Editor's Foreword • Bruce Greyson, M.D.

Psychophysiologic Correlates of Unconsciousness and Near-Death Experiences • James E. Whinnery, Ph.D., M.D.

Surprise—and Discovery?—in the Near-Death Experience • John C. Gibbs, Ph.D.
Journal of Near-Death Studies

Volume 15, Number 4, Summer 1997

Editor's Foreword
Bruce Greyson, M.D.

ARTICLES

Psychophysiologic Correlates of Unconsciousness and Near-Death Experiences
James E. Whinnery, Ph.D., M.D.

Surprise—and Discovery?—in the Near-Death Experience
John C. Gibbs, Ph.D.
JOURNAL OF NEAR-DEATH STUDIES (formerly ANABIOSIS) is sponsored by the International Association for Near-Death Studies (IANDS). The Journal publishes articles on near-death experiences and on the empirical effects and theoretical implications of such events, and on such related phenomena as out-of-body experiences, deathbed visions, the experiences of dying persons, comparable experiences occurring under other circumstances, and the implications of such phenomena for our understanding of human consciousness and its relation to the life and death processes. The Journal is committed to an unbiased exploration of these issues, and specifically welcomes a variety of theoretical perspectives and interpretations that are grounded in empirical observation or research.

The INTERNATIONAL ASSOCIATION FOR NEAR-DEATH STUDIES (IANDS) is a world-wide organization of scientists, scholars, near-death experiencers, and the general public, dedicated to the exploration of near-death experiences (NDEs) and their implications. Incorporated as a nonprofit educational and research organization in 1981, IANDS' objectives are to encourage and support research into NDEs and related phenomena; to disseminate knowledge concerning NDEs and their implications; to further the utilization of near-death research by health care and counseling professionals; to form local chapters of near-death experiencers and interested others; to sponsor symposia and conferences on NDEs and related phenomena; and to maintain a library and archives of near-death-related material. Friends of IANDS chapters are affiliated support groups in many cities for NDErs and their families and for health care and counseling professionals to network locally. Information about membership in IANDS can be obtained by writing to IANDS, P. O. Box 502, East Windsor Hill, CT 06028.

MANUSCRIPTS should be submitted in hard copy and on 3.5" computer disk, preferably formatted in Wordperfect or in Microsoft Word, to Bruce Greyson, M.D., Division of Personality Studies, Department of Psychiatric Medicine, Box 152, University of Virginia Health Sciences Center, Charlottesville, VA 22908. See inside back cover for style requirements.

SUBSCRIPTION inquiries and subscription orders should be addressed to the publisher at Subscription Department, Human Sciences Press, Inc., 233 Spring Street, New York, N.Y. 10013-1578 or faxed to the Subscription Department at its number (212) 807-1047, or may be telephoned to the Subscription Department's Journal Customer Service at (212) 620-8468, -8470, -8472, or -8082. Subscription rates:

Volume 15, 1996-1997 (4 issues) $195.00 (outside the U.S., $230.00). Price for individual subscribers certifying that the journal is for their personal use, $45.00 (outside the U.S., $53.00).

ADVERTISING inquiries should be addressed to Advertising Sales, Human Sciences Press, Inc., 233 Spring Street, New York, N.Y. 10013-1578—telephone (212) 620-8495 and fax (212) 647-1898.

PHOTOCOPYING: Authorization to photocopy items for internal or personal use of specific clients is granted by Human Sciences Press for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the flat fee of $12.50 per copy per article (no additional per-page fees) is paid directly to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, Massachusetts 01923. For those organizations that have been granted a photocopy license from CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0891-4494/97/$12.50.

ISSN 0891-4494 JNDAE7 15(4) 227-278 (1997)
Editor's Foreword

This issue of the Journal features two major articles that draw together research findings to shed new light on near-death experiences (NDEs). In the first article, James Whinnery, a biochemist and physician who has specialized in aviation medicine, summarizes his studies of hundreds of episodes of acceleration-induced loss of consciousness in fighter pilots. These brief periods of unconsciousness, induced in healthy subjects under controlled conditions, yield a consistent sequence of psychophysiologic events that overlap with near-death phenomena. Whinnery distinguishes between those features of NDEs that may be attributed plausibly to loss of consciousness and those that cannot, and provides a model for classifying and studying various phenomena associated with unconsciousness or near death.

