Data format is now not restricted to only structure type like text
but can generate unstructured content like social media data, videos and images etc.
The generated Data is of no use unless been stored and analyzed to derive some Value.
Traditional Database systems comes with limitations on the type of data format
schema, access rates and storage sizes etc. Hadoop is an Apache open source distributed
framework that support storing huge datasets of different formatted data reliably on its
file system named Hadoop File System (HDFS) and to process the data stored on HDFS
using MapReduce programming model.

This thesis study is about building a Data Architecture using Hadoop and its
related open source distributed frameworks to support a Data flow pipeline on a low
commodity hardware. The Data flow components are, sourcing data, storage
management on HDFS and data access layer. This study also discuss about a use case
to utilize the architecture components. Sqoop, a framework to ingest the structured data
from database onto Hadoop and Flume is used to ingest the semi-structured Twitter
streaming json data on to HDFS for analysis. The data sourced using Sqoop and Flume
have been analyzed using Hive for SQL like analytics and at a higher level of data

access layer, Hadoop has been compared with an in memory computing system using

Spark. Significant differences in query execution performances have been analyzed when
working with Hadoop and Spark frameworks. This integration helps for ingesting huge
Volumes of streaming json Variety data to derive better Value based analytics using

Hive and Spark.

Copyright 2015
by
Ramu Reddy Venumuddala

i

ACKNOWLEDGMENTS

I would like to take this platform to express my sincere gratitude to my research
advisor, Dr. Fu, Song for his continuous and generous effort to support and guide me
through out the research study. Without his invaluable assistance and readiness to answer
my questions, this would not be possible for me to complete my thesis.

I would like to thank my committee members Dr. Caragea, Cornelia and Dr. Huang,
Yan in taking their precious time to review the thesis and chalk out suggestions.

Finally, I would like to thank my parents and friends for their love and constant

support through out this journey.

1l

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER 1 INTRODUCTION 1
1.1. Thesis Outline 2
CHAPTER 2 FRAMEWORKS BACKGROUND 3
2.1. MapReduce 3

2.1.0.1 Anatomy Of MapReduce 4

2.2. Hadoop Distributed File System)
2.2.0.2 Architecture)

2.2.0.3 Data Flow 6

2.3. Introduction To Hadoop 7

2.4. Hadoop-related Projects 9

2.4.1. Sqoop 9

2.4.1.1 Sqoop Import Architecture 9

2.4.1.2 Sqoop Export Architecture 10

2.4.2. Flume 11

2.4.2.1 Flume Architecture 12

2.4.3. Hive 14

2.4.3.1 Data Model 14

2.4.3.2 SerDe 17

2.4.4. Spark 17

iv

CHAPTER 3 ARCHITECTURE DESIGN AND ENVIRONMENT SETUP

3.1.
3.2.

2.4.5. Ganglia

Architecture Design
Environment Setup

3.2.1. Apache Hadoop 1.2.0
3.2.2. Sqoop

3.2.3. Flume

3.2.4. Hive

3.2.5. Spark

CHAPTER 4 USE CASE AND RESULTS

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

CHAPTER 5 CONCLUSIONS AND FUTUREWORK

5.1

Configuring Flume
Data

Configuring Hive
Configuring Spark SQL
Results

Ganglia Metrics

Future Work

BIBLIOGRAPHY

19

22
22
23
25
29
30
30
31

33
33
34
35
38
39
41

43
43

45

2.1
3.1
3.2
3.3
3.4
4.1

LIST OF TABLES

MapReduce [4]
Ingestion Component.
Hardware Configuration.
Cluster Components.

Hadoop Cluster Components

Hive vs Spark SQL Query Analysis.

vi

Page

22
24
25
26
41

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4.1
4.2
4.3

LIST OF FIGURES

Anatomy of a MapReduce Job Execution[4]
Hadoop Distributed File System Data Flow[12]
Hadoop File System Check Utility [11, 38|
Sqoop Import Process [16]

Sqoop Export Process [16]

Flume Architecture [16, 6]

Hive Managed Table [38, 5, 1]

Hive External Table [1, 5, 38|

Spark Stack [15]

Ganglia Monitoring [27]

Ganglia Visualization of Hadoop Cluster
Data Architecture

HDFS NameNode Summary

JobTracker Web Interface Home Page
JobTracker Jobs Web Interface

Dfsadmin Report

PostgreSQL Database

Sqoop List Tables

Hive CLI

Spark Standalone Cluster Home Page
Spark Standalone Cluster Jobs for Count Queries
Flume Agent

Flume Tweet Json Data

External Tweets Table

vil

Page

10
11
12
15
16
18
20
20
24
27
27
28
28
29
30
31
32
32
33
34
35

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
5.1

External Table Partition

Analysis of the User Activity on Different Timezones

Maximum Retweet Analysis

Spark SQL JsonRDD Analysis to Analyze the Json format Tweet Data
Hive vs Spark SQL Query Analysis on the Partition Data

Ganglia CPU Cluster Metrics of Hadoop Cluster

Ganglia MEMORY Cluster Metrics of Hadoop Cluster

Ganglia PROCESS Load Metrics of Hadoop Cluster

Oozie Job

viil

37
38
39
40
40
41
42
42
44

CHAPTER 1

INTRODUCTION

“In pioneer days they used oxen for heavy pulling, and when one ox couldn’t budge
a log, they didn’t try to grow a large ox. We shouldn’t be trying for bigger computers, but
for more systems of computers.”

—Grace Hopper

In the current digital world there is a substantial growth in the amount of data that’s
been generating in the form of structured, unstructured, semistructured data from various
sources like sensors, servers, social websites, e-commerce, gaming, and video contents etc.
The ”Variety, Volume and Velocity” [26] of the Data needs to be stored at a repository,
processed and analyzed to derive better Value. The amount of size the disk can store is
increasing alarmly in the recent years but, the rate of data transfer has been a concern
and is not yet upto the efficient standards [38]. If all the data is stored on a single disk
then, performing the read and write access is always a time consuming process. Storing
and retrieving the data on a single disk has been a major challenge with respect to cost
budget in building the hardware equipment, disk access latency and computational efforts
[38]. Distributed System design allows to share the data across the machine nodes and

execute the work in parallel [38].

To store the data across multiple disks and accessing them in parallell is always
challenging and imposes some challenges. Few problem’s of such can be like some storage
systems enforce a schema to write the data on to it [38], or there can be a failure in some
systems thats been storing the data across the network and it might lead to the loss of
a snapshot of the data [38], or how the data can be computed that’s been stored across
linearly in the network [38]. When working with huge volumes of data it becomes difficult to
manage the data across the network and so to move the processing task to the data is pretty
cheaper and efficient than moving the data across the network for computation [28, 11, 38].

These concerns have highly motivated in building few open source distributed computing

frameworks that can scale linearly across the nodes in distributed fashion on cheap and
commodity hardware [38]. Apache™ Hadoop® [11] will address these issues in terms of
”data locality” [28, 38], redundancy by replicating the data blocks across the cluster [28] and

provide high data intensive computational analysis [4] to store and retrieve this huge data.

1.1. Thesis Outline

Chapter 2 introduces the MapReduce programming model and Hadoop Distributed
File System in detail. Section 2.3 discusses about Hadoop framework which is an open-source
implementation of MapReduce and HDF'S. The Chapter also talks about few other Hadoop
related projects that are used for this thesis study like Sqoop 2.4.1, Flume 2.4.2, Hive 2.4.3,
Spark 2.4.4. A clustering framework named Ganglia 2.4.5 is also been discussed at the end
of this Chapter.

Chapter 3 talks about the architecture design and enviornment configuration setup
that has been used for this thesis study.

Chapter 4 explores an usecase and possible results on the environment thats been
setup for this research study.

Chapter 5 concludes the thesis, summarizes the observations and project some future

enhancements of the research.

CHAPTER 2

FRAMEWORKS BACKGROUND

This Chapter explains in detail about the distributed frameworks that are used for
this research study. Distributed systems can be best understood as a group of machines
separated at a different physical locations on network, cooperate with each other to perform
a common task or a set of related tasks [21]. As the systems will be distributed across different
physical locations some design constraints imposed on these distributed systems are, they
need to be reliable, provide high availability of continuous service [11, 28], fault tolerant [39]
in recovering from failures and scalable across at ease etc. This Chapter discusses about

those distributed programming models and frameworks.

2.1. MapReduce

"MapReduce is a programming model and an associate implementation for processing
and generating large data sets” [4]. This model can be scaled across a cluster of cheap and

commodity hardware [4, 38]. The model is divided into 2 phases. Map and Reduce phase.

e Map: This phase read the input datachunk and generates a list of intermediate
key-value pairs which will then be consumed and processed by the Reducer phase
[4]. For example, a text document of urls as an input for Map function will read the
data and generate a url pair list. That is, the key is set to the url thats been parsed
and the value will be set to 1. For example: If the data is "hadoopurl, mapreduceurl,
hadoopurl’; the following pairs will be generated (hadoopurl,1), (mapreduceurl,1),
(hadoopurl,1).

e Reduce: This phase will read the intermediate key, list<values> generated by the
Map function and aggregates the final result [4]. In this case the input to the Reducer
will be (hadoopurl, list<1,1>), (mapreduceurl, list<1>) which will be aggregated

to a final result of url count as <hadoopurl,2>,<mapreduceurl,1>.

map (k1,v1) list(k2,v2)

reduce | (k2 list(v2)) | list(v2)

TABLE 2.1. MapReduce [4]

User
Program

(1) fork .- . ., (1) fork
o (Difork ™.
(2]6@ 2)
assign assign
reduce
split 0 output
split 1 Tl
split 2
split 3
output
split 4 file 1
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

FIGURE 2.1. Anatomy of a MapReduce Job Execution[4]

2.1.0.1. Anatomy Of MapReduce

The Figure 2.1 describes the Anatomy of a MapReduce job. When a MapReduce job

is submitted by the user, a series of events occur during the execution. An overview of the

MapReduce is as follows: [4, 22]

(1) The input data for the job to be processed is first split into chunks of a configured

size which will then be distributed across the cluster.

(2) Any one of the node is set to act as a Master node and it starts allocating work to

the other Slave nodes in the cluster.

(3) The Slave nodes which have been assigned with a map task will now parse the
contents of its corresponding input chunk of data and generate an intermediate
key/value pairs. This intermediate data will be stored on the Slave nodes.

(4) The buffered intermediate pairs are periodically persisted onto the disk and the
Master node is made aware of the location of the data which will then be forwarded
to other workers to initate the Reduce task.

(5) The Slave nodes now executing the Reduce tasks will fetch the intermediate key/value
pair data by using remote procedure calls, sorts and group the data of the same keys

(6) The reduce task on the Slave node will now run over the list of all the intermediate
values of the same reducer, process , aggregates the final result and will flush out
to an output file.

(7) When all the map and reduce tasks are succesfull and when there are no more data

to process, the user will be notified about the results.

