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 Data is everywhere. The current Technological advancements in Digital, Social 

media and the ease at which the availability of different application services to interact 

with variety of systems are causing to generate tremendous volumes of data. Due to 

such varied services, Data format is now not restricted to only structure type like text 

but can generate unstructured content like social media data, videos and images etc. 

The generated Data is of no use unless been stored and analyzed to derive some Value. 

Traditional Database systems comes with limitations on the type of data format 

schema, access rates and storage sizes etc. Hadoop is an Apache open source distributed 

framework that support storing huge datasets of different formatted data reliably on its 

file system named Hadoop File System (HDFS) and to process the data stored on HDFS 

using MapReduce programming model. 

 This thesis study is about building a Data Architecture using Hadoop and its 

related open source distributed frameworks to support a Data flow pipeline on a low 

commodity hardware. The Data flow components are, sourcing data, storage 

management on HDFS and data access layer. This study also discuss about a use case 

to utilize the architecture components. Sqoop, a framework to ingest the structured data 

from database onto Hadoop and Flume is used to ingest the semi-structured Twitter 

streaming json data on to HDFS for analysis. The data sourced using Sqoop and Flume 

have been analyzed using Hive for SQL like analytics and at a higher level of data 

access layer, Hadoop has been compared with an in memory computing system using 



Spark. Significant differences in query execution performances have been analyzed when 

working with Hadoop and Spark frameworks. This integration helps for ingesting huge 

Volumes of streaming json Variety data to derive better Value based analytics using 

Hive and Spark. 
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CHAPTER 1

INTRODUCTION

“In pioneer days they used oxen for heavy pulling, and when one ox couldn’t budge

a log, they didn’t try to grow a large ox. We shouldn’t be trying for bigger computers, but

for more systems of computers.”

—Grace Hopper

In the current digital world there is a substantial growth in the amount of data that’s

been generating in the form of structured, unstructured, semistructured data from various

sources like sensors, servers, social websites, e-commerce, gaming, and video contents etc.

The ”Variety, Volume and Velocity” [26] of the Data needs to be stored at a repository,

processed and analyzed to derive better Value. The amount of size the disk can store is

increasing alarmly in the recent years but, the rate of data transfer has been a concern

and is not yet upto the efficient standards [38]. If all the data is stored on a single disk

then, performing the read and write access is always a time consuming process. Storing

and retrieving the data on a single disk has been a major challenge with respect to cost

budget in building the hardware equipment, disk access latency and computational efforts

[38]. Distributed System design allows to share the data across the machine nodes and

execute the work in parallel [38].

To store the data across multiple disks and accessing them in parallell is always

challenging and imposes some challenges. Few problem’s of such can be like some storage

systems enforce a schema to write the data on to it [38], or there can be a failure in some

systems thats been storing the data across the network and it might lead to the loss of

a snapshot of the data [38], or how the data can be computed that’s been stored across

linearly in the network [38]. When working with huge volumes of data it becomes difficult to

manage the data across the network and so to move the processing task to the data is pretty

cheaper and efficient than moving the data across the network for computation [28, 11, 38].

These concerns have highly motivated in building few open source distributed computing
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frameworks that can scale linearly across the nodes in distributed fashion on cheap and

commodity hardware [38]. ApacheTM Hadoop R© [11] will address these issues in terms of

”data locality” [28, 38], redundancy by replicating the data blocks across the cluster [28] and

provide high data intensive computational analysis [4] to store and retrieve this huge data.

1.1. Thesis Outline

Chapter 2 introduces the MapReduce programming model and Hadoop Distributed

File System in detail. Section 2.3 discusses about Hadoop framework which is an open-source

implementation of MapReduce and HDFS. The Chapter also talks about few other Hadoop

related projects that are used for this thesis study like Sqoop 2.4.1, Flume 2.4.2, Hive 2.4.3,

Spark 2.4.4. A clustering framework named Ganglia 2.4.5 is also been discussed at the end

of this Chapter.

Chapter 3 talks about the architecture design and enviornment configuration setup

that has been used for this thesis study.

Chapter 4 explores an usecase and possible results on the environment thats been

setup for this research study.

Chapter 5 concludes the thesis, summarizes the observations and project some future

enhancements of the research.
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CHAPTER 2

FRAMEWORKS BACKGROUND

This Chapter explains in detail about the distributed frameworks that are used for

this research study. Distributed systems can be best understood as a group of machines

separated at a different physical locations on network, cooperate with each other to perform

a common task or a set of related tasks [21]. As the systems will be distributed across different

physical locations some design constraints imposed on these distributed systems are, they

need to be reliable, provide high availability of continuous service [11, 28], fault tolerant [39]

in recovering from failures and scalable across at ease etc. This Chapter discusses about

those distributed programming models and frameworks.

2.1. MapReduce

”MapReduce is a programming model and an associate implementation for processing

and generating large data sets” [4]. This model can be scaled across a cluster of cheap and

commodity hardware [4, 38]. The model is divided into 2 phases. Map and Reduce phase.

• Map: This phase read the input datachunk and generates a list of intermediate

key-value pairs which will then be consumed and processed by the Reducer phase

[4]. For example, a text document of urls as an input for Map function will read the

data and generate a url pair list. That is, the key is set to the url thats been parsed

and the value will be set to 1. For example: If the data is ’hadoopurl, mapreduceurl,

hadoopurl’, the following pairs will be generated (hadoopurl,1), (mapreduceurl,1),

(hadoopurl,1).

• Reduce: This phase will read the intermediate key, list<values> generated by the

Map function and aggregates the final result [4]. In this case the input to the Reducer

will be (hadoopurl, list<1,1>), (mapreduceurl, list<1>) which will be aggregated

to a final result of url count as <hadoopurl,2>,<mapreduceurl,1>.
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map (k1,v1) list(k2,v2)

reduce (k2,list(v2)) list(v2)

Table 2.1. MapReduce [4]

Figure 2.1. Anatomy of a MapReduce Job Execution[4]

2.1.0.1. Anatomy Of MapReduce

The Figure 2.1 describes the Anatomy of a MapReduce job. When a MapReduce job

is submitted by the user, a series of events occur during the execution. An overview of the

MapReduce is as follows: [4, 22]

(1) The input data for the job to be processed is first split into chunks of a configured

size which will then be distributed across the cluster.