In our second article, psychologist John Gibbs presents examples of NDErs expressing puzzlement or shock at various aspects of their experiences. He marshalls both the theoretical and empirical evidence that this sense of surprise indicates the discovery of novel aspects of reality, supporting an interpretation of NDEs as encounters with an objective but nonmaterial reality.

Bruce Greyson, M.D.
Psychophysiologic Correlates of Unconsciousness and Near-Death Experiences

James E. Whinnery, Ph.D., M.D.
West Texas Agricultural and Mechanical University, Canyon, TX

ABSTRACT: Although loss and recovery of consciousness are integral parts of the near-death experience (NDE), the role of altered states of consciousness in the NDE has not been thoroughly investigated. Sixteen years of observations, including nearly 1000 acceleration (+Gz)-induced loss of consciousness (G-LOC) episodes, have revealed a pattern of psychophysiologic symptoms that collectively constitute the G-LOC syndrome and relate to the kinetics of +Gz-induced ischemia. Comparison of the psychophysiologic symptoms of G-LOC episodes and NDEs may help identify those symptoms unique to near-death and the process of dying. I propose a classification scheme for the study of NDEs and for relating near-death research to other psychophysiologic research. This scheme is based on the neurologic states of the nervous system and the transitions between them that result from alteration of blood flow to the nervous system. Consciousness and unconsciousness are considered as the neurobiologic bases of a balance between survival in the external environment and protection from ischemic threat within the internal environment. The study of G-LOC episodes in healthy individuals is therefore of value for understanding the mechanisms of both loss of consciousness and the NDE.

You cannot die without losing consciousness. Everyone should, therefore, have some interest in loss of consciousness, since he or she will experience it at least once. As such, unconsciousness is a
universal human event, albeit possibly only a terminal one for some. Death is covered by the physiologic veneer of unconsciousness. The common pathophysiologic pathway leading to death of the nervous system and therefore the human body involves loss of consciousness. In support of operational requirements, fighter aviation medical research has the opportunity to investigate experimentally loss of consciousness in healthy humans and, therefore, provide information on this universal experience. I share these loss of consciousness results so that those interested in understanding the process of dying and near-death experiences (NDEs) may utilize them to isolate carefully the components of those phenomena that occur only as a result of losing and regaining consciousness.

Although history and scientific research efforts are replete with inquiry into the secrets of death, our understanding of the psychophysiologic aspects of the dying process remains relatively limited. Of interest have been the questions relating to close encounters with death and an existence after death. These have been topics for philosophers, theologians, parapsychologists, and clinicians. Recent studies have focused on evaluating individuals who have experienced NDEs, survived "sudden death" episodes, and had other types of life-threatening experiences. In spite of the recurrent psychophysiologic findings from these studies, little emphasis has been placed on the common physiologic event that occurs: loss of consciousness. The NDEs and "sudden death" episodes require that loss and recovery of consciousness be at least a portion of the event. It is therefore evident that a detailed understanding of unconsciousness should be considered an integral part of the scientific investigation of such events. The results of loss of consciousness experiments in completely healthy humans may provide insight into the normal neurologic processes that occur in association with NDEs and "sudden death" episodes.

This report focuses on the psychophysiologic events associated with acceleration (+Gz)-induced loss of consciousness (G-LOC) in completely healthy individuals. Head-to-foot acceleration (+Gz) stress is a unique aspect of flying fighter aircraft engaged in aerial combat maneuvering. +Gz stress reduces blood flow to the head and causes pooling of blood in the abdomen and extremities. Cephalic nervous system ischemia results in G-LOC. Since 1919, G-LOC has remained a perplexing operational problem in fighter aircraft aviation that is challenging fighter aviation medical specialists to attain a solution, in order to reduce the loss of highly trained aircrew and multimil-
lion-dollar aircraft that continues to occur (Burton, 1988). A solution for the G-LOC problem requires a thorough understanding of the alterations of consciousness. Although preventing further losses of aircrew and aircraft is the goal of fighter aviation medicine, the results from experiments involving loss of consciousness in completely healthy humans should be of interest to a broad range of scientific disciplines. Our research does not seek to explain, nor is this report presented to explain, the totality of NDEs or “sudden death” episodes. Since we do have the unique opportunity routinely to collect data involving loss of consciousness in healthy humans, we present it to illustrate at least some of the phenomena that would be expected in association with NDEs and “sudden death” episodes that also involve loss of consciousness.