2.2. Hadoop Distributed File System

HDFS™ [28) 11] is a distributed file system component of Apache™ Hadoop®) that
can source in large volumes of data in the order of Giga to Tera bytes [34] on cheap and
low-cost hardware [38]. HDFS has many goals and few of the noteworthy are it is highly
“fault-tolerant” [39] and error-prone to failures [11, 8]. It follows “master-slave” architecture
(28, 11, 8]. It supports Batch processing rather than interactive use of the data. HDFS
follows WORM coherency model for files. WORM is "write once-read many” [38, 28], that
is, file once created and written is not updated any more at record level but can have
random read access. It achieves scalability by distributing data across the clusters and
reliability by maintaining multiple copies of data [28, 8] in order to avoid failures during
computation. HDFS stores file system metadata on a separate machine called “Namenode”

(master) [28, 11, 38] and application level data separately on “Datanode” (slave) [28, 11, 38].

2.2.0.2. Architecture

This subsection 2.2.0.2 explains about few components of the HDFS architecture.

e Blocks: The file level data which the disk can accept is, where any application has
an access to read and write the data onto it. The smallest unit of data that any
disk can accept is referred as its block size. HDFS also deals with the concept
of blocks but at a larger magnitude of size and the default value set in Hadoop
is 64MB [38, 28, 11] and can be configured to 128MB, 192MB etc. The HDFS
block size can be configurable by changing the hdfs-site.xml configuration file in the
Hadoop framework. In HDFS, if the file size is less than the configured block size,
then it does not occupy the full block size space that has been configured in the
configuration file of the underlying storage. That is, if the files are split into 64 or
124 MB blocks and if a file is less than this 64MB/124MB then the whole size will
not be used [38].

e NameNode: The “NameNode” [28, 11] works as a master and “manages the file
system hierarchy and the mapping of the file blocks to DataNode” [28, 11]. Na-
meNode manages the metadata for all the files and the directories of the file system
in the form of 2 files: "fsimage” [28, 38, 11] and "edit log” [38, 28, 11]. The fsimage
is a file system image that captures the system namespace and edit log captures
the log snapshots when there are any changes to the namespace. There can multi-
ple NameNodes in a cluster and generally its a good practice to maintain multiple
NameNodes to support "High Availability” [11] of service in case of failure.

e DataNode: The “DataNode” [28, 11] are the Slave components which store the
actual file data. The files on the HDF'S are split into one or more blocks and then
they land onto the DataNodes. DataNode always sends its metrics and availability in
the form of hearbeats to the NameNode. In general there will be only one DataNode

per machine in the Hadoop cluster [11].

2.2.0.3. Data Flow

The Figure 2.2 describes the HDFS data flow architecture. If a user or client wants to
access and create a file in the HDF'S, the files are first split into blocks and for each block of

the file to be stored on the DataNode, the NameNode will look at the current namspace data

HDFS Architecture

Metadata (Name, replicas, ...):

Namenode /homef/foo/data, 3, ...

Metadata ops -

Read Datanodes Datanodes
: | [
O O N = Replication B B N
] [| Blocks
N \ \ J
Rack 1 Write Rack 2

FIGURE 2.2. Hadoop Distributed File System Data Flow[12]

for the suitable available DataNodes. The client will get this block report from NameNode
and then the blocks are buffered through and distributed onto the available DataNodes. The
default replication specified by HDFS is 3. [11].

HDFS’s “fsck” (file system check) [11, 38] command utility will specify the files, blocks
and locations on HDFS. The Figure 2.3 shows the files, block locations metrics.

$ hadoop fsck <hdfs directory> -files -blocks -locations

2.3. Introduction To Hadoop

The Apache™ Hadoop®) [11] is an open source framework mainly intended to store
huge amount of data reliably using ”"Hadoop Distributed File System” (HDFS) [28, 11] and
process the data across the computing clusters using ”MapReduce” (MR) [4] programming

h™ a web

model. Hadoop was originally started by Doug Cutting as a basis for Apache Nutc
search engine project [20, 38]. Web is full of pages and the team at Nutch has realized the
difficulty to search and index those huge amount of web pages efficiently. In 2003, the team
at Google has published a paper called ” Google File System” (GFS) [8] which is a distributed

file system at Google and Nutch has implemented the idea to its own project which turned

into ”Nutch Distributed File System” (NDFS) [20, 38]. In 2004, Google published a paper

hduser@ubuntu:~/hadoop-1.2.05 pwd

[home /hduser /hadoop-1.2

hduser@ubuntu:~/hadoop-1.2.85 hadoop fsck fuser/hduser/wordinput/shakespeare2.txt -files -blocks -locations
Warning: SHADOOP_HOME is deprecated

FSCK started by hduser from / 68.44.143 for path [user/hduser/wordinput/shakespeare2.txt at Sat Jan 17 15:18:26 PST 2015
fuser fhduser /wordinput/shakes 2.txt 1160624400 bytes, 5 block(s): OK

. blk_17899829760: 1_1804 len=268435456 repl=2 [192.168.44.145:50010, 192.168.44.143:50010]

. blk_71354914250319 1_1004 len=268435456 repl=2 [192.168.44.144:50010, 192.168.44.143:50010]

. blk_-60643472411387 04 1 2 - 44:560010, 192.168.44.143:50016]

. blk_-8943872156 1004 68435456 repl=2 [19 44 4:5 B, 192.168.44.143:50010]

. blk_-89487400)641_16804 1en=86882576 repl=2 [192.168.44.144:56010, 192.168.44.143:50010]

5tatus: HEALTHY
Total 1160624400 B

Total blocks (validated): (avg. block size 232124880 B)
Minimally replicated blocks:

Over-replicated blocks

Under-replicated blocks:

Mis-replicated blocks:

Default replication factor:

Average block replication:

Corrupt ble

Missing repli 6 (0.0 %)

Number of data-nodes:

Number of r

FSCK ended at S 511 PST 2015 in 153 milliseconds

The filesystem under path '/user/hduser/wordinput/shakespeare2.txt' is HEALTHY
hduser@ubuntu:~/hadoop-1.2.6% l

FIGURE 2.3. Hadoop File System Check Utility [11, 38]

[4] and introduced the term "MapReduce” (MR) [4]. By early 2005, Nutch developers has
implemented the MapReduce programming model and integrated their algorithms to run on
NDFS and MR. In February 2006, NDFS and MR has moved out of Nutch and formed an

independent project named Apache Lucene™ [38].

In January 2008, Hadoop has become a pivotal project at Apache and NDFS was
renamed to HDFS or Hadoop Distributed File System. The framework’s design motivation
is to scale linearly from a single node to thousands of nodes [34] to support both storage
(HDFS) and computation (MR) efficiently. The framework is designed to detect and handle
node failures [4, 28] and to provide high-availability of service [11, 36, 38]. Many companies
like Yahoo, Facebook, Linkedin etc have started using Hadoop and eventually it gained a
huge popularity. It’s open source, free and can work on cheap commodity hardware as well.

This section 2.3 is heavily borrowed from [38] (9-10).

2.4. Hadoop-related Projects

There are few distributed frameworks under Apache™ that are related to Hadoop
in terms of storage and compute point of view. They can be termed as ”Ecosystems” [11]
related to Hadoop under Apache. Some of them under this research work has been discussed

below.

2.4.1. Sqoop

From many years till date, large scale Companies store their transactional and opera-
tional data on traditional Database systems like Oracle, Greenplum and Postgres etc. Since,
Hadoop support storage in the form of HDFS and can allow many different file formats like
text, json, avro and binary, there has been an integration that’s been developed by the data-
base vendors to work with Hadoop systems. Hadoop can manage and process the data from
the Databases . Apache Sqoop™ “SQL to Hadoop,” [33] is a tool intended to bring in data
from Database onto Hadoop and vice-versa [33, 31, 38]. The entire framwork of Sqoop is
written using Java. The main execution framework behind the scenes of Sqoop import and
export jobs is MapReduce and it support fault-tolerance and reliability during the transfer
process [31]. Sqoop extends its support to transfer of data from Database to Apache Hive™

and Apache HBase™ as well, which are the ecosystems that sit on top of the HDFS storage.

2.4.1.1. Sqoop Import Architecture

Sqoop import job takes few input arguments and transfer the row level table data from
the Database on to Hadoop (HDFS, Hive, HBase) by running MapReduce jobs. Few input
parameters for the Sqoop import job are —connect (jdbc-uri), —username (db username), -P
(password), —table (table data to retrieve), —driver (jdbc driver), —target-dir (target directory
on Hadoop) [33, 31].The Database specific JDBC drivers need to be downloaded and installed
in the Sqoop “lib” folder of the Client before running the import or export jobs. Based on
the —connect string url that’s been specified in the input parameter, the corresponding driver
gets loaded before the start of the import job [38].

The graphical representation of the import job is shown in Figure 2.4. Sqoop import

Data sources

MysaL SQL Server

PostgreSQL DB2
Client & Oracle
o Run import 1
® Pull metadata
Sqgoop

RDBMS |

®© Launch MapReduce job

o Pull data from
database

Map Map Map
MapReduce =——— (Sqoop) (Sqoop) (Sqoop)

© Write to data sink

Data sinks
(HOFs | [Hive | [HBase]

Data Data Data
sink sink sink

FIGURE 2.4. Sqoop Import Process [16]

job can be broken down in to stages before the actual import can happen. Firstly, it uses
JDBC to fetch the table schema that it has to import from the database [38]. The fetched
SQL data types are then mapped to hold the Java data types for MapReduce applications
functionality. Secondly, Sqoop will generate a record container class [38] to interpret and
hold the table fields during the import. Finally, Sqoop import launches the MapReduce job
to read the table data using JDBC and source it on to Hadoop. The Sqoop import jobs
can also be controlled with few other input parameters like number of mappers to run (-n)

during the MapRedue job, "—direct” mode for faster data transfer [33, 31].

2.4.1.2. Sqoop Export Architecture

The export process diagram is shown in the Figure 2.5. Sqoop export job takes few
output arguments and transfer the data from Hadoop to Database Systems. The export job
requires the —export-dir argument to specify the HDF'S directory location to be exported on

to target Database System. Sqoop export job is broken down in to stages before export can

10

{2]Iaun(h_e_§“___

e e -
]
' MapReduce Job ! ~
- ¢ e uses %
1 z
1 %
i hdfs hdfs hdfs M
' :
' v v v -
: - Generated record
: - container class
]
: '
"""""" — —fi-]h\etadata
Database {column names, types, etc.)

table

FIGURE 2.5. Sqoop Export Process [16]

happen and follows similar nature as that of an import job. Based on the specified —connect
argument url, Sqoop picks up the JDBC strategy and loads the related drivers. Based on the
target table schema, it generates a Java container class to parse the records from HDF'S files
and load them to the mapped data types into the target table. Then, finally MapReduce
jobs are fired to read the data from the files, parse them based on the container class and

executes the export job to write data onto Database [38].

2.4.2. Flume

Apache Flume™ is a reliable and distributed data ingestion tool that can ingest
streaming and aggregate large amounts of data from different sources onto target data store”
[6, 17]. There are variety of data sources generating data in the form of server logs, user con-
tent on social media platform, user engagement on web service applications, network systems
data. All these systems can generate data in the form of structured text to unstructured

format. There can be Custom sources which can be configured in Flume to generate the

11

data as well as to source in onto data store. Flume has the ability to scale horizontally to
handle large data volumes and can gurantee data delivery during the ingestion [17]. The

below section explains about the Flume Data Achitecture in detail.