(2) Any one of the node is set to act as a Master node and it starts allocating work to

the other Slave nodes in the cluster.
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(3) The Slave nodes which have been assigned with a map task will now parse the

contents of its corresponding input chunk of data and generate an intermediate

key/value pairs. This intermediate data will be stored on the Slave nodes.

(4) The buffered intermediate pairs are periodically persisted onto the disk and the

Master node is made aware of the location of the data which will then be forwarded

to other workers to initate the Reduce task.

(5) The Slave nodes now executing the Reduce tasks will fetch the intermediate key/value

pair data by using remote procedure calls, sorts and group the data of the same keys

(6) The reduce task on the Slave node will now run over the list of all the intermediate

values of the same reducer, process , aggregates the final result and will flush out

to an output file.

(7) When all the map and reduce tasks are succesfull and when there are no more data

to process, the user will be notified about the results.

2.2. Hadoop Distributed File System

HDFSTM [28, 11] is a distributed file system component of ApacheTM Hadoop R© that

can source in large volumes of data in the order of Giga to Tera bytes [34] on cheap and

low-cost hardware [38]. HDFS has many goals and few of the noteworthy are it is highly

“fault-tolerant” [39] and error-prone to failures [11, 8]. It follows “master-slave” architecture

[28, 11, 8]. It supports Batch processing rather than interactive use of the data. HDFS

follows WORM coherency model for files. WORM is ”write once-read many” [38, 28], that

is, file once created and written is not updated any more at record level but can have

random read access. It achieves scalability by distributing data across the clusters and

reliability by maintaining multiple copies of data [28, 8] in order to avoid failures during

computation. HDFS stores file system metadata on a separate machine called “Namenode”

(master) [28, 11, 38] and application level data separately on “Datanode” (slave) [28, 11, 38].

2.2.0.2. Architecture

This subsection 2.2.0.2 explains about few components of the HDFS architecture.
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• Blocks: The file level data which the disk can accept is, where any application has

an access to read and write the data onto it. The smallest unit of data that any

disk can accept is referred as its block size. HDFS also deals with the concept

of blocks but at a larger magnitude of size and the default value set in Hadoop

is 64MB [38, 28, 11] and can be configured to 128MB, 192MB etc. The HDFS

block size can be configurable by changing the hdfs-site.xml configuration file in the

Hadoop framework. In HDFS, if the file size is less than the configured block size,

then it does not occupy the full block size space that has been configured in the

configuration file of the underlying storage. That is, if the files are split into 64 or

124 MB blocks and if a file is less than this 64MB/124MB then the whole size will

not be used [38].

• NameNode: The “NameNode” [28, 11] works as a master and “manages the file

system hierarchy and the mapping of the file blocks to DataNode” [28, 11]. Na-

meNode manages the metadata for all the files and the directories of the file system

in the form of 2 files: ”fsimage” [28, 38, 11] and ”edit log” [38, 28, 11]. The fsimage

is a file system image that captures the system namespace and edit log captures

the log snapshots when there are any changes to the namespace. There can multi-

ple NameNodes in a cluster and generally its a good practice to maintain multiple

NameNodes to support ”High Availability” [11] of service in case of failure.

• DataNode: The “DataNode” [28, 11] are the Slave components which store the

actual file data. The files on the HDFS are split into one or more blocks and then

they land onto the DataNodes. DataNode always sends its metrics and availability in

the form of hearbeats to the NameNode. In general there will be only one DataNode

per machine in the Hadoop cluster [11].

2.2.0.3. Data Flow

The Figure 2.2 describes the HDFS data flow architecture. If a user or client wants to

access and create a file in the HDFS, the files are first split into blocks and for each block of

the file to be stored on the DataNode, the NameNode will look at the current namspace data
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Figure 2.2. Hadoop Distributed File System Data Flow[12]

for the suitable available DataNodes. The client will get this block report from NameNode

and then the blocks are buffered through and distributed onto the available DataNodes. The

default replication specified by HDFS is 3. [11].

HDFS’s “fsck” (file system check) [11, 38] command utility will specify the files, blocks

and locations on HDFS. The Figure 2.3 shows the files, block locations metrics.

$ hadoop fsck <hdfs directory> -files -blocks -locations

2.3. Introduction To Hadoop

The ApacheTM Hadoop R© [11] is an open source framework mainly intended to store

huge amount of data reliably using ”Hadoop Distributed File System” (HDFS) [28, 11] and

process the data across the computing clusters using ”MapReduce” (MR) [4] programming

model. Hadoop was originally started by Doug Cutting as a basis for Apache NutchTM a web

search engine project [20, 38]. Web is full of pages and the team at Nutch has realized the

difficulty to search and index those huge amount of web pages efficiently. In 2003, the team

at Google has published a paper called ”Google File System” (GFS) [8] which is a distributed

file system at Google and Nutch has implemented the idea to its own project which turned

into ”Nutch Distributed File System” (NDFS) [20, 38]. In 2004, Google published a paper
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Figure 2.3. Hadoop File System Check Utility [11, 38]

[4] and introduced the term ”MapReduce” (MR) [4]. By early 2005, Nutch developers has

implemented the MapReduce programming model and integrated their algorithms to run on

NDFS and MR. In February 2006, NDFS and MR has moved out of Nutch and formed an

independent project named Apache LuceneTM [38].

In January 2008, Hadoop has become a pivotal project at Apache and NDFS was

renamed to HDFS or Hadoop Distributed File System. The framework’s design motivation

is to scale linearly from a single node to thousands of nodes [34] to support both storage

(HDFS) and computation (MR) efficiently. The framework is designed to detect and handle

node failures [4, 28] and to provide high-availability of service [11, 36, 38]. Many companies

like Yahoo, Facebook, Linkedin etc have started using Hadoop and eventually it gained a

huge popularity. It’s open source, free and can work on cheap commodity hardware as well.