Methods

For those not familiar with aerial combat maneuvering in fighter aircraft and ground-based human centrifuge research, the stresses on the human body that result from +Gz stress can be understood as analogous to what happens in a test tube of blood when it is placed in a small clinical laboratory centrifuge to separate the more dense red blood cells from the plasma. The red blood cells are displaced to the bottom (foot) of the test tube (body) away from the top (head) of the test tube. In fighter aircraft or in a human centrifuge it is not just the red blood cells that are displaced; it is the blood in general that is displaced downward in the body into the capacitance areas of the abdomen and extremities, and away from the brain. The human body is restrained in place in an ejection seat as the +Gz stress is applied. Both the body and the blood are pushed downward. In relation to the stress, however, the body is held essentially stationary, and since the blood vessels are distensible, the blood pools in the most dependent areas of the body. The ability of the heart to continue to supply blood to the brain is easily compromised around +5Gz in an unprotected, relaxed human.

The exact level of +Gz stress that results in loss of adequate blood flow to the brain is dependent on many factors. Modern fighter aircraft can routinely achieve and sustain levels of +9Gz, which places most humans at risk for +Gz-induced loss of consciousness (G-LOC). It is not only the high levels of +Gz stress that are important; the very rapid application and sustained level of the +Gz stress must
also be considered. Again, modern fighter aircraft can produce +9Gz in one second (9 G/s onset rate) and maintain that level for sustained time periods (greater than 5 seconds). The magnitude of such stress can be understood by realizing that a 200 pound man at +1Gz, the everyday gravitational stress experienced by earthbound humans, will be transformed in one second or less at +9Gz to an 1800 pound man in a fighter aircraft. The unassisted heart and vascular systems are unable to compensate for such stress, and ischemia results in the cephalic nervous system causing loss of consciousness. Research using a ground-based human centrifuge stimulates in-flight +Gz stress and is conducted to develop life support equipment and techniques to protect fighter aircrew from the adverse affects of +Gz stress. In the course of such research many loss of consciousness episodes result.

The results to be discussed represent data collected from 16 years of acceleration research experience and nearly 1000 episodes of G-LOC that occurred in fighter aircraft and during centrifuge +Gz exposure. The individuals included experimental research subjects, fighter aircrew, and students in various aviation medicine courses. The average age of the individuals was approximately 32 years. All were healthy and asymptomatic, having successfully completed military flying physical examinations. The centrifuge G-LOC episodes were all recorded on videotape for subsequent analysis, as described elsewhere (Whinnery, 1989b). Results of the physiologic analysis of the centrifuge G-LOC episodes have been reported (Whinnery and Whinnery, 1990). The sequence of events for a typical G-LOC episode is shown schematically in Figure 1.

When rapid onset +Gz stress was applied to a sustained level well above tolerance, there was an approximately 6-second period (functional buffer period) during which normal neurologic function persisted. At the end of this period, consciousness was lost and the +Gz stress was reduced back to resting conditions. The length of the unconsciousness episodes averaged 12 seconds (±5 seconds), with a range of 2 to 38 seconds. The estimated average length of time blood flow to the central nervous system was altered to a level causing loss and recovery of consciousness was approximately 15 to 20 seconds. Myoclonic convulsive activity was observed in association with 70 percent of the G-LOC episodes. The myoclonic activity began on the average 7.7 seconds after the onset of unconsciousness and lasted 3.9 seconds. The myoclonic activity was observed to stop coincident with the return of consciousness. Upon recovery of consciousness
there was a period of relative incapacitation that lasted on the average about 12 seconds. This was a period in which there was confusion and disorientation. The end of this period was ascertained by the return of the ability to make purposeful movement, that is, regaining aircraft control or performing other specific tasks. Individuals who lost consciousness were interviewed in the centrifuge on videotape immediately following the G-LOC episode. Immediately after leaving the centrifuge gondola all individuals were required to complete a questionnaire describing the +Gz exposure and all experiences associated with the G-LOC episode. Many of the individuals were also interviewed at several follow-up times up to several months subsequent to the G-LOC episodes.