2.4.2.1. Flume Architecture

netcat
Y

T
¥ Source \ Sink \— o HDFS
-)
http:// N -
= Channel \ S

HBASE

syslog-ng
Open Source Edition —
Agent

Avro, Thrift,
Custom, IMS,
Scribe etc.

FIGURE 2.6. Flume Architecture [16, 6]

The main components of Flume are Event, Source, Channel, Sink and Agent [14, 6,
17].
e Fvent: The topics delivered by the Flume are called Events. Event is a smallest
unit of data occurence.
e Source: The events generated by the external sources like Web server, Twitter,
syslog and netcat etc are taken by the Flume Source which are then stored onto one

or more Channels in the next data flow.

12

e Channel: A Channel is a medium to store the event before it’s being consumed
by the target Sink. Different type of channels exists in Flume, some of them are
Memory Channel, File Channel and JDBC channel etc.

e Sink: The Sink finally aggregate the event from the Channel and dumps it into an
external repository like HDFS, HBase or forwards it to the Flume Source of the
next Agent in the flow.

e Agent: An Agent is Java Virtual Machine process running in flume that integrates
the Source, Sink, Channel components together as a unit through which events flow

from external sources to the next hop of the data flow [17, 6]

Flume achieves reliablity by ensuring that the events are removed from the previous
agent staged channel only if they are transferred to the channel of the next available agent
or onto a target repository. Since, Flume stages the event in a channel, there can be a case of
failure and loss of events. Flume ensures recoverability by supporting a durable File Channel
which provides checkpointing on a local file system for recovery. Flume also provides Memory
Channel but, it has a limitation on the queue capacity at a cost of high throughput and no
gurantee in recoverability. That is, if the Agent experiences any failure then the events in

the channel are lost and cannot be recovered. This information is borrowed from [6]

Flume Agent can be created by creating a new configuration file or by editing the
existing configuration file stored in the “conf” directory of Flume installation. The config-
uration file should include the properties of Source, Channel and Sink. This research study
has used Source as a Twitter Source provided by Cloudera [3], Channel as a File Channel
[6] for recoverability and Sink as HDFS for storage [6]. The events can be generated by
triggering the Flume agent and Flume ships with a shell script called “flume-ng” which is
located in the “bin” folder of the Flume installation. The arguments to be specified for
the schell script are -c¢ (conf folder location), -f (configuration file), -n (agent name). The
detailed configuration of the Twitter Agent and execution is discussed in the Environment

setup section section 3.2.

13

2.4.3. Hive

Apache Hive™ is a framework for data warehouse processing that sits on top of
Hadoop. Hive was initially developed by the team at Facebook to analyze the huge volumes
of data that they stored on HDFS. Hive provides a SQL like interface called HiveQL [32] to
run the queries. These HiveQL queries generates MapReduce jobs that run on the Hadoop
cluster. Hive is now popular in many organizations because of it data processing ability and

is now a top level project at Apache™ [38] .

2.4.3.1. Data Model

The Data on HDF'S is used as a reference on Hive to organize it into Tables, Partitions

and Buckets [38, 32].

e Table: ”"Tables in Hive are analogous to the tables in relational databases” [32].
The Tables in Hive can be constructed depending on the data thats been residing
at a physical location and can be either from HDFS, local file system, S3 (Amazon
storage systems) or on any other Hadoop related filesystems. The data format
is useful in determining the metadata and helps in constructing the Hive Tables
efficiently by using the Hive data types. The Hive Table metadata generated from
the file systems will be stored in a Database but not on the HDFS. Hive metastore
to store this metadata is categorized as embedded, local and remote metastores
[38]. Hive support embedded metastore as a default metastore by using Derby
Database which is just local to the single level user. Usually, in bigger Production
environments there will be multi users accessing the Hive service, so the “local
metastore” [38] will be configured to a separate Database Servers like MySQL etc
for better management. Hive support both Managed Tables and External Tables.
The default Table of Hive is a Managed Table and when file system data is loaded
into a Managed table, Hive moves the file data in to its warehouse directory [38, 1].
Hive moves all the files that are used to create tables from it are stored in its default

warehouse directory location “hdfs://user/hive/warehouse/” [38, 1] and can also

14

be configured to some other location using “hive.metastore.warehouse.dir” [38, 1]
property in hive—site.xml file of Hive installation. Some DDL and DML on Managed

table is shown in the Figure 2.7.
CREATE TABLE employees (name STRING, id INT, salary INT, state
STRING, country STRING)

ROW FORMAT

DELIMITED FIELDS TERMINATED BY “\t’;

LOAD DATA INPATH ‘hdfs://user/ramu/employees.txt” INTO table
employees;

DESCRIBE extended employees;

This load operation will move the file hdfs://user/ramu/employees.txt in to
Hive’s warehouse directory for the employees table, which is
hdfs://user/hive/warehouse/employees

DROP TABLE employees;

Drop operation on the Managed table will delete the metadata and table data as
well.

FIGURE 2.7. Hive Managed Table [38, 5, 1]

In Figure 2.7 the CREATE statement is used to generate the table named em-
ployees with the columns as name, id, salary, state and country. The data can be
loaded onto this Hive table using the LOAD statement. Data to be loaded can
reside in the local file system or on HDFS. If the data is loaded from a local file
system then, “LOAD DATA LOCAL INPATH” [32, 1, 38| syntax is used. If the
data is already on HDF'S then “LOAD DATA INPATH” [32, 38, 1] is used. So, when
you LOAD data onto Managed table, the file ‘hdfs://user/ramu/employees.txt’ is
moved into Hive warehouse directory ‘hdfs://user/hive/warehouse/employees’. The

table details like locations, size of the data can be DESCRIBE statement explains

15

about the table details in a neat formatted way. “DROP” [1, 38] statement on a
Managed table will drop the metadata and table data as well.

CREATE EXTERNAL TABLE employees (name STRING, id INT, salary

INT, state STRING, country STRING)

ROW FORMAT

DELIMITED FIELDS TERMINATED BY “it’

LOCATION ‘hdfs://user/ramu/employees’;

LOAD DATA INPATH ‘/user/ramu/employees.txt’ INTO table employees;
DESCRIBE extended employees;

External keyword specifies that the table is External and Hive doesn’t have any
control on the creation and deletion of data. Location of the external data is
specified during the table creation using the LOCATION keyword.

DROP TABLE employees;

Drop operation on the External table will only delete the metadata but not the
table data, since hive has no control on it.

FIGURE 2.8. Hive External Table [1, 5, 38|

The Figure 2.8 describes an External table. External tables are those where
Hive doesnot manage the Tables, but the user will have the complete control on
the creation and deletion of the data. During the creation of an External table,
“LOCATION" [1, 5, 38] keyword has to be explicitly specified to point to the data
location. If the application depends only on the Hive to manage the data then
its suggestable to depend on Managed tables. If other data processing tools and
applications are also using the same dataset for analysis, then its a good practice to
create External tables because, if the External tables are dropped table metadata
is lost and the data still persists in that location.

e Partitions: Partitioning is a technique on Hive which gives a table for better man-

16

agability to organize it and table data is sub divided into modular parts in the form
of files depending on the value of a Partition column [38, 32]. Partition columns can
be on date, id etc. When the table is Partitioned into files, the query is interested
in looking at that part of the data stored in the specific Partition location and helps
in querying the data faster..

e Buckets:

2.4.3.2. SerDe

SerDe refers to ”Serializer/Deserializer” [10, 32] which helps Hive to to interpret the
table during the read and write operations [32, 10]. Hive currently supports TextInputFormat
and TextOutputFormat as the default format to read and write HDFS files [10]. If the data
to be loaded from HDEFS is in another format, Hive has to interpret the data format, so
SerDes are used based on the format of the data. Hive currently supports SerDes for few
format like Avro, ORC, Parquet and CSV etc [5]. A custom SerDe can also be created in
Hive [5].

2.4.4. Spark

k™ is a general-purpose and fast in memory cluster computing platform

Apache Spar
offering simple api in Java, Scala, Python and SQL [15]. Spark backs up its intensive
computations by extending the MapRedce programming model [15, 42]. When it comes to
speed, Spark offers the ability to run the massive stream, iterative type of computations in
memory. The Spark system execution is faster than aplication workloads when running with
MapReduce on disk [15, 42]. Spark is designed to support high workload jobs like streaming,
batch and iterative in a same engine called ”Spark Engine” [15] and reduces the management

burden of maintaining separate tools 2.9 [15]. Spark can also run in Hadoop clusters and

can access any Hadoop related file systems [15].

e Spark Core: ”Spark Core” [15] is the heart of Spark and is a single functinal unit
that takes care of all the scheduling of tasks, memory management, recovering

from failure and working with the storage systems [15]. The basic building API

17

oarksaL] 0 | MU | GrephX
Streaming | machine | graph

structured data

Spark Core

Standalone Scheduler

FIGURE 2.9. Spark Stack [15]

abstraction for the Spark Core are ”Resilient Distributed Datasets” (RDDs) [41, 15].
These RDDs are fault tolerant, distributed across the cluster and can be computed
in parallel [15, 41].

Spark SQL: ”Spark SQL” [15, 30] is a Sql variant of Spark distribution . It allows
Sql type query interface to interact with the data and also it extends Hive variant
of Sql (Hive QL). Spark SQL extends and provides the ease to access different kinds
of available data sources like Hive tables, Parquet and JSON [15, 30].

Spark Streaming: Streaming data provide valuable information for analysis. ”Spark
Streaming” [15, 29] is a component of Spark which allows to process the Streaming
data. Data Streams can be anything in the form of web logs from the System
Servers, or live feed twitter data or can be user updates of a web application. Spark

Streaming API allows to manipulate such Data streams and extends the Spark core

18

RDD APT [15]

e MLIlib: Spark ships with a machine learning package called ”MLIib” [15, 29] which
includes few machine learning applicationfeatures like classification , regression,
clustering and collaborative filtering. All these machine learning techniques can
be distributed efficiently in linear fashion onto a cluster of machines [15].

e GraphX: Spark provides graph processing by using ” GraphX” [15, 29] library. GraphX
library uses the base Spark RDD abstraction API . Some of the graph algorithms

provided by graphX are PageRank and traingle counting etc [15].

2.4.5. Ganglia

When working with large cluster of distributed systems or in any data center, there
can be a high chance of systems failure due to several reasons like power failure etc. In order
to provide a better Service of an application system, its always a good practice to keep track
of the computing clusters or grids for better decision making in the event of any failure.
There are several distributed monitoring systems that helps to keep track of the metrics and
Ganglia is one of them [27].