This section 2.3 is heavily borrowed from [38] (9-10).
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2.4. Hadoop-related Projects

There are few distributed frameworks under ApacheTM that are related to Hadoop

in terms of storage and compute point of view. They can be termed as ”Ecosystems” [11]

related to Hadoop under Apache. Some of them under this research work has been discussed

below.

2.4.1. Sqoop

From many years till date, large scale Companies store their transactional and opera-

tional data on traditional Database systems like Oracle, Greenplum and Postgres etc. Since,

Hadoop support storage in the form of HDFS and can allow many different file formats like

text, json, avro and binary, there has been an integration that’s been developed by the data-

base vendors to work with Hadoop systems. Hadoop can manage and process the data from

the Databases . Apache SqoopTM “SQL to Hadoop,” [33] is a tool intended to bring in data

from Database onto Hadoop and vice-versa [33, 31, 38]. The entire framwork of Sqoop is

written using Java. The main execution framework behind the scenes of Sqoop import and

export jobs is MapReduce and it support fault-tolerance and reliability during the transfer

process [31]. Sqoop extends its support to transfer of data from Database to Apache HiveTM

and Apache HBaseTM as well, which are the ecosystems that sit on top of the HDFS storage.

2.4.1.1. Sqoop Import Architecture

Sqoop import job takes few input arguments and transfer the row level table data from

the Database on to Hadoop (HDFS, Hive, HBase) by running MapReduce jobs. Few input

parameters for the Sqoop import job are –connect (jdbc-uri), –username (db username), -P

(password), –table (table data to retrieve), –driver (jdbc driver), –target-dir (target directory

on Hadoop) [33, 31].The Database specific JDBC drivers need to be downloaded and installed

in the Sqoop “lib” folder of the Client before running the import or export jobs. Based on

the –connect string url that’s been specified in the input parameter, the corresponding driver

gets loaded before the start of the import job [38].

The graphical representation of the import job is shown in Figure 2.4. Sqoop import
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Figure 2.4. Sqoop Import Process [16]

job can be broken down in to stages before the actual import can happen. Firstly, it uses

JDBC to fetch the table schema that it has to import from the database [38]. The fetched

SQL data types are then mapped to hold the Java data types for MapReduce applications

functionality. Secondly, Sqoop will generate a record container class [38] to interpret and

hold the table fields during the import. Finally, Sqoop import launches the MapReduce job

to read the table data using JDBC and source it on to Hadoop. The Sqoop import jobs

can also be controlled with few other input parameters like number of mappers to run (-n)

during the MapRedue job, ”–direct” mode for faster data transfer [33, 31].

2.4.1.2. Sqoop Export Architecture

The export process diagram is shown in the Figure 2.5. Sqoop export job takes few

output arguments and transfer the data from Hadoop to Database Systems. The export job

requires the –export-dir argument to specify the HDFS directory location to be exported on

to target Database System. Sqoop export job is broken down in to stages before export can
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Figure 2.5. Sqoop Export Process [16]

happen and follows similar nature as that of an import job. Based on the specified –connect

argument url, Sqoop picks up the JDBC strategy and loads the related drivers. Based on the

target table schema, it generates a Java container class to parse the records from HDFS files

and load them to the mapped data types into the target table. Then, finally MapReduce

jobs are fired to read the data from the files, parse them based on the container class and

executes the export job to write data onto Database [38].

2.4.2. Flume

Apache FlumeTM is a reliable and distributed data ingestion tool that can ingest

streaming and aggregate large amounts of data from different sources onto target data store”

[6, 17]. There are variety of data sources generating data in the form of server logs, user con-

tent on social media platform, user engagement on web service applications, network systems

data. All these systems can generate data in the form of structured text to unstructured

format. There can be Custom sources which can be configured in Flume to generate the
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data as well as to source in onto data store. Flume has the ability to scale horizontally to

handle large data volumes and can gurantee data delivery during the ingestion [17]. The

below section explains about the Flume Data Achitecture in detail.

2.4.2.1. Flume Architecture

Figure 2.6. Flume Architecture [16, 6]

The main components of Flume are Event, Source, Channel, Sink and Agent [14, 6,

17].

• Event: The topics delivered by the Flume are called Events. Event is a smallest

unit of data occurence.

• Source: The events generated by the external sources like Web server, Twitter,

syslog and netcat etc are taken by the Flume Source which are then stored onto one

or more Channels in the next data flow.
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• Channel: A Channel is a medium to store the event before it’s being consumed

by the target Sink. Different type of channels exists in Flume, some of them are

Memory Channel, File Channel and JDBC channel etc.

• Sink: The Sink finally aggregate the event from the Channel and dumps it into an

external repository like HDFS, HBase or forwards it to the Flume Source of the

next Agent in the flow.

• Agent: An Agent is Java Virtual Machine process running in flume that integrates

the Source, Sink, Channel components together as a unit through which events flow

from external sources to the next hop of the data flow [17, 6]

Flume achieves reliablity by ensuring that the events are removed from the previous

agent staged channel only if they are transferred to the channel of the next available agent

or onto a target repository. Since, Flume stages the event in a channel, there can be a case of

failure and loss of events. Flume ensures recoverability by supporting a durable File Channel

which provides checkpointing on a local file system for recovery. Flume also provides Memory

Channel but, it has a limitation on the queue capacity at a cost of high throughput and no

gurantee in recoverability. That is, if the Agent experiences any failure then the events in

the channel are lost and cannot be recovered. This information is borrowed from [6]

Flume Agent can be created by creating a new configuration file or by editing the

existing configuration file stored in the “conf” directory of Flume installation. The config-

uration file should include the properties of Source, Channel and Sink. This research study

has used Source as a Twitter Source provided by Cloudera [3], Channel as a File Channel

[6] for recoverability and Sink as HDFS for storage [6]. The events can be generated by

triggering the Flume agent and Flume ships with a shell script called “flume-ng” which is

located in the “bin” folder of the Flume installation. The arguments to be specified for

the schell script are -c (conf folder location), -f (configuration file), -n (agent name). The

detailed configuration of the Twitter Agent and execution is discussed in the Environment

setup section section 3.2.
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2.4.3. Hive

Apache HiveTM is a framework for data warehouse processing that sits on top of

Hadoop. Hive was initially developed by the team at Facebook to analyze the huge volumes

of data that they stored on HDFS. Hive provides a SQL like interface called HiveQL [32] to

run the queries. These HiveQL queries generates MapReduce jobs that run on the Hadoop

cluster. Hive is now popular in many organizations because of it data processing ability and

is now a top level project at ApacheTM [38] .