Results

After reviewing this large number of G-LOC episodes in completely healthy humans, a pattern of experiences emerged from this specific type of ischemic insult to the nervous system. It is not the purpose of this report to describe exhaustively all aspects of G-LOC episodes. The intent is to present findings from our aeromedical research that may be pertinent to those whose research is aimed more directly at understanding NDEs and associated phenomena. Only the general
aspects of our G-LOC experiences will be reviewed in a qualitative manner, with a limited number of specific examples provided to illustrate major points of importance. It is important to provide as much quantitative information as possible concerning the frequency of occurrence of the symptoms associated with these G-LOC episodes (Whinnery and Whinnery, 1990). The same quantitative information is also needed from NDEs for comparison.

Clinically, loss of consciousness episodes are generally considered emergency situations, and a life-threatening problem must be ruled out as a cause. The loss of consciousness is usually unannounced, rapid, and provides little opportunity for studying the characteristics and kinetics of the episode. Most physicians have very few opportunities to observe loss of consciousness episodes over a professional career. A complete description of the kinetics and characteristics of loss and recovery of consciousness in healthy humans should enhance the overall understanding of the normal response of the nervous system to transient alterations of the normal blood supply. A thorough understanding of the phenomenon should reduce the mystery and misconceptions associated with loss of consciousness and near-death episodes.

Recognition of G-LOC

The experiences of the subjects during the G-LOC episodes were collected through individual reports, personal interviews, and questionnaires. Considering all G-LOC episodes observed, the immediate interview following the episode revealed that approximately 50 percent of the individuals did not immediately recognize that they suffered a loss of consciousness episode. Many were shocked to observe their unrecognized G-LOC episodes on videotape review after exiting the centrifuge. This problem with recognition of the G-LOC episode is complicated by the acknowledged fact that many of the subjects experienced a psychologic urge to suppress or deny that they had been unconscious. The individuals found it difficult to describe this urge to try to hide their loss of consciousness, but indicated that it frequently resulted in their keeping quiet while hoping for someone to provide them with adequate information to fill in their G-LOC void. This existed in spite of their knowledge that the entire exposure was being captured on videotape. Many subjects automatically, and essentially uncontrollably, attempted to fill in their void by confabulation. The ability to recognize a G-LOC episode is definitely related
to the severity of the neurologic insult, as measured by the duration of the absolute incapacitation period. The longer the absolute incapacitation period, the more likely one is to recognize that G-LOC had occurred (Whinnery and Whinnery, 1990).

The G-LOC experiences I had the opportunity to observe and investigate were derived from a unique segment of the population of healthy individuals. The majority of the individuals were fighter pilots who, on the average, represented the extreme of self-confidence and self-control, frequently under conditions of extreme and even life-threatening situations in aerial combat. The complete loss of self-control associated with a G-LOC episode would therefore be expected to meet with hesitancy for admission, especially in this population. In the past, pilots also had even more reason to preclude reporting in-flight G-LOC episodes, since any alteration of consciousness was, by regulation, reason for restriction from flying duties. Recognizing and reporting G-LOC episodes in fighter aircrew therefore may have at least 3 components: lack of recognition of G-LOC episode, psychophysiologic suppression associated with loss of consciousness, and reluctance to report a G-LOC episode even if recognized. All three of these reasons would apply in one way or the other to the NDE. It is only recently that reporting the NDE has been encouraged; keeping it a secret however, is more complicated than simply fear of being considered mentally unstable (Dlin, Stern, and Poliakoff, 1974; Druss and Kornfeld, 1967). To quote a written communication from a naval aviator:

Only after reading of your work have I come to realize I'd G-LOC'd at least 3 times. I always felt foolish after them and told myself to pay more attention, work harder, etc. I only really remember waking up once while in a F-4 [aircraft] during an ACM [air combat maneuvering] hop.

It is possible to classify the G-LOC episodes into four types, according to the pilot's recognition of loss of consciousness and the presence of dreamlets. For the most transient episodes there is frequently no recognition at all. I classify this as absolute lack of recognition of the loss of consciousness. If handled appropriately during centrifuge exposure, individuals can be encouraged to continue on as though nothing had happened. It is only when individuals reviewed their own videotapes that they understood, with amazement, that they had suffered G-LOC episodes. The second type of experience is associated with knowing that something was unusual, but being unsure exactly what it was. I classify this as relative lack of recognition of having
been unconscious. In general, as the ischemic insult increases, the likelihood of recognition of loss of consciousness increases. Both the third and fourth types of experiences are recognized. The third type of experience is associated with a clear knowledge of the loss of consciousness; however, these individuals do not have a dreamlet, or at least are unable to remember if they had a dreamlet or, if they did, exactly what the dreamlet content was. This type of G-LOC episode is recognized, but no report of a dreamlet can be described. They may be able to describe many, if not all, of the other aspects of a G-LOC episode. The fourth type of experience is one in which the individual has a memorable dreamlet and is able to remember and describe all the major aspects of the experience. This classification scheme is a reflection of the relationship between the magnitude of the ischemic insult and the resulting symptoms that are produced.