The machines in the cluster send and receive system level metrics like, cpu, memory
and network etc. There are few components in Ganglia that need to be configured to monitor

these metrics. They are gmetad, gmond and a web interface called ganglia-web [27].

e gmond: gmond is a Ganglia monitoring daemon and this service has to be installed
on all the machines in the cluster in order to monitor their metrics during system
work loads.

e gmetad: gmetad is a Ganglia meta daemon which consumes all the metrics thats
been generated by the gmond daemons in the cluster. This can be analagous to a
master node of Ganglia system. Gmetad uses RRD tool which is a “Round Robin
Database” [9, 27] to store all the consumed metrics from the gmond daemons.

e ganglia-web: ganglia-web has to access the RRD data [9, 27] to show the consoli-
dated metrics on a web interface. So, this deamon sits on the same system where

gmetad is configured earlier and provides a continuous web visualization of the

19

metrics data.

Ganglia Monitoring System

)

Gmond
Daemon

' Server 1
PN
“ / Gmetad Gmond
: Daemon Daemon
—0

User Ganglia Server Server 2

;

i

Gmond
Daemon

i

Server N

FIGURE 2.10. Ganglia Monitoring [27]

Show Hosts: yes ® no ' | Hadoop Cluster Monitor load_one last hour sorted descending | columns |4 : size small ;|

ubuntu
E)
1

f £
1320 1340 W00

B Load_one Last hour
(now 0.07)

(Nodes colored by 1-minute load) | Legend

€) | &192.168.153.129/ganglia/?m=load_one&r=hour&s=descending&c=Hadoop+Cluster+Monitorgh=Esh=1&hc=4az=sma v ¢||{B~ Google QuwE ¢ &=
Ganglia Hadoop Cluster Monitor Cluster Report for Mon, 16 Mar 2015 14:08:38 -0700 Get Fresh Data
Metric load one ;| Last hour : Sorted |descending : Physical View
sourceforge net
Grid > Hadoop Cluster Monitor > -chooseaNode ;|
Overview of Hadoop Cluster Monitor
CPUs Total: 2 Hadoop Cluster Monitor Cluster Load last hour Hadoop Cluster Monitor Cluster CPU last hour 7|| Hadoop Cluster Monitor Cluster Memory last hour
Hosts up: 1 e 3 t
| we
Hosts down: 0 g = r ® IF)
s 5w IF
& v P & oeo
< |
Avg Load (15, 5, 1m): L I S o [—
58%, 5%, 4% I 0 |
3 E L) 140 e | WMenory Used W Menory Shared [Memory Cached
Localtime: 1320 1340 1400 MUser CPU [Nice CPU M Systen CPU [WATT CPU || [Menory Buffered M Menory Svapped
2015-03-16 14:07 O1-win Load [Nodes M cPUs M Running Processes 0 1dle cPu ‘ B Total In-Core Menory
Hadoop Cluster Monitor Cluster Network last hour
Cluster Load Percentages ok
Do-z5 aan.00h H
LTS
¥ owk
b F o
- = -
12 ey e
B Bout

Ganglia Web Frontend version 3.1.7 Check for Updates.
Ganglia Web Backend (gmetad) version 3.1.7 Check for Updates.
Downloading and parsing ganglla's XML lree fook 0,0234s.
Images created with RRDTool version 1.4.7.

Pages generated using TemplalePower version 3.0.1

Ficure 2.11. Ganglia Visualization of Hadoop Cluster

The Figure 2.11 is a Ganglia web home interface of Hadoop cluster thats been config-

ured for this research study. The url to the web interface is “http://gmetad—ip/ganglia”. It

20

shows network load, process load, cpu load, memory load and few others can be configured
in the interface. The daemons in Hadoop like NameNode, JobTracker, TaskTracker etc can
all be monitored in Ganglia by modifying “hadoop-metrics.properties” configuration file in

the conf folder of Hadoop installation.

21

CHAPTER 3
ARCHITECTURE DESIGN AND ENVIRONMENT SETUP

3.1. Architecture Design

In this section the detailed architecture design of the research is explained. The main
aim of this Data Architecture design is to scale the available exisiting open source distributed
technology frameworks and process them efficiently on a low commodity hardware. The key
architecture components are divided into Ingesting Data, Managing Data and Accessing
Data. Several components are integrated to achieve these features at a single level of design
on virtualization environment. This research deals with both the structured text and semi-
structured streaming json data. Hadoop Distributed File System (HDFS) is the storage for
most part of this research. Using this Data Architecture a use case has been developed for

analysis which is discussed in Chapter 4

e Sourcing Data: The Data Ingestion component of this research study is mainly
focussed on bringing the data from a Relational Database and from Twitter stream-
ing API. Sqoop is a framework which enables to bring the data from any Relational
Database onto Hadoop. Flume is another technique which can ingest streaming
data onto different target stores. Hadoop file system commands are used to move
data from local file system onto HDFS. These frameworks have been configured to

bring the Data onto Hadoop.

Framework Functionality

Sqoop To ingest text data from Database

Flume To bring Twitter streaming data

TABLE 3.1. Ingestion Component.

e Storage Management: The data ingested from the Database and Twitter Streaming

is stored onto HDFS. The reason to store on HDFS is because of its reliability

22

[28, 11}, can support different formats of data and can provide replication of the data.
The Streaming data from Twitter is in the form of Json and its hard to interpret
the schema of Json data. Few Databases, to an extent provide collection data types
to support json format data, but its really challenging to create table schemas for
them. HDFS allows to store structured and unstructured data, which later can be
managed by using the ecosystems like Hive, HBase based on the requirement.

e Data Access: In this research, Hive has been extensively used to manage both the
text and json data thats been ingested using Sqoop and Flume onto HDFS. Hive
provides a SQL like interface to access the data. Hive supports collection data
types like Array, Map and Struct which help in creating table schemas easily when
dealing with semi structured kind of Json data. At an higher level, to differentiate
the query execution times, Spark is also been considered in this research. The
detailed Architecture is shown below in Figure 3.1 [24].

e Cluster Monitoring: In this research, Apache Hadoop 1.2.0 version is configured on
a 3 node VMware cluster. Monitoring the clusters is a good norm at an enterprise
level to constantly check and take appropriate actions during extra loads on the
machines for efficient functioning and reducing the down time of machines due to
failures. This research study has considered Ganglia, “a distributed monitoring

system for high-performance systems like clusters and Grids” [7].

Several Hadoop Distributions are availble in the Market that offer these component

features in their platform at an enterprise scale. Few of them are Cloudera, Hortonworks,

MapR, Pivotal. This architecture study is taken reference using the Data Architecture of

Pivotal Data Lake [24]. The main intention of this research is to use these distributed

frameworks on low commodity hardware that can scale from a single laptop to cluster of

physical machines or onto Virtualization environments.

3.2. Environment Setup

This research in its entirety is done on VMware 11 [37] virtual machine instances.

A 3 node cluster with Ubuntu 12.04 (Precise Pangolin) Operating System is been setup to

23

PostgreSQL DB

2

Stream
data
(twitter

aonres

Hdfs -put
-

DATA ACCESS LAYER

L |

HADOOP 1.2
HDFS

Flume

3 NODE VMWARE CLUSTER

GANGLIA CLUSTER MONITORING

FI1GURE 3.1. Data Architecture

configure all the open source frameworks. The Ubuntu instances are configured with Static

IP addresses to have better maintainability of the cluster, disk capacity for storage, memory

for processing and processors. The Hardware details of the instances are mentioned in the

below Table 4.1

Instance Name | Hard Disk Capacity | Memory | Processors IP
masterll 25GB 6GB 2 192.168.153.129
slavell 20GB 3GB 2 192.168.153.130
slave22 20GB 3GB 2 192.168.153.131

TABLE 3.2. Hardware Configuration.

The Table 3.3 depicts the components with respective versions thats been installed

and configured for this research study.

24

Component Version
OS Ubuntu 12.04

Java Openjdk-7-amd64
Apache Hadoop 1.2.0
Apache Sqoop 1.4
Apache Flume 1.4
Apache Hive 0.13
Apache Spark 1.2
Apache Oozie 3.3
Ganglia 3.4
Apache Maven 3.2.1

TABLE 3.3. Cluster Components.

3.2.1. Apache Hadoop 1.2.0

Since this research study is involved in dealing with several distributed framework
components, and for choosing a reliable data storage, HDFS is been considered a good choice
to source all the ingestion data. A multi 3 node Fully distributed [11] Hadoop 1.2.0 cluster
is been created for the research project. The 3 Ubuntu instances are named as ‘master1l’,
‘slavell” and ‘slave22’. The Ubuntu [35] instance named ‘masterll’ from now on is called
as Master node, is configured with both the master and slave daemons of Hadoop. The
master daemons of Hadoop are NameNode, Secondary NameNode, JobTracker and the slave
daemons of Hadoop are TaskTracker and DataNode. The remaining 2 Ubuntu instances
named ‘slavell’ and ‘slave22’ from now on are referred as slave nodes. The slave daemons
TaskTracker and DataNode are configured on both the slave nodes. Hadoop installation
ships with a configuration folder named “conf” which contains few hadoop specific xml files
and an environment file. These xml files and the environment file need to be modified with

specific properties of each daemon to run Hadoop in a fully distributed mode. The Table

25

3.4 describes the Hadoop daemons installed on the available instances.

Instance Name | Referred As Installed Hadoop Daemons

masterll Master Node | NameNode, SecondaryNameNode,
JobTracker, DataNode, TaskTracker

slavell Slave Node 1 DataNode, TaskTracker

slave22 Slave Node 2 DataNode, TaskTracker

TABLE 3.4. Hadoop Cluster Components

e NameNode: Hadoop HDFS file system administration is done by the NameNode
and can be browsed by using NameNode’s web addres at “http://Master Node
IP:50070/”. Tt also gives a summary of the cluster details about number of live
nodes available in the cluster, number of dead nodes, capacity of HDFS configured,
capacity of the remaining HDF'S left and logs etc. The below Figure 3.2 shows
HDFS web interface.

e JobTracker: Hadoop MapReduce administration is taken care by the JobTracker.
MapReduce jobs submitted by the client are managed by the JobTracker, and these
JobTrackers assign the tasks to the respective available TaskTrackers to process the
MapReduce jobs. JobTracker’s web address is at “http:://Master Node IP:50030/”.
JobTracker interface enables us to look at the running jobs, finished jobs, failure jobs
and scheduling information etc. User can browse those jobs to get more information
about the logs and other core functional features of a MapReduce job. Logs helps
us to debug any long running and stale jobs in the cluster.

e dfsadmin: Hadoop provides an admin like file shell command to get the cluster
report. The command to get the report is “hadoop dfsadmin -report” [11]. The
below Figure 3.5 describes the statistics and health of the Hadoop cluster. It reports
the status of each node, configured capacity, percentage of DF'S used and remaining,

corrupt blocks if any or missing blocks on the node etc.

26

NameNode 'ubuntu:8020"'

Started: Sat Jan 17 16:51:25 PST 2015

Version: 1.2.0, r1479473

Compiled: Mon May 6 06:59:37 UTC 2013 by hortonfo
Upgrades: There are no upgrades in progress.