2.4.3.1. Data Model

The Data on HDFS is used as a reference on Hive to organize it into Tables, Partitions

and Buckets [38, 32].

• Table: ”Tables in Hive are analogous to the tables in relational databases” [32].

The Tables in Hive can be constructed depending on the data thats been residing

at a physical location and can be either from HDFS, local file system, S3 (Amazon

storage systems) or on any other Hadoop related filesystems. The data format

is useful in determining the metadata and helps in constructing the Hive Tables

efficiently by using the Hive data types. The Hive Table metadata generated from

the file systems will be stored in a Database but not on the HDFS. Hive metastore

to store this metadata is categorized as embedded, local and remote metastores

[38]. Hive support embedded metastore as a default metastore by using Derby

Database which is just local to the single level user. Usually, in bigger Production

environments there will be multi users accessing the Hive service, so the “local

metastore” [38] will be configured to a separate Database Servers like MySQL etc

for better management. Hive support both Managed Tables and External Tables.

The default Table of Hive is a Managed Table and when file system data is loaded

into a Managed table, Hive moves the file data in to its warehouse directory [38, 1].

Hive moves all the files that are used to create tables from it are stored in its default

warehouse directory location “hdfs://user/hive/warehouse/” [38, 1] and can also
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be configured to some other location using “hive.metastore.warehouse.dir” [38, 1]

property in hive−site.xml file of Hive installation. Some DDL and DML on Managed

table is shown in the Figure 2.7.

Figure 2.7. Hive Managed Table [38, 5, 1]

In Figure 2.7 the CREATE statement is used to generate the table named em-

ployees with the columns as name, id, salary, state and country. The data can be

loaded onto this Hive table using the LOAD statement. Data to be loaded can

reside in the local file system or on HDFS. If the data is loaded from a local file

system then, “LOAD DATA LOCAL INPATH” [32, 1, 38] syntax is used. If the

data is already on HDFS then “LOAD DATA INPATH” [32, 38, 1] is used. So, when

you LOAD data onto Managed table, the file ‘hdfs://user/ramu/employees.txt’ is

moved into Hive warehouse directory ‘hdfs://user/hive/warehouse/employees’. The

table details like locations, size of the data can be DESCRIBE statement explains
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about the table details in a neat formatted way. “DROP” [1, 38] statement on a

Managed table will drop the metadata and table data as well.

Figure 2.8. Hive External Table [1, 5, 38]

The Figure 2.8 describes an External table. External tables are those where

Hive doesnot manage the Tables, but the user will have the complete control on

the creation and deletion of the data. During the creation of an External table,

“LOCATION” [1, 5, 38] keyword has to be explicitly specified to point to the data

location. If the application depends only on the Hive to manage the data then

its suggestable to depend on Managed tables. If other data processing tools and

applications are also using the same dataset for analysis, then its a good practice to

create External tables because, if the External tables are dropped table metadata

is lost and the data still persists in that location.

• Partitions: Partitioning is a technique on Hive which gives a table for better man-
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agability to organize it and table data is sub divided into modular parts in the form

of files depending on the value of a Partition column [38, 32]. Partition columns can

be on date, id etc. When the table is Partitioned into files, the query is interested

in looking at that part of the data stored in the specific Partition location and helps

in querying the data faster..

• Buckets:

2.4.3.2. SerDe

SerDe refers to ”Serializer/Deserializer” [10, 32] which helps Hive to to interpret the

table during the read and write operations [32, 10]. Hive currently supports TextInputFormat

and TextOutputFormat as the default format to read and write HDFS files [10]. If the data

to be loaded from HDFS is in another format, Hive has to interpret the data format, so

SerDes are used based on the format of the data. Hive currently supports SerDes for few

format like Avro, ORC, Parquet and CSV etc [5]. A custom SerDe can also be created in

Hive [5].

2.4.4. Spark

Apache SparkTM is a general-purpose and fast in memory cluster computing platform

offering simple api in Java, Scala, Python and SQL [15]. Spark backs up its intensive

computations by extending the MapRedce programming model [15, 42]. When it comes to

speed, Spark offers the ability to run the massive stream, iterative type of computations in

memory. The Spark system execution is faster than aplication workloads when running with

MapReduce on disk [15, 42]. Spark is designed to support high workload jobs like streaming,

batch and iterative in a same engine called ”Spark Engine” [15] and reduces the management

burden of maintaining separate tools 2.9 [15]. Spark can also run in Hadoop clusters and

can access any Hadoop related file systems [15].

• Spark Core: ”Spark Core” [15] is the heart of Spark and is a single functinal unit

that takes care of all the scheduling of tasks, memory management, recovering

from failure and working with the storage systems [15]. The basic building API
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Figure 2.9. Spark Stack [15]

abstraction for the Spark Core are ”Resilient Distributed Datasets” (RDDs) [41, 15].

These RDDs are fault tolerant, distributed across the cluster and can be computed

in parallel [15, 41].

• Spark SQL: ”Spark SQL” [15, 30] is a Sql variant of Spark distribution . It allows

Sql type query interface to interact with the data and also it extends Hive variant

of Sql (Hive QL). Spark SQL extends and provides the ease to access different kinds

of available data sources like Hive tables, Parquet and JSON [15, 30].