Visual Symptoms

The most common symptoms associated with exposure to +Gz stress are related to alterations of vision. Because of the unique characteristics of the eye in comparison to the remainder of the nervous system, visual symptoms occur at lower +Gz levels (and higher blood supply pressures) than symptoms for the rest of the nervous system. To understand this physiologic phenomenon, it must be recognized that the eye has an increased pressure compared to the remainder of the nervous system. This intraocular pressure is roughly 20 mm Hg. As the +Gz stress increases, perfusion to the retina is compromised at lower +Gz levels than the other surrounding nervous tissue. As the perfusion pressure to the eye falls during exposure to +Gz stress, the most distal circulation within the retina is compromised first, producing loss of peripheral vision. As the +Gz level increases further, the visual field contracts to produce what is known as tunnel vision. This results when perfusion pressure is enough to supply only the small area where the central retinal artery enters the eye. Finally, when the perfusion pressure is so low that no blood flow to the retina occurs, blackout, or complete loss of vision, results. Blackout is not loss of consciousness. If the rate of onset of +Gz is gradual, then the progression of visual symptoms from “grayout” (loss of peripheral vision) to tunnel vision to blackout can be observed. These visual symptoms precede loss of consciousness. If the rate of onset of +Gz is very rapid, then the progression of symptoms may not be
observed or, if observed, not remembered. The most frequent sequence of visual symptoms is such that the last observation prior to loss of consciousness is some degree of tunnel vision.

It is difficult to assess the visual symptoms that occur during the transition from unconsciousness to recovery of consciousness, since the human is not fully conscious while these symptoms are occurring. From a perfusion mechanism standpoint it is plausible that the reverse sequence of symptoms occurs. This means that many of the neurologic faculties required for full consciousness would be well on their way to recovery as normal vision is being restored, based on the increased intraocular pressure. Specifically, this sequence would include the presence of tunnel vision coincident with the earliest recovery of conscious function. The kinetics of the visual recovery and recovery of the remainder of neurologic function is consistent with tunnel vision occurring at the same time we believe the dreamlets are occurring, as consciousness is returning near the end of the absolute incapacitation period. Just as we have observed other physical and physiologic activities, such as myoclonic jerking of the extremities, being incorporated into the dreamlet, we would predict that the coexistent visual symptoms would likewise be incorporated into many of the G-LOC dreamlets. The incorporation of tunnel vision into the dreamlet could logically be interpreted as coming out of the darkness of a tunnel or perhaps bright sunlight. Even without this coincident sequence during recovery, the last observation prior to loss of consciousness is usually tunnel vision, and therefore its frequent incorporation into the G-LOC experience dreamlet would not be an unreasonable expectation. In summary, tunnel vision is sequentially the last visual input to the brain as consciousness is degraded, and a visual input to the brain just prior to the return of full consciousness.

The visual symptoms and physiologic changes that result from exposure to +Gz stress are not unique to +Gz stress. Any process that results in reduced perfusion to the nervous system can produce similar symptoms. These other processes, such as cardiac asystole, may also be responsible for similar visual symptoms that can contribute to a loss of consciousness experience.

Myoclonic Convulsions

From research on the kinetics of G-LOC it became clear that the myoclonic jerking occurred at a specific time during the G-LOC epi-
sode. As shown in Figure 1, for the type of ischemic insult +Gz stress generally delivers to the nervous system, the myoclonic jerks occur at the end of the absolute incapacitation period, they last approximately four seconds, and they end essentially coincident with the return of consciousness. This sequence results in the myoclonic jerking occurring as the individual is regaining consciousness. The apparent inclusion of myoclonic jerking into the dreamlet is one of the prime reasons that we consider the dream period to be near the end of the absolute incapacitation period. Dreamlets in which individuals stated they were riding on “bumper cars” at an amusement park were reported when they rhythmically jerked their heads against the headrest of the seat. Rhythmic jerks of the arms were reported as one individual experienced a dream about fishing and pulling back on his fishing rod several times to set the hook. Floundering around in the water while being about to drown was reported in association with the rhythmic extremity jerking of the myoclonic convulsions. The frequent but not universal incorporation of such coexisting physiologic activity into the dreamlet has been previously reported. Daniel Dennett (1993) gave an example of incorporating coexisting physiologic stimuli into the dream content: in his own dream he heard a lamb bleating rhythmically, which then coalesced perfectly in cadence with his telephone ringing as he awoke.