Browse the filesystem

Cluster Summary

9 files and directories, 1 blocks = 10 total. Heap Size is 89.5 MB / 889 MB (10%)

Configured Capacity z 66.56 GB
DFS Used H 84.03 KB
Non DFS Used H 14.31 GB
DFS Remaining H 52.25 GB
DFS Used% : 0 %
DFS Remaining H 78.5 %
Live Nodes : 3
Dead Nodes H]
Decommissioning Nodes : o
Number of Under-Replicated Blocks o

NameNode Storage:

Storage Directory Type State

/home/hduser/dfs/name | IMAGE_AND_EDITS | Active

This is Apache Hadoop release 1.2.0

FicUre 3.2. HDFS NameNode Summary

ubuntu Hadoop Map/Reduce Administration

State: RUNNING

Started: Sat Jan 17 16:51:53 PST 2015 N
Version: 1.2.0,r1479473

Compiled: Mon May 6 06:39:37 UTC 2013 by hortonfo

Identifier: 201501171651

SafeMode: OFF

Cluster Summary (Heap Size is 89.5 MB/889 MB)

Running Running Total Nodes Occupied Occupied Reserved Reserved Map Task | Reduce Task Avg. Blacklisted Graylisted | Excluded
Map Tasks | Reduce Tasks issi Map Slots Reduce Slots Map Slots Reduce Slots Capacity Capacity Tasks/Node Nodes Nodes Nodes

0 0 0 3 0 0 0 o} 6 6 4.00 0 0

e

Scheduling Information

‘Qneue Name ‘Slale ‘Stheduling Information

defaut [running [ra

Filter (Jobid, Priority, User, Name)
Example: 'usersmith 3200' will filter by 'smith cnly in the user field and '3200' in 2l fields

Running Jobs

Retired Jobs

Local Logs
Log directory, Job Tracker History

FiGure 3.3. JobTracker Web Interface Home Page

27

Running Jobs

Completed Jobs
N o Map % Map |Maps Reduce % Reduce |Reduces Job Scheduling Diagnostic
Jobid Started Priority | User | Name Complete |Total |Completed |Complete Total Completed Information Info
Von Mar 09 select tts, count(*) from boston 100.00% 100.00%
) 2 :21 H
job_201503091232 0002 ;;1251 00 POT NORMAL | hduser where,..s(Stage-1) © 9 9 o 3 3 NA NA
N
l&
Mon Mar 09
o 2 select text from boston where text | 100.00% 100.00%
) :34: I
job_201503091232 0004 ;;1354 12 POT NORMAL | hduser lie .5(Stage-1) © 9 9 o Q ¢ NA NA
Von Mar 09 select text from boston where 100.00% 100.00%
job_201503091232 0005 | 13:37: . noe 3 3
job_201503091232_0005 %31357 33POT [NORMAL|hduser Yshock %(Stege-1) 9 9 0 0 NA NA
Won Mar 09 select count(text) from boston 100.00% 100.00%
i 2 :58: ol . ek :
job_201503091232_0007 ;31358 11POT NORMAL | hduser where . text(Stage-1) < 9 9 o 3 3 NA NA
Vo Mar 09 select text, count{text) as ctfrom | 100,00% 100.00%
job 201503091232 0008 |15:27: » (Ot .00% .00%
job 201503091232 0008 ;31257 34 POT NORMAL | hduser bos..10(Stage-1] 9 9 3 3 NA NA
Failed Jobs
Job
. - Map % Map |Maps Reduce % |Reduce |Reduces " " .
Jobid Started |Priority |User |Name Complete |Total | Completed |Complete |Total |Completed IS(hedullr_lg Diagnostic Info
Information
Von Mar # of failad Map Tasks exceeded allowed limit.
ob 201503091232 0001 23-7-15 NORMAL |hduser ;i:t;trlﬁ;hzﬁgntt(t‘szsgmelw 10000% |10 |9 100.00% 4 0 NA FalledCount: 1. LastFailedTask
POT 2015 - DS(otad = tesk 201503091232 0001 m 000006
v
Lgon Ver select text from boston .
fob 201503091232 0003|332 47 |NORMAL| hduser |where 9 o 100.00% g 0 NA NA
PD.T 2'015 t...%#shock%(Stage-1)

FIGURE 3.4. JobTracker Jobs Web Interface

mm, hduser@ubuntu:~/hadoop-1.2.0/confs dfsadmin -report
dfsadmin: command not found
hduser@ubuntu:~/hadoop-1.2.8/confs cd ..
hduserg@ubuntu:—~/hadeoop-1.2 .85 hadeoop dfsadmin -repeort
Warning: SHADOOP_HOME is deprecated.

Configured Capacity: 71465029632 (66.56 GB)
Present Capacity: 325852364808 (30.35 GB)
DFS Remaining: 17207959552 (16.063 GB)

DFS Used: 15377276928 (14.32 GB)

DFS Used% 47 . 19%

under replicated blocks: 15

Blocks with corrupt replicas: ©

Datanodes awvailable: 3 (3 total, © dead)

‘Hame: 192.168.153.130:50010

Decommission Status : NMormal

Configured Capacity: 28401922048 (26.45 GB)
DFS Used: 5125685248 (4.77 GB)

Mon DFS Used: 169529006608 (10.2 GB)

g DFS Remaining: 12323336192(11.48 GB)

T—

DFS Used%: 18.05%

DFS Remaining®%: 43.39%
Last contact: Fri Mar 26 81:32:32 PDT 2815

Mame: 192.168.153.131:50010

Decommission Status : NMormal

Configured Capacity: 17831882752 (16.61 GB)
DFS Used: 5125726208 (4.77 GB

Mon DFS Used: 18369241088 (9.6 GB)

DFS Remaining: 2336915456(2.18 GB)

DFS Used 28 .74%

DFsS Remaining H 13.11%

Last contact: Fri Mar 20 ©01:32:31 PDT 2015

Mame: 192.168.153.129:500160

Decommission Status : NMormal

Configured cCapacity: 25231224832 (23.5 GB)
DFS Used: 5125865472 (4.77 GB)

Mon DFS Used: 17557651456 (16.35 GB)

DFS Remaining: 2547707904(2.37 GB)

DFS Used% 20 .32%

DFS Remaining® 10.1%

Last contact: Fri Mar 20 ©1:32:31 PDT 2015

F1GURE 3.5. Dfsadmin Report

28

3.2.2. Sqoop

This research study also involves in bringing the data from PostgreSQL 9 Database
[25] onto Hadoop. As mentioned earlier from the Background section 2.4.1 Sqoop is a tool
that facilitates to bring in the data from Databases. Before working with Sqoop firstly,
PostgreSQL Database need to be configured to listen to the IP on where Sqoop client is
installed. “pg_hba.conf” “postgresql.conf” are the configuration files on PostgreSQL that
need to be changed to listen to the IP addresses. Secondly, the respective vendor specific
JDBC jars that are required for the Sqoop to interact with any Database need to be installed
in the “lib” folder of Sqoop. Sqoop can be configured properly on the Master Node by
modifying the environment file “sqoop-env.sh” of Sqoop installation. Some environment
variables are HADOOP_HOME, HBASE_HOME and HIVE_HOME.

5 i -

Properties Statistics Dependencies | Dependents

- B server Groups
- B
= [server(127.0.0.1:5432)
= Databases (6)
38 ambari
3% ambarirca
% events

Properties
MNo properties are available for the current selection

) postgres
sqoop
+ @ catalogs (2)
i Event Triggers (0)
+ B Extensions (1)
= @ schemas (1)
= < public
¥® Collations (0)
& Domains (0)
&» FTS Configurations (0)
ili FTs Dictionaries (0)
& FTS Parsers (0)
L FTs Templates (0)
@ Functions (0)
% Sequences (0)
= I Tables (2)
1 customers
+ : tweets
& Trigger Functions (0) b
Views (0)
W slony Replication (0)
38 bwitker

FIGURE 3.6. PostgreSQL Database

The above Figure 3.6 is a PostgreSQL 9 Database created with a database named

sqoop and tables named tweets, customers. The Figure 3.7 is a “sqoop-list-tables” job. If the

29

connection from Sqoop is OK, then it will list all the tables in the specified sqoop database.

In this case, the job successfully fetches the list of those tables as an output of the job.

hduser gubuntu:~/sqoop-1.4/bin§ ¢d ..

duserfubuntu:~/sqoop-1.45 bin/sqoop-List-tables --connect jdbe:postqresql://127.8.6.1:5432/sqoop --usernane postqres -P
Warning: [home/hduser /sqoop-1.4/../hbase does not exist! HBase imports will fail.

Please set SHBASE HOME to the root of your HBase installation.

Warning: [home/hduser /sqoop-1.4/../accumulo does not exist! Accumulo imports will fail,

Please set SACCUNULO_HOME to the root of your Accunulo installation.

Warning: SHADOOP HOME i deprecated.

15/03/11 19:51:22 INFO sqoop. Sqoop: Running Sqoop version: 1.4.5
Enter passhord:

15/03/11 19:51:26 INFO manager.SqlManager: Using default fetchSize of 1000
fheets

custoners

hduser gubuntu:~/sqoop-1.43 |

FIGURE 3.7. Sqoop List Tables

3.2.3. Flume

Flume is a tool to bring in streaming data or log data onto target stores. This research
study has ingested the Twitter Streaming API data using Flume onto target HDFS store.
The detailed description about TwitterAgent, structure of tweets ingested, HDFS storage

area are shown as diagrams in the later Chapter 4.

3.2.4. Hive

The structured text data using Sqoop and semi structured json data ingested using
Flume on HDFS is been processed on Hive for analytics. Hive is considered in this research

because of its ability to store and process this kind of json data by supporting both primitive

30

and collection data types. The flexibility of using Hive and the efficiency of it are shown in
the usecase at Chapter 4. The “conf” folder of Hive distribution ships with few configurta-

tion xml files and an environment file. These environment variables need to be configured

properly.

hive (default)> show partitions boston;

en: 1.186 seconds, Fetched: 10 row(s)

hive (default)> AMALYZE TABLE boston PARTITION(date='2013-04-16') COMPUTE STATIS
TICS;
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to © since there's no reduce operator
Starting Job = job_2015083141217_8001, Tracking URL = http://ubuntu:50038/jobdeta
ils.jsp?jobid=job_201503141217_0001
Kill command = /home/hduser/hadoop-1.2.0/1ibexec/.. /bin/hadoop job -kill job_z0
1563141217_00601
Hadoop job information for Stage-0: number of mappers: 3: number of reducers: @
015-03-14 13:04:03,388 Stage-0 = reduce

-03-14 13 83,499 Stage-0 8 reduce 1

RER T 8 97 Stage-0 ma 8 reduce , Cumulative CPU 68.2

-03-14 41,149 Stage-0 reduc Cumulative CPU 200.49 s

-03-14 13 B0 Stage-8 ma %, reduce = 8%, Cumulative CPU 2

-03-14 13:07:52,642 Stage-0 : reduce Cumulative CPU

015-03-14 13:07:54,650 Stage-0 map 0O%, e = Cumulative CPU 294.6

MapReduce Total cumulative CPU time: 4 minutes 54 seconds 660 msec
Ended Job = job_2015083141217_0061
Partition default.boston{date=2013-04-16} stats: [numFiles=1, numRows=4351177, totalSize=723146668, rawDataSize=718795491]
MapReduce Jobs Launched:
Job ©: Map: 3 Cumulative CPU: 294.66 sec HDFS Read: 723155520 HDFS Write: 294 SUCCESS
Total MapReduce CPU Time Spent: 4 minutes 54 seconds 660 msec
0K
boston. id bostan.name boston.ts boston. text boston.geo boston.date
Time taken: 241.583 seconds
hive (default)>

FIGURE 3.8. Hive CLI

The above Figure 3.8 is a “Hive Command Line Interface” (Hive CLI) [1, 13]. Hive
CLI is a command line service interaction to Hive. HiveQL is a SQI like query interface to

run queries on Hive.