• Spark Streaming: Streaming data provide valuable information for analysis. ”Spark

Streaming” [15, 29] is a component of Spark which allows to process the Streaming

data. Data Streams can be anything in the form of web logs from the System

Servers, or live feed twitter data or can be user updates of a web application. Spark

Streaming API allows to manipulate such Data streams and extends the Spark core
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RDD API [15]

• MLlib: Spark ships with a machine learning package called ”MLlib” [15, 29] which

includes few machine learning applicationfeatures like classification , regression,

clustering and collaborative filtering. All these machine learning techniques can

be distributed efficiently in linear fashion onto a cluster of machines [15].

• GraphX: Spark provides graph processing by using ”GraphX” [15, 29] library. GraphX

library uses the base Spark RDD abstraction API . Some of the graph algorithms

provided by graphX are PageRank and traingle counting etc [15].

2.4.5. Ganglia

When working with large cluster of distributed systems or in any data center, there

can be a high chance of systems failure due to several reasons like power failure etc. In order

to provide a better Service of an application system, its always a good practice to keep track

of the computing clusters or grids for better decision making in the event of any failure.

There are several distributed monitoring systems that helps to keep track of the metrics and

Ganglia is one of them [27].

The machines in the cluster send and receive system level metrics like, cpu, memory

and network etc. There are few components in Ganglia that need to be configured to monitor

these metrics. They are gmetad, gmond and a web interface called ganglia-web [27].

• gmond: gmond is a Ganglia monitoring daemon and this service has to be installed

on all the machines in the cluster in order to monitor their metrics during system

work loads.

• gmetad: gmetad is a Ganglia meta daemon which consumes all the metrics thats

been generated by the gmond daemons in the cluster. This can be analagous to a

master node of Ganglia system. Gmetad uses RRD tool which is a “Round Robin

Database” [9, 27] to store all the consumed metrics from the gmond daemons.

• ganglia-web: ganglia-web has to access the RRD data [9, 27] to show the consoli-

dated metrics on a web interface. So, this deamon sits on the same system where

gmetad is configured earlier and provides a continuous web visualization of the
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metrics data.

Figure 2.10. Ganglia Monitoring [27]

Figure 2.11. Ganglia Visualization of Hadoop Cluster

The Figure 2.11 is a Ganglia web home interface of Hadoop cluster thats been config-

ured for this research study. The url to the web interface is “http://gmetad−ip/ganglia”. It
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shows network load, process load, cpu load, memory load and few others can be configured

in the interface. The daemons in Hadoop like NameNode, JobTracker, TaskTracker etc can

all be monitored in Ganglia by modifying “hadoop-metrics.properties” configuration file in

the conf folder of Hadoop installation.
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CHAPTER 3

ARCHITECTURE DESIGN AND ENVIRONMENT SETUP

3.1. Architecture Design

In this section the detailed architecture design of the research is explained. The main

aim of this Data Architecture design is to scale the available exisiting open source distributed

technology frameworks and process them efficiently on a low commodity hardware. The key

architecture components are divided into Ingesting Data, Managing Data and Accessing

Data. Several components are integrated to achieve these features at a single level of design

on virtualization environment. This research deals with both the structured text and semi-

structured streaming json data. Hadoop Distributed File System (HDFS) is the storage for

most part of this research. Using this Data Architecture a use case has been developed for

analysis which is discussed in Chapter 4

• Sourcing Data: The Data Ingestion component of this research study is mainly

focussed on bringing the data from a Relational Database and from Twitter stream-

ing API. Sqoop is a framework which enables to bring the data from any Relational

Database onto Hadoop. Flume is another technique which can ingest streaming

data onto different target stores. Hadoop file system commands are used to move

data from local file system onto HDFS. These frameworks have been configured to

bring the Data onto Hadoop.

Framework Functionality

Sqoop To ingest text data from Database

Flume To bring Twitter streaming data

Table 3.1. Ingestion Component.

• Storage Management: The data ingested from the Database and Twitter Streaming

is stored onto HDFS. The reason to store on HDFS is because of its reliability
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[28, 11], can support different formats of data and can provide replication of the data.

The Streaming data from Twitter is in the form of Json and its hard to interpret

the schema of Json data. Few Databases, to an extent provide collection data types

to support json format data, but its really challenging to create table schemas for

them. HDFS allows to store structured and unstructured data, which later can be

managed by using the ecosystems like Hive, HBase based on the requirement.

• Data Access: In this research, Hive has been extensively used to manage both the

text and json data thats been ingested using Sqoop and Flume onto HDFS. Hive

provides a SQL like interface to access the data. Hive supports collection data

types like Array, Map and Struct which help in creating table schemas easily when

dealing with semi structured kind of Json data. At an higher level, to differentiate

the query execution times, Spark is also been considered in this research. The

detailed Architecture is shown below in Figure 3.1 [24].

• Cluster Monitoring: In this research, Apache Hadoop 1.2.0 version is configured on

a 3 node VMware cluster. Monitoring the clusters is a good norm at an enterprise

level to constantly check and take appropriate actions during extra loads on the

machines for efficient functioning and reducing the down time of machines due to

failures. This research study has considered Ganglia, “a distributed monitoring

system for high-performance systems like clusters and Grids” [7].

Several Hadoop Distributions are availble in the Market that offer these component

features in their platform at an enterprise scale. Few of them are Cloudera, Hortonworks,

MapR, Pivotal. This architecture study is taken reference using the Data Architecture of

Pivotal Data Lake [24]. The main intention of this research is to use these distributed

frameworks on low commodity hardware that can scale from a single laptop to cluster of

physical machines or onto Virtualization environments.

3.2. Environment Setup

This research in its entirety is done on VMware 11 [37] virtual machine instances.

A 3 node cluster with Ubuntu 12.04 (Precise Pangolin) Operating System is been setup to
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Figure 3.1. Data Architecture

configure all the open source frameworks. The Ubuntu instances are configured with Static

IP addresses to have better maintainability of the cluster, disk capacity for storage, memory

for processing and processors. The Hardware details of the instances are mentioned in the

below Table 4.1

Instance Name Hard Disk Capacity Memory Processors IP

master11 25GB 6GB 2 192.168.153.129

slave11 20GB 3GB 2 192.168.153.130

slave22 20GB 3GB 2 192.168.153.131

Table 3.2. Hardware Configuration.

The Table 3.3 depicts the components with respective versions thats been installed

and configured for this research study.
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Component Version

OS Ubuntu 12.04

Java Openjdk-7-amd64

Apache Hadoop 1.2.0

Apache Sqoop 1.4

Apache Flume 1.4

Apache Hive 0.13

Apache Spark 1.2

Apache Oozie 3.3

Ganglia 3.4

Apache Maven 3.2.1

Table 3.3. Cluster Components.

3.2.1. Apache Hadoop 1.2.0

Since this research study is involved in dealing with several distributed framework

components, and for choosing a reliable data storage, HDFS is been considered a good choice

to source all the ingestion data. A multi 3 node Fully distributed [11] Hadoop 1.2.0 cluster

is been created for the research project. The 3 Ubuntu instances are named as ‘master11’,

‘slave11’ and ‘slave22’. The Ubuntu [35] instance named ‘master11’ from now on is called

as Master node, is configured with both the master and slave daemons of Hadoop. The

master daemons of Hadoop are NameNode, Secondary NameNode, JobTracker and the slave

daemons of Hadoop are TaskTracker and DataNode. The remaining 2 Ubuntu instances

named ‘slave11’ and ‘slave22’ from now on are referred as slave nodes. The slave daemons

TaskTracker and DataNode are configured on both the slave nodes. Hadoop installation

ships with a configuration folder named “conf” which contains few hadoop specific xml files

and an environment file. These xml files and the environment file need to be modified with

specific properties of each daemon to run Hadoop in a fully distributed mode. The Table
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3.4 describes the Hadoop daemons installed on the available instances.

Instance Name Referred As Installed Hadoop Daemons

master11 Master Node NameNode, SecondaryNameNode,

JobTracker, DataNode, TaskTracker

slave11 Slave Node 1 DataNode, TaskTracker

slave22 Slave Node 2 DataNode, TaskTracker

Table 3.4. Hadoop Cluster Components

• NameNode: Hadoop HDFS file system administration is done by the NameNode

and can be browsed by using NameNode’s web addres at “http://Master Node

IP:50070/”. It also gives a summary of the cluster details about number of live

nodes available in the cluster, number of dead nodes, capacity of HDFS configured,

capacity of the remaining HDFS left and logs etc. The below Figure 3.2 shows

HDFS web interface.

• JobTracker: Hadoop MapReduce administration is taken care by the JobTracker.

MapReduce jobs submitted by the client are managed by the JobTracker, and these

JobTrackers assign the tasks to the respective available TaskTrackers to process the

MapReduce jobs. JobTracker’s web address is at “http:://Master Node IP:50030/”.

JobTracker interface enables us to look at the running jobs, finished jobs, failure jobs

and scheduling information etc. User can browse those jobs to get more information

about the logs and other core functional features of a MapReduce job. Logs helps

us to debug any long running and stale jobs in the cluster.

• dfsadmin: Hadoop provides an admin like file shell command to get the cluster

report. The command to get the report is “hadoop dfsadmin -report” [11]. The

below Figure 3.5 describes the statistics and health of the Hadoop cluster. It reports

the status of each node, configured capacity, percentage of DFS used and remaining,

corrupt blocks if any or missing blocks on the node etc.
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Figure 3.2. HDFS NameNode Summary

Figure 3.3. JobTracker Web Interface Home Page
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Figure 3.4. JobTracker Jobs Web Interface

Figure 3.5. Dfsadmin Report
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3.2.2. Sqoop

This research study also involves in bringing the data from PostgreSQL 9 Database

[25] onto Hadoop. As mentioned earlier from the Background section 2.4.1 Sqoop is a tool

that facilitates to bring in the data from Databases. Before working with Sqoop firstly,

PostgreSQL Database need to be configured to listen to the IP on where Sqoop client is

installed. ‘’pg hba.conf”, “postgresql.conf” are the configuration files on PostgreSQL that

need to be changed to listen to the IP addresses. Secondly, the respective vendor specific

JDBC jars that are required for the Sqoop to interact with any Database need to be installed

in the “lib” folder of Sqoop. Sqoop can be configured properly on the Master Node by

modifying the environment file ‘’sqoop-env.sh” of Sqoop installation. Some environment

variables are HADOOP HOME, HBASE HOME and HIVE HOME.

Figure 3.6. PostgreSQL Database

The above Figure 3.6 is a PostgreSQL 9 Database created with a database named

sqoop and tables named tweets, customers. The Figure 3.7 is a “sqoop-list-tables” job. If the
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connection from Sqoop is OK, then it will list all the tables in the specified sqoop database.

In this case, the job successfully fetches the list of those tables as an output of the job.

Figure 3.7. Sqoop List Tables

3.2.3. Flume

Flume is a tool to bring in streaming data or log data onto target stores. This research

study has ingested the Twitter Streaming API data using Flume onto target HDFS store.

The detailed description about TwitterAgent, structure of tweets ingested, HDFS storage

area are shown as diagrams in the later Chapter 4.

3.2.4. Hive

The structured text data using Sqoop and semi structured json data ingested using

Flume on HDFS is been processed on Hive for analytics. Hive is considered in this research

because of its ability to store and process this kind of json data by supporting both primitive

30



and collection data types. The flexibility of using Hive and the efficiency of it are shown in

the usecase at Chapter 4. The “conf” folder of Hive distribution ships with few configurta-

tion xml files and an environment file. These environment variables need to be configured

properly.