3.2.5. Spark

The part of this research study also explores the uses of Spark when working with
the distributed systems. Spark enables the users to work with streaming data as well as
structured data. Spark also extends the compatability to use the data sourced on Hive.
For this research, “Spark standalone mode” [29] is deployed to work along with Hadoop.

SparkSQL, a SQL like module is considered to query the data sourced in Hive.

31

qu,‘F Spark Master at spark://192.168.153.129:7077

URL: spark/192.168.153.129:7077
Workers: 3

Cores: 6 Total, 0 Used

Memory: 8.7 GB Total, 0.0 B Used
Applications: 0 Running, 0 Completed
Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

1] Address State Cores Memory
worker-20150310154119-ubuntu-49681 Ubuntu:49681 ALIVE 2 (0 Used) 1971.0 MB (0.0 B Used)
worker-20150310154125-ubuntu-56327 Ubuntu;56327 ALIVE 2(0Used) 4.8GB(0.08 Used)
worker-20150310160736-ubuntu-42312 ubuntu:42312 ALIVE 2 (0 Used) 1971.0MB (0.0 B Used)
Running Applications

D Name Cores Memory per Node Submitted Time User State
Completed Applications

] Name Cores Memory per Node Submitted Time User State

Ficure 3.9. Spark Standalone Cluster Home Page

Spor# Jobs | Stages Storage Envionment Executors
b

Spark Stages (for all jobs)

Total Duration: 14 min

Scheduling Mode: FIFO

Active Stages: 0

Completed Stages: 6

Falled Stages: 0

Active Stages (0)

Stage Id Description Submitted Duration Tasks: Succeeded Total Input Output Shuffle Read
Completed Stages (6)

Stageld Description Submitied Duration ~ Tasks: Succeeded Total Input Output
5 count at <console>17 <dlalls 2015/03/13 19:49:38 38 ms R 9535KB
4 countat cconsolesi17 s 2050313194851 ozs (ENINEENNN v B
3 count at <console>:17 +delalls 2015/03/13 19:48:30 01s 2 397.1KB
2 count at <consolex14 <els 2015091319471 03s (IR v 8
1 count at cconsoles14 s 20150313194600 ots (RN 7.1 (B
0 firs at <consoles15 woels 2050313194219 03s (NN 15258
Failed Stages (0)

Stage Id Description Submitted Duration Tasks: Succeeded/Total Input Qutput Shuffle Read Shuffle Write
Spark 1.2

F1GURE 3.10. Spark Standalone Cluster Jobs for Count Queries

The Figure 3.9 is a 3 Node Standalone Spark Cluster with one Node serving as both
Master, Slave and the remaining two as only Slaves. Spark clusters need to have Driver
Mangers [42] to manage and can be installed in Standalone Mode, or YARN or MESOS.

This research is only limited to Standalone Mode [15]

32

CHAPTER 4
USE CASE AND RESULTS

This research study has taken a use case to “Analyze the Twitter Streaming API
data” [3] the tweets during the release of Iphone watch. The frameworks used for the analyis
are Flume, Hive and Spark. The streaming data is pulled using Flume and sourced onto
target HDFS store for storage. The semi structured json data is interpreted on Hive and
Spark for the end user analytics. This use case study is much benefitted from the cloudera

cdh-twitter- example [3].

4.1. Configuring Flume

Flume can bring in the events using Source, pass them on to Channel and finally will
be consumed by Sinks [6]. All these components need to be configured in a Flume agent.

The Figure 4.1 [19, 6] defines the Flume Agent named apple.

3 O 4) z22pM & hduser 3%
you may not use th
ense. You nay obtain

ed to in writing,
distributed on an

ed per apple,

3

ined
ource. Twittersource

nch, apple watch, zpple company products, steve jobs launch, Tim cook Launch watch, apple vatch price, apple stocks, apple competition, samsung watch, amazing

9009 /user /hduser /appLetweets %Y /n/%d/%H/

hdusergubuntu:-$ |

FIGURE 4.1. Flume Agent

33

Its configured with the Source as Twitter. Flume allows to build a Custom Source or

use the exisiting sources of Flume. For this research a custom Flume Source available at [3]
is used. The source jar need to be uploaded to the “lib” folder of flume and the path of this
jar need to be included for the environment variable “F LUME_CLASSPATH”, so that flume
agent can recognize it during the start up of the flume job. The Channel considered in this
study is a File Channel and Sink is the HDFS location. The Flume agent is configured to
search for the keywords ranging like apple watch, apple price, apple stocks, apple competition
and apple launch etc were taken. The HDFS location in the Flume agent is configured
“hdfs://192.168.153.129:9000 /user /hduser /appletweets/ %Y /%m /%d/%H/” [19] so, the
tweets gets stored in the HDFS with directory structure like Year, Month, Date, Hour.
That is, an event of tweet generated at 09/03/2015 8 00 AM will land in “hdfs://<HDFS
LOCATION>/2015/03/09/08.” [19]. This format will be useful to make end analytics at

more granular level in the form of Partitioning in Hive.

4.2. Data

The Figure 4.2 shows the sample chunk of the Tweet Data retrieved using Flume.

HDFS:/user/hduser/appleretweet/2015/03/12/09/FlumeData. 1426896934457 - Mozilla Firefox 3 < @) 1234AM 2 hduser 3
é Ubuntu Start Page HOFs:/user/hduser/app... X

€ @ ubuntu50¢ 282840 oc 58 : ! ! ~ &/ [B+ coog Q%s & A=
; E@Most visited v (] Getting Started

File: /2015/03/12/09/ D: 1426896934457

Goto : [Juser/nduser/appleretweet/2015/] go |

é Go back to dir listing
a Advanced view/download options

View Next chunk

{-filter level:"

T O T e (e O e S RS B L A T T gy Cnedia: [{"sizes": {"snall
66 2 g ll,

{°¥":340, " resi: 151}, “thumb* {"v ":576050324756119552,"nedia_url https**https: //gbs. tving mn/uema/s ot
PHQAADITe. Thbe. g, confuedie/e Bt Pt pxr ppleinsider/status /7605032479801 2 “indices®: [103,125], . "type: "phots urtple, witar.con
/64ch 102", /13 Co/Gudcha0ZRg 1) "in_reply.to user 3 s _1d":nuTL, “created_at": “Thu ar lace* :null, "coordinates* :null, *text": “Apple removes
Make Fustaand o 15 e ahead of shpple Waich debu hitp e co/icoEyrs2 ht(p //1.co/6xdchIz - P Stps//aBs chnesdar. confarticl oo 15/ O/ appte:

hand: javbone- up fr

180, mz] display_L ur\ i / 5 1 D g iy dices"; (61,671}, “nedia: [{"sizes": {"snall":
“fit* “nediun”{"v":600," 268)},"id"

pbs.tvingcon/media/a et
*display_url":"pic. tvitter.con

(v 30, rest

resize”: *fi

ST R A
re\/a>", “Tavori ted®: false, "in e iotootae Far

prhﬂ\! Link_color*:"445354", "profile_banner_url M\ps //pbs. ting. con/profile_banners/20542450

000, et falbe, e e e e analys)s reviews, hov-to's and more since 1997. Like us on Facebook at: http: //facebook .con

., *profile_background_color" :"000000", *created ai 10 20:27:09 400

profile. tnage":falee, - follovers.caint- 20367, profile 1age url httj tving. con/profile maqes/ssaasmsoszsasmn/mpszm o geo_enablect fase," T S 8 G A T AT s

/n “prufl\e background_inage url_https* https: /abs (vmg con/nages/thenes/thened/bg. gif*, *follov_request_sent"inull, url":*http: //vwv. appleinsider. con, “utc_offset":-18000, tine_zone®:"Central Tine (LS

ey ot ticatonte L “profile_use_background_isage" false,"friends_count":14,"profle_sidebar_fill_color”: 000000",“screen_nane”: appleinsider-,"id str":"20542450", "profile_isage_ url": http://pbs. tving Confprofile,insges /553054706462535680

e]

fiests et con/appleinsidery

/6x4chD28g", "url” “http: //t cu/ﬁxAchJDZSq }."user_nentions": (1}, “source* "< h
{“location”:“Cupertino, California®,"default_profile”:false, “profile ¢ bickgroumd
/1423080037" 14" 20542450, “folloving" inull, “protected" :false, *favaurites_count":3L
appeinsidardotcon®, contributors_anbled- false“proile sidabar border_color:

. “nane
Mtps /1

{*filter_Tevel": lov", “retweeted" false, “in_reply_to_screen_nane" ull, possibly sensitivefalse, toncated-s alse.-Lang cin_rely_to status id str-ioull,40":S7605007652742400,in_fuply_touser 4 stos nulL,“tinestamp ", “L2SLICISE0E" “in_reply_to_
status 3 lac natestmitte-tect- - appte dejade. vender a Jakbone Up y Nike FuelBand para o afectar 3l Apple fatch hip://t.c
/JziHeumyr ttp: /A *indices*
182,104). "d s*: 1. “user_sentions*: 1}, *source" "2 et M(p I app\e R e narot o
\">i05<\/a>" unt er-
{“location®:**,“default_profile":false, profile Background tile Folse, “statuses, counte 4296, Lang ", profile Link color* :"008464", “profile bamner_ url*:*https: /pbs. tviag.con/profile_bamners/ 2266761150
& iy il e Tl e el L el e “verified":f e L i e R () T oy e 0 0 € I

“created at*: *Sun Dec 29 03:15:14
LA R AT i R L e L 5 o L e

ofile_sidebar_border_color* " FFFF
follorers Catnt- 25 5profile saage ur. hps:

se, rhonnirtd B, profite ba(qucund color
ge' false, tps: //p
eSS0 SLEST L, et “otof e beElaroinsests orL FEoeL. b 3: b e, cn/araTi ockaround Tonce TRGO00OENSS00SH

Download this file
Tail this file
Chunk size to view (in bytes, up to file's DFS block size): [32768 Refresh

Total number of blocks: 1
1546181: 192.168.153.129:50010 192.168.153.131:50010 192.168.153.130:50010

Go back to DFS home
Local logs

Log directory
This is Apache Hadoop release 1.2.0

(]

FIGURE 4.2. Flume Tweet Json Data

34

The Data accumulated using Flume is around 1.4 GB and is in json structure.