Figure 3.8. Hive CLI

The above Figure 3.8 is a “Hive Command Line Interface” (Hive CLI) [1, 13]. Hive

CLI is a command line service interaction to Hive. HiveQL is a SQl like query interface to

run queries on Hive.

3.2.5. Spark

The part of this research study also explores the uses of Spark when working with

the distributed systems. Spark enables the users to work with streaming data as well as

structured data. Spark also extends the compatability to use the data sourced on Hive.

For this research, “Spark standalone mode” [29] is deployed to work along with Hadoop.

SparkSQL, a SQL like module is considered to query the data sourced in Hive.
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Figure 3.9. Spark Standalone Cluster Home Page

Figure 3.10. Spark Standalone Cluster Jobs for Count Queries

The Figure 3.9 is a 3 Node Standalone Spark Cluster with one Node serving as both

Master, Slave and the remaining two as only Slaves. Spark clusters need to have Driver

Mangers [42] to manage and can be installed in Standalone Mode, or YARN or MESOS.

This research is only limited to Standalone Mode [15]
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CHAPTER 4

USE CASE AND RESULTS

This research study has taken a use case to “Analyze the Twitter Streaming API

data” [3] the tweets during the release of Iphone watch. The frameworks used for the analyis

are Flume, Hive and Spark. The streaming data is pulled using Flume and sourced onto

target HDFS store for storage. The semi structured json data is interpreted on Hive and

Spark for the end user analytics. This use case study is much benefitted from the cloudera

cdh-twitter- example [3].

4.1. Configuring Flume

Flume can bring in the events using Source, pass them on to Channel and finally will

be consumed by Sinks [6]. All these components need to be configured in a Flume agent.

The Figure 4.1 [19, 6] defines the Flume Agent named apple.

Figure 4.1. Flume Agent
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Its configured with the Source as Twitter. Flume allows to build a Custom Source or

use the exisiting sources of Flume. For this research a custom Flume Source available at [3]

is used. The source jar need to be uploaded to the “lib” folder of flume and the path of this

jar need to be included for the environment variable “FLUME CLASSPATH”, so that flume

agent can recognize it during the start up of the flume job. The Channel considered in this

study is a File Channel and Sink is the HDFS location. The Flume agent is configured to

search for the keywords ranging like apple watch, apple price, apple stocks, apple competition

and apple launch etc were taken. The HDFS location in the Flume agent is configured

as “hdfs://192.168.153.129:9000/user/hduser/appletweets/%Y/%m/%d/%H/” [19] so, the

tweets gets stored in the HDFS with directory structure like Year, Month, Date, Hour.

That is, an event of tweet generated at 09/03/2015 8 00 AM will land in “hdfs://<HDFS

LOCATION>/2015/03/09/08.” [19]. This format will be useful to make end analytics at

more granular level in the form of Partitioning in Hive.

4.2. Data

The Figure 4.2 shows the sample chunk of the Tweet Data retrieved using Flume.

Figure 4.2. Flume Tweet Json Data
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The Data accumulated using Flume is around 1.4 GB and is in json structure.

4.3. Configuring Hive

Tweet data provide lot of user information and is used for analysis by many companies

in the form of marketing their products and providing better services. The Twitter data

brought in using Flume need to be analyzed and Hive is considered as an option in this study

because of its support to interpret semi structured data by providing complex collection data

types like “ARRAY, MAP, STRUCT” [38, 1] for a better table design to access the data

efficiently.

Figure 4.3. External Tweets Table

The above Figure 4.3 [3, 19] is an External Table structure created in Hive for the

Json Tweet data. External Table have few advantages as discussed earlier in 2.4.3.1. In this

case, as the Data is ingesting through Flume agent into the HDFS location, this External
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Table can also be pointed to the same HDFS location using “LOCATION” [1] keyword in

the Table definiton. If a Managed Table is used here for the Table design, then Hive moves

the data from the HDFS location to its warehouse directory during the ‘’LOAD” [1, 38]

operation and when the Table is dropped then entire data will also be lost. This is where

External Table design comes in a good use because, the data still persists even when the

Table is dropped. The Data for the External Table now resides in HDFS location shown

in Figure 4.2 specified by the Flume agent, and as the Table is defined as External there is

no need to move the data into the Table. However, as the data is ingesting into the HDFS

there is a need to add the partitions to have the view of the latest Data in Hive. Tables

can be Partitioned on a column by defining “PARTITION BY” [1, 5] clause during the

Table definition. By using Partitioning technique, Hive can manage the data into chunks

of directories based on the Partition column data type. In this case, the External Table

is Partitioned on the “datehour” column with the data type STRING. This hourly Data

partition can be added into Hive by using the DML statement “ALTER TABLE” [1] which

provides access to the latest hourly Data required for the Hive to do some analytics.

InputFormat and OutputFormat in a MapReduce job specifies the format of the

key-value pairs to be read from and write to the files. Hive uses “TextInputFormat and

HiveIgnoreKeyTextOutputFormat” [10, 1] as the Input and Output file formats. “Hive

stores the Table data as a TEXTFILE by default” [1]. That is, Hive doesnot require any

explicit declaration of “STORED AS TEXTFILE” term when creating the table structure.

In this usecase the data pulled from Twitter API is a semi structured Json data but Hive

support TEXTFILE as a default storage. This Json data can be interpreted by Hive using

the Json SerDe [1, 10]. “SerDe is called serializer, deserializer” [1]. SerDes will be useful for

Hive to parse the unstructured data in files as records. Hive has few built in SerDes. The

details about SerDe is mentioned at 2.4.3.2. This study has used the Json SerDe from [3].

If Hive require any type of SerDes like CSV, Regex or Avro etc., they need to be placed in

the “lib” folder of Hive installation and the jars are added during the Hive CLI session using

“ADD JAR <path-to-serde>” [1] command. Hive can parse the Json Tweet data by using
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the “ROW FORMAT SERDE “ [1, 10] clause specified during the Table definition. The Data

is now available for the External Table with Partitions on the datehour column. The Figure

4.4 is a detailed formatted description of the Table partition on datehour=’2015031209’ for

the External Table “apple”. The total size on that partition is specified as 1.2 GB. The

Partition also describes the SerDe used, HDFS location, Partition column used and number

of files in the Partition etc.

Figure 4.4. External Table Partition

Some Tweet analytics like the active timezones for the generated tweets, retweet

analysis are performed on this Table [2] using Hive are shown in Figures 4.5, 4.6. Due to the

size constraints configured for the Hadoop cluster daemons, only small portion of the data
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of around 0.3 GB on partition datehour=’2015031208’ has been considered for analysis.

Figure 4.5. Analysis of the User Activity on Different Timezones

4.4. Configuring Spark SQL

The Data is now been ingested, cleansed, formatted in Hive and is used for querying

to derive some analytics based on the requirements as seen from the above Sections 4.1, 4.3.

At a next level of design, Spark SQL [30, 40] which provides sql like queries using Spark is

used to access the data on HDFS to compare the same results with Hadoop. Spark SQL

builds a schema from the existing RDD called as SchemaRDD [30]. “ A SchemaRDD is

analogous to a table in a Relational Database” [30]. To use the Spark SQL component, a

SQLContext is created by using the SparkContext object in Spark [30]. SQLContext will be

a starting point of interaction to use sql like queries. Spark SQL has the ability to derive

the schema of the Json data and build a new SchemaRDD [30] . In this usecase as the data

ingested is of Json format, a SQLContext is used to infer the Json schema for query analysis.

If any intermediate RDD is reused for computation Spark provides a feature called “persist”
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Figure 4.6. Maximum Retweet Analysis

[15] to cache the data. Computing an already cached data can significantly achieve faster

results 4.5. The Figure 4.7 is the Spark SQL analysis.

4.5. Results

This section tells about the comparisonal analysis for the queries executed on same

datasets both with Hive and Spark. The dataset here is the Hive partition data on date-

hour=’2015031209’ which was discussed earlier in Section 4.3. The counts for the keyword

“amazing” on tweets data for the Table apple is analyzed both on Hive as well as Spark.

The Figure 4.8 demonstrates the Hive and Spark SQL query execution times. “Hive.count”

is the time taken for the count analysis using Hive. “Spark.count” is the time taken for the

count analysis using Spark SQL. “Spark.cache.count” is when the data is cached and per-

formed the count analysis. The first time execution if cache mechanism does not give the

better result, but the subsequent count queries can definitely benefit due to caching and can

be seen in Figure 4.8.
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Figure 4.7. Spark SQL JsonRDD Analysis to Analyze the Json format

Tweet Data

Figure 4.8. Hive vs Spark SQL Query Analysis on the Partition Data

40



Count Query Execution Time Data Size

Hive.count 56.92s 1.2GB

Spark.count 15.484s 1.2GB

Spark.cache.count 16.478s 1.2GB

Spark.count 0.752s 1.2GB

Spark.count 0.565s 1.2GB

Spark.count 0.648s 1.2GB

Spark.count 0.419s 1.2GB

Spark.count 0.60s 1.2GB

Table 4.1. Hive vs Spark SQL Query Analysis.

4.6. Ganglia Metrics

During the query execution analysis using Hive, some cluster metrics have been ana-

lyzed on the CPU, Memory, Process loads. The overall Memory of the cluster is 12GB 4.1,

cores are 6 4.1, nodes are 3.

Figure 4.9. Ganglia CPU Cluster Metrics of Hadoop Cluster
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Figure 4.10. Ganglia MEMORY Cluster Metrics of Hadoop Cluster

Figure 4.11. Ganglia PROCESS Load Metrics of Hadoop Cluster
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CHAPTER 5

CONCLUSIONS AND FUTUREWORK

This thesis presents an Open Data Architecture in bulding a Data flow lake by using

the available open source distributed technologies on a low commodity hardware. This

approach uses Hadoop Distributed File System as a storage for reliability and MapReduce

as the main programming model for the computation.

This study also analyzes the uses of frameworks like Flume and Hive in order to work

on the semi structured data formats. This study reproduces the data flow architecture by

using the existing ones depending on the usecase requirement on a low cost hardware.

Finally, this thesis also discusses the integration of distributed framework components

at a single level of design to improve execution time and for better managability.

5.1. Future Work

The data ingested for analysis for this research is limited to a small size due to

Hardware constraints. In this study, Flume is configured to bring the data and store it

in a hourly fashion on HDFS 4.1. The Partitions in this case study is limited to 3 since

the data ingested is only limited to 3 hours of data using Flume agent. At higher level of

Production Environments when Flume is used to collect large amounts of data in hourly

fashion, there is a need to add more Partitions in Hive to look at the latest view of the Data

for analytics. The data to an External table can be made available by adding Partitions

as discussed in section 4.3. As the data increases, creating the Partitions manually in Hive

is a bit labourious and not a good technique. This process of adding partitions can be

scheduled through a scheduler. Apache OozieTM”is a scheduling framework to manage and

automate Hadoop jobs” [23, 18]. These collection of jobs are called as actions and they form

a “control dependency” [23] DAGs. “These actions are referred as a Directed Acyclic Graph

jobs because, the later job cannot run until unless the previous action is completed” [23].

The Figure 5.1 is a sample oozie job flow DAG. Oozie workflows are controlled by

action nodes and control flow nodes. Oozie currently supports MapReduce, Pig, Hive, Sqoop,
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Figure 5.1. Oozie Job

Java and Shell script workflow jobs [23]. Oozie provides Coordinator jobs that can be

configured to trigger actions at regular intervals of time. Since the data ingesting through

Flume is in a hourly fashion and for Hive to have the latest view of the data, the “ALTER

TABLE” to add partitions can be configured in the Oozie Coordinator job to run at every

60 minutes. This mechanism can significantly automate the process to add hourly Partition

data onto Hive which can be seamlessly used to derive analytics on the latest set of Data.
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