4.3. Configuring Hive

Tweet data provide lot of user information and is used for analysis by many companies
in the form of marketing their products and providing better services. The Twitter data
brought in using Flume need to be analyzed and Hive is considered as an option in this study
because of its support to interpret semi structured data by providing complex collection data
types like “ARRAY, MAP, STRUCT” [38, 1] for a better table design to access the data
efficiently.

hduser@ubuntu: ~fthesis 3 O) 156PM 2 hduser
"B hduser@ubuntu:~$ cd thesis/

hdusergubuntu:~/tl tore appleretweet.q

- #1. Add serde jar for the hive to interpret the json data

[' ADD JAR /home /hduser /hive-.13/1ib/hive-serdes-1,5- SNAPSHOT. jar ;

S SR———

j -- #2. Drop the table if already exists

DROP TABLE appleretneet;

)
6 o

EATE EXTERNAL TABLE appleretweet (
id BIGINT,
| at STRING,
source STRING,
retweeted_status STRUCT<
text:STRING
igne:STRING, nane:STRING>,

STRING,name:STRING>>,

PARTITIONED BY (datehour STRING)

ROW FORMAT SEI vudera. h serde.JSONSerDe
LOCATION ' fuser/hduser/appleretweet’

S S —

-- #4. Point the data to the external table by using alter table command

alter table appleretweet add partition (datehour='2015631269') location '/user/hduser/appleretweet/2015/03/12/89';

-~ end of the hive dnl, ddl job

- hdusar@ubuntu:~/thrsis$l

FIGURE 4.3. External Tweets Table

The above Figure 4.3 [3, 19] is an External Table structure created in Hive for the
Json T'weet data. External Table have few advantages as discussed earlier in 2.4.3.1. In this

case, as the Data is ingesting through Flume agent into the HDFS location, this External

35

Table can also be pointed to the same HDFS location using “LOCATION” [1] keyword in
the Table definiton. If a Managed Table is used here for the Table design, then Hive moves
the data from the HDFS location to its warehouse directory during the “LOAD” [1, 3§]
operation and when the Table is dropped then entire data will also be lost. This is where
External Table design comes in a good use because, the data still persists even when the
Table is dropped. The Data for the External Table now resides in HDFS location shown
in Figure 4.2 specified by the Flume agent, and as the Table is defined as External there is
no need to move the data into the Table. However, as the data is ingesting into the HDFS
there is a need to add the partitions to have the view of the latest Data in Hive. Tables
can be Partitioned on a column by defining “PARTITION BY” [1, 5] clause during the
Table definition. By using Partitioning technique, Hive can manage the data into chunks
of directories based on the Partition column data type. In this case, the External Table
is Partitioned on the “datehour” column with the data type STRING. This hourly Data
partition can be added into Hive by using the DML statement “ALTER TABLE” [1] which

provides access to the latest hourly Data required for the Hive to do some analytics.

InputFormat and OutputFormat in a MapReduce job specifies the format of the
key-value pairs to be read from and write to the files. Hive uses “TextInputFormat and
HivelgnoreKeyTextOutputFormat” [10, 1] as the Input and Output file formats. “Hive
stores the Table data as a TEXTFILE by default” [1]. That is, Hive doesnot require any
explicit declaration of “STORED AS TEXTFILE” term when creating the table structure.
In this usecase the data pulled from Twitter API is a semi structured Json data but Hive
support TEXTFILE as a default storage. This Json data can be interpreted by Hive using
the Json SerDe [1, 10]. “SerDe is called serializer, deserializer” [1]. SerDes will be useful for
Hive to parse the unstructured data in files as records. Hive has few built in SerDes. The
details about SerDe is mentioned at 2.4.3.2. This study has used the Json SerDe from [3].
If Hive require any type of SerDes like CSV, Regex or Avro etc., they need to be placed in
the “lib” folder of Hive installation and the jars are added during the Hive CLI session using

“ADD JAR <path-to-serde>" [1] command. Hive can parse the Json Tweet data by using

36

the “ROW FORMAT SERDE “ [1, 10] clause specified during the Table definition. The Data
is now available for the External Table with Partitions on the datehour column. The Figure
4.4 is a detailed formatted description of the Table partition on datehour=2015031209" for
the External Table “apple”. The total size on that partition is specified as 1.2 GB. The
Partition also describes the SerDe used, HDF'S location, Partition column used and number

of files in the Partition etc.

hive (default)> describe formatted apple partition(datehour=2615031269);

data_type conment

col_name data_type conment
from deserializer

from deserializer

id bigint
created_at string
source string from deserializer

favorited boolean from deserializer

retweeted status structetextzstring,user:structescreen_name:string,name:strings,retweet_count:int> from deserializer

entities structeurls:array<struct<expanded_url:string>>,user_mentions:array<struct<screen_name:string,name:string>>,hashtags:array<struct<text:string>>> f
text string from deserializer

user struct<screen_name:string,namezstring, friends_count:int, followers_count:int ,statuses_count:int,verifiedzboolean,utc_offset:int,time_zone:strings
in_reply_to_screen_name string from deserializer

Partition Information

col_name data_type conment

datehour int

% Detailed Partition Information

Partition Value: [2015631269]

Database: default

Table; apple

CreateTine: Sat Mar 21 14:41:52 PDT 2015

LastAccessTime: UNKNOHN

Protect Mode: None

Location: hdfs://192.168.153.129:9600/user /hduser/apple/2015/63/12 /69
Partition Parameters:

COLUMN_STATS_ACCURATE ~ false

nunFiles
NURROWS
rawdatasize
totalsize

transient_lastddlTine

8
-1

=il
1215988253
1426974112

Storage Information
SerDe Library: com.cloudera.hive. serde. JSONSerDe
InputFormat: orq.apache.hadoop. mapred. TextInputFormat
QutputFormat: org.apache.hadoop. hive.ql. i0.HiveIgnoreKeyTextOutputFormat
Compressed: No
Num Buckets: -1
Bucket Columns: 1
Sort Columns: [
Storage Dasc Params:
serialization.format 1
Time taken: 0.365 seconds, Fetched: 43 row(s)
hive (default)s |

FIGURE 4.4. External Table Partition

Some Tweet analytics like the active timezones for the generated tweets, retweet
analysis are performed on this Table [2] using Hive are shown in Figures 4.5, 4.6. Due to the

size constraints configured for the Hadoop cluster daemons, only small portion of the data

37

of around 0.3 GB on partition datehour="2015031208" has been considered for analysis.

k tp: //ubuntu: 50030/ jobdetails. jsp?jobid=job_201503211536_0005
Kill Command = /home/hduser/hadoop-1.2.8/1ibexec/.. bin/hadoop job -kill job_201503211536_8605
Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 1

50,525 Stage-2 map = 0%, reduce =
52,531 Stage-2 map = 108%, reduce = 0%, Cumulative CPU 8.53 sec
o 00,580 Stage-2 map = 100%, reduce = 100%, Cumulative CPU 1.B1 sec
MapReduce Total cumulative CPU time: 1 seconds 810 msec
Ended Job = job_201503211536_0605
MapReduce Jobs Launched:
Job ©: Map: 1 Reduce: 1 Cumulative CPU: 22.46 sec HDFS Read: 189903353 HDFS Write: 1126 SUCCESS
Job 1: Map: 1 Reduce: 1 Cumulative CPU: 1.81 sec HDFS Read: 1582 HDFS Write: 326 SUCCESS
Total MapReduce CPU Time Spent: 24 seconds 278 msec
0K
user.time_zone _ci total_count
Eastern Time (US & Canada) Thu 3911
Central Time (US & Canada) Thu 1739
Pacific Time (US & Canada) Thu 1365
London Thu 1303
Mexico City Thu 1303
Tokyo Thu 1383
Ansterdanm Thu 1303
Singapore Thu 870
Atlantic Time (Canada) Thu 870
Bogota Thu 870
Alaska Thu 878
Chennai Thu 870
Caracas Thu 869
Hawaii Thu 869
Athens Thu 435
Time taken: 52.257 seconds, Fetched: 15 row(s)
- | hive (default)>

FIGURE 4.5. Analysis of the User Activity on Different Timezones

4.4. Configuring Spark SQL

The Data is now been ingested, cleansed, formatted in Hive and is used for querying
to derive some analytics based on the requirements as seen from the above Sections 4.1, 4.3.
At a next level of design, Spark SQL [30, 40] which provides sql like queries using Spark is
used to access the data on HDFS to compare the same results with Hadoop. Spark SQL
builds a schema from the existing RDD called as SchemaRDD [30]. “ A SchemaRDD is
analogous to a table in a Relational Database” [30]. To use the Spark SQL component, a
SQLContext is created by using the SparkContext object in Spark [30]. SQLContext will be
a starting point of interaction to use sql like queries. Spark SQL has the ability to derive
the schema of the Json data and build a new SchemaRDD [30] . In this usecase as the data
ingested is of Json format, a SQLContext is used to infer the Json schema for query analysis.

If any intermediate RDD is reused for computation Spark provides a feature called “persist”

38

Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 1
2015-03-21 14:57:46,556 Stage-2 map = 0% :‘
2015-03-21 14:57:49,565 Stage-2 map = 108%, %, Cumulative CPU 8.79 sec
2015-03-21 14:57:56,628 Stage-2 map = 100%, reduce = 33%, Cumulative CPU 0.79 sec
2015-03-21 14:57:57,632 Stage-2 map = 108%, reduce = 100%, Cumulative CPU 2.49 sec
MapReduce Total cumulative CPU time: 2 seconds 490 msec
Ended Job = job_281503211433_f0662
HapReduce Jobs Launched: k
Job 8: Map: 1 Reduce: 1 Cumulative CPU: 32.47 sec HDFS Read: 189903353 HDFS Write: 751 SUCCESS
Job 1: Map: 1 Reduce: 1 Cumulative CPU: 2.49 sec HDFS Read: 1206 HDFS Write: 167 SUCCESS
Total MapReduce CPU Time Spent: 34 seconds 966 msec
0K
t.retweeted screen name total retweets tweet_count
Fred_Delicious 500 1
Girlslogic e 1
TheEconomist 123 1
timpritlove 59 1
BenedictEvans 50 1
Lydia Kld “ o1
AppStore 4 1
jmatuk 26 1
etherbrian bl 1
' HassamHumor 16 1
Time taken: 65.596 seconds, Fetched: 10 row(s)
- hive (default)> |

FIGURE 4.6. Maximum Retweet Analysis

[15] to cache the data. Computing an already cached data can significantly achieve faster

results 4.5. The Figure 4.7 is the Spark SQL analysis.

4.5. Results

This section tells about the comparisonal analysis for the queries executed on same
datasets both with Hive and Spark. The dataset here is the Hive partition data on date-
hour="2015031209’ which was discussed earlier in Section 4.3. The counts for the keyword
“amazing” on tweets data for the Table apple is analyzed both on Hive as well as Spark.

The Figure 4.8 demonstrates the Hive and Spark SQL query execution times. “Hive.count”
is the time taken for the count analysis using Hive. “Spark.count” is the time taken for the
count analysis using Spark SQL. “Spark.cache.count” is when the data is cached and per-
formed the count analysis. The first time execution if cache mechanism does not give the
better result, but the subsequent count queries can definitely benefit due to caching and can

be seen in Figure 4.8.

39

hduser@ubuntu: ~
hduser@ubuntu more ~/thesis/spa
val sqlContex ew org.apache.sp

val paths = "/user/hive/warehou

val apptweet = sqlContext.

apptweet.printSchema()

' appt‘weet.registerTempTahle["apptweet")

Context.sql("SELECT text FROM apptweet WHERE text LIKE '%amazing%'").count()

sqlContext.sql{"SELECT text FROM apptweet WHERE text LIKE '%amazing).cache()

®
=
»
B
7

hduser@ubuntu:~$ I

FiGure 4.7. Spark SQL JsonRDD Analysis to Analyze the Json format

Tweet Data

Hive vs SparkSQL Query Execution Times

5S¢

EXECUTION TIME - SECONDS

0752 12 0565 12 0648 12 2 06 12

Hive Count Spark Count C: o Count2 Count3 Countd Counts Countt

DATA SIZE - GB

F1GURE 4.8. Hive vs Spark SQL Query Analysis on the Partition Data

40

Count Query Execution Time | Data Size
Hive.count 56.92s 1.2GB
Spark.count 15.484s 1.2GB

Spark.cache.count 16.478s 1.2GB

Spark.count 0.752s 1.2GB
Spark.count 0.565s 1.2GB
Spark.count 0.648s 1.2GB
Spark.count 0.419s 1.2GB
Spark.count 0.60s 1.2GB

TABLE 4.1. Hive vs Spark SQL Query Analysis.

4.6. Ganglia Metrics

During the query execution analysis using Hive, some cluster metrics have been ana-
lyzed on the CPU, Memory, Process loads. The overall Memory of the cluster is 12GB 4.1,

cores are 6 4.1, nodes are 3.

Hadoop Cluster Monitor Cluster CPU last hour

-
13:10 13:15 13: 20 15:25 13:30 13:35 13:40 13:45 13:50 1355 14:00 14:05
W User CPU O Nice CPU M system CPU @ WAIT CPU 0O Idle cPU

FiGUuRrE 4.9. Ganglia CPU Cluster Metrics of Hadoop Cluster

41

Hadoop Cluster Monitor Cluster Memory last hour

126

16

10 6

10 6

.. &yte =

| 13:15
| @ Menory Used

13: 20
B Memory Shared

13:2%

13:38 13- 3%
B Memory Cached

1340 13:45
O Memory Buffered

13:30 13:3%
B Menory Swapped

14: 00 14 0% 1410
B Total In-Core Memory

F1GURE 4.10. Ganglia MEMORY Cluster Metrics of Hadoop Cluster

Load/Procs

Hadoop Cluster Monitor Cluster Load last hour

cnmenwbSh P REBNYRNUBYRYESERSLBYRYNEDRRRINY

_l_u_l_l—

13:15
O 1-min Load

14: 05 14:10
B Funning Processes

FI1cURE 4.11. Ganglia PROCESS Load Metrics of Hadoop Cluster

42

CHAPTER 5

CONCLUSIONS AND FUTUREWORK

This thesis presents an Open Data Architecture in bulding a Data flow lake by using
the available open source distributed technologies on a low commodity hardware. This
approach uses Hadoop Distributed File System as a storage for reliability and MapReduce
as the main programming model for the computation.

This study also analyzes the uses of frameworks like Flume and Hive in order to work
on the semi structured data formats. This study reproduces the data flow architecture by
using the existing ones depending on the usecase requirement on a low cost hardware.

Finally, this thesis also discusses the integration of distributed framework components

at a single level of design to improve execution time and for better managability.

5.1. Future Work

The data ingested for analysis for this research is limited to a small size due to
Hardware constraints. In this study, Flume is configured to bring the data and store it
in a hourly fashion on HDFS 4.1. The Partitions in this case study is limited to 3 since
the data ingested is only limited to 3 hours of data using Flume agent. At higher level of
Production Environments when Flume is used to collect large amounts of data in hourly
fashion, there is a need to add more Partitions in Hive to look at the latest view of the Data
for analytics. The data to an External table can be made available by adding Partitions
as discussed in section 4.3. As the data increases, creating the Partitions manually in Hive
is a bit labourious and not a good technique. This process of adding partitions can be
scheduled through a scheduler. Apache Oozie™"is a scheduling framework to manage and
automate Hadoop jobs” [23, 18]. These collection of jobs are called as actions and they form
a “control dependency” [23] DAGs. “These actions are referred as a Directed Acyclic Graph
jobs because, the later job cannot run until unless the previous action is completed” [23].

The Figure 5.1 is a sample oozie job flow DAG. Oozie workflows are controlled by

action nodes and control flow nodes. Oozie currently supports MapReduce, Pig, Hive, Sqoop,

43

Qo Web Console - MozillaFrefox b o) 1115 & hduser 2

6 Ubuntu Start Fage X HOFS fuser/hduserfapp.. % Version1.4.0—Apa... x JOSNITUGIOIDTINER &

€ Blocalhost 11000 oozl B eege R IRRIE
; Bvostvisted»IGettingStarted
COCHE Documentation

Oozie Web Console

-~

Voriu b | Coore ts | B | Stnih | stneriin | S
e s i el Gty
i ane S5 ke Gop el s ithaed
1 (OLSEMEEb . noeed NLE) 0 hdse T 5 25 022226NT Th 05V SI22212GHT T 5 2S2LESGUT
oben: ek IO IMIBIP auie s V)

oo | JobDafrin | Job Corfigraion | Joblog | Job DAG

@

[B [0 0 ()

2

b localhost:11000/o0zie%

FIGURE 5.1. Oozie Job

Java and Shell script workflow jobs [23]. Oozie provides Coordinator jobs that can be
configured to trigger actions at regular intervals of time. Since the data ingesting through
Flume is in a hourly fashion and for Hive to have the latest view of the data, the “ALTER
TABLE” to add partitions can be configured in the Oozie Coordinator job to run at every
60 minutes. This mechanism can significantly automate the process to add hourly Partition

data onto Hive which can be seamlessly used to derive analytics on the latest set of Data.

44

BIBLIOGRAPHY

Edward Capriolo, Dean Wampler, and Jason Rutherglen, Programming hive, O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472., October 2012.
Natkins Jon cloudera BLOG, http://blog.cloudera.com/blog/2012/09/analyzing-twitter-
data-with-hadoop/.

cloudera github, https://github.com/cloudera/cdh-twitter-example.

Jeffrey Dean and Sanjay Ghemawat, Mapreduce: Simplified data processing on large
clusters, Commun. ACM 51 (2008), no. 1, 107-113.

Apache Hive DML, https://cwiki.apache.orq/confluence/display/hive /languagemanual+dml.
Apache Flume, http://flume.apache.org/releases/content/1.4.0/flumeuserguide.htmi.
Ganglia, hitp://ganglia.sourceforge.net/.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The google file system, Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles (New
York, NY, USA), SOSP 03, ACM, 2003, pp. 29-43.

Ganglia github, https://github.com/ganglia/monitor-core /wiki/qganglia-quick-start.
Apache Hive Developer Guide, https://cwiki.apache.org/confluence/display/hive/developerguide.
Apache Hadoop, Apache hadoop, 2011.

Apache HDFS, hittps://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

Apache Hive, https://hive.apache.org/.

Steve Hoffman, Apache flume: Distributed log collection for hadoop, Packt Publishing
Ltd, 2013.

Karau Holden, Andy Konwinski, Patrick Wendell, and Zaharia Matei, Learning spark,
O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472., Febru-
ary 2015.

Alex Holmes, Hadoop in practice, Manning Publications Co., 2012.

Hortonworks, http://hortonworks.com /hadoop/flume/.

Mohammad Islam, Angelo K. Huang, Mohamed Battisha, Michelle Chiang, Santhosh

45

[19]

[20]

[21]

Srinivasan, Craig Peters, Andreas Neumann, and Alejandro Abdelnur, Qozie: Towards a
scalable workflow management system for hadoop, Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and Technologies (New York, NY,
USA), SWEET ’12, ACM, 2012, pp. 4:1-4:10.

Natkins ~ Jon, http://blog.cloudera.com/blog/2012/10/analyzing-twitter-data-with-
hadoop-part-2-gathering-data-with-flume/.

Rohit Khare, Doug Cutting, Kragen Sitaker, and Adam Rifkin, Nutch: A flexible and
scalable open-source web search engine, Oregon State University 32 (2004).

Vania Marangozova-Martin and Vania Marangozova, Introduction to distributed sys-
tems.

Thomas Nagele and FW Vaandrager, Mapreduce framework performance comparison,
(2013).

Apache Oozie, http://oozie.apache.org/.

Pivotal, http://blog.pivotal.io/big-data-pivotal /news-2/new-federation-business-data-
lake-should-be-your-silver-bullet-for-big-data-success.

PostgreSQL, http://www.postgresql.org/.

Philip Russom et al., Big data analytics, TDWI Best Practices Report, Fourth Quarter
(2011).

Lee Scott, https://www.digitalocean.com/community/tutorials /introduction-to-ganglia-
on-ubuntu-14-04.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler, The hadoop
distributed file system, Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST) (Washington, DC, USA), MSST '10, IEEE Computer
Society, 2010, pp. 1-10.

Apache Spark, http://spark.apache.org/.

Apache Spark SQL, http://spark.apache.orq/docs/1.2.1/sql-programming-guide. html.
Apache Sqoop, http://sqoop.apache.orq/.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh

46

Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy, Hive: A warehousing solution
over a map-reduce framework, Proc. VLDB Endow. 2 (2009), no. 2, 1626-1629.

[33] Kathleen Ting and Jarek Jarcec Cecho, Apache sqoop cookbook, O'Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA 95472.; July 2013.

[34] Scaling Hadoop to 4000 nodes at Yahoo, https://developer.yahoo.com/blogs/hadoop/scaling-
hadoop-4000-nodes-yahoo-410.html.

[35] Ubuntu, http://www.ubuntu.com/.

[36] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev
Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas
Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Balde-
schwieler, Apache hadoop yarn: Yet another resource negotiator, Proceedings of the 4th
Annual Symposium on Cloud Computing (New York, NY, USA), SOCC ’13, ACM,
2013, pp. 5:1-5:16.

[37] vmware, http://www.vmware.com,/.

[38] Tom White, Hadoop: The definitive guide, 3rd ed., O'Reilly Media, Inc., 1005 Graven-
stein Highway North, Sebastopol, CA 95472., May 2012.

[39] title=http://en.wikipedia.org/wiki/Fault_tolerance Wikipedia.

[40] Reynold S Xin, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott Shenker, and Ion
Stoica, Shark: Sql and rich analytics at scale, Proceedings of the 2013 ACM SIGMOD
International Conference on Management of data, ACM, 2013, pp. 13-24.

[41] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J Franklin, Scott Shenker, and lon Stoica, Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing, Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation,
USENIX Association, 2012, pp. 2-2.

[42] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica,
Spark: cluster computing with working sets, Proceedings of the 2nd USENIX conference

on Hot topics in cloud computing, 2010, pp. 10-10.

47