Memory

Memory is certainly compromised in association with a G-LOC episode. Just as with other neurologic functions, the exact kinetic relationship of memory compromise is dependent on the time course and magnitude of the ischemia along with the neurologic structures that are affected. Memory must return prior to the end of the absolute incapacitation period, since the dreamlet, myoclonic convulsions, and paralysis frequently can be remembered. The exact kinetics of neurologic substrate recovery, however, remain unknown.

The induction of unconsciousness is closely associated with compromise of the memory processes. It is difficult, however, to assess the exact moment when memory is lost. Following the experimental determination of G-LOC kinetics and establishment of a theoretical mechanisms of G-LOC (Whinnery, 1989c) I predicted that if the ischemic insult was carefully titrated, the symptoms observed during
recovery should also be produced during the induction of unconsciousness (Cammarota, 1992).

Centrifuge experiments were subsequently conducted that involved deliberate induction of unconsciousness using prolonged, cyclic +Gz stress in association with a complex simulated aerial combat maneuvering tracking task. These experiments confirmed that myoclonic convulsive activity could be induced prior to G-LOC and also that memory compromise could be induced prior to G-LOC. Utilizing a complex flight tracking task, highly trained individuals were asked to report the last point they remembered in the tracking task before losing consciousness. This sequence in the tracking task could then be accurately determined. It was also possible to determine coincidentally at what exact point during the tracking task that tracking ability—and consciousness—was lost. The point of last memory generally preceded the loss of tracking ability, indicating that memory was compromised prior to loss of consciousness. The validity of this G-LOC model was not only enhanced by the ability to predict such phenomenon correctly; it indicated that memory could well be compromised for a very short period of time prior to G-LOC. Observation of such memory compromise requires rather sophisticated measurement techniques. If there is a very short but finite period of memory compromise prior to G-LOC, it might also be possible for an event to be captured by the senses yet not recorded accurately in memory as G-LOC occurs. As such, it would be possible for sensory input to occur, that is, be observed by the senses, but not remembered. Our aerial combat tracking task data suggest that this does occur (Cammarota, 1992).

During recovery of consciousness it is evident that mnestic processes return prior to consciousness. At least some of the evidence supporting this contention is based on the fact that the dreamlets and myoclonic convulsions occur prior to the end of the absolute incapacitation period and the return of consciousness, and are indeed remembered. Therefore, there are processes within the nervous system that become functional prior to the return of consciousness. Memory is one of those processes that returns prior to the return of consciousness. Captured within functional memory are the physiologic inputs that transpire prior to the return of consciousness. The fact that mnestic processes in general return also provides the compendium of the individuals' prior thoughts, experiences, and ideas that can be incorporated into the experience. It is within this milieu of existing physiologic sensory and psychologic inputs, along with the
information contained in memory, that the G-LOC experiences seem to be formulated, remembered, and subsequently reported.

Psychophysiologic Symptoms

I have already described the major characteristics of G-LOC experiences, which include the incapacitation, myoclonic convulsions, alterations of the memory processes, and the visual symptoms. I will defer the description of dreamlets until last, since they are generally associated with the summation of all psychophysiologic events that transpire during the G-LOC episode. The additional physiologic symptoms of G-LOC reported include tingling distally in the extremities and around the mouth, post-G-LOC mild confusion and disorientation, a feeling of awakening from sleep, and peri-awakening paralysis. Individuals also have psychologic alterations in association with the G-LOC episodes, including embarrassment, euphoria, dissociation, anxiety, fear, antagonism, inability to concentrate, and a "give-up" or submission attitude. The embarrassment was present even when the centrifuge acceleration exposure was part of a research study specifically designed to result in unconsciousness, the unconsciousness being a successful experimental outcome. A sense of floating is one of the most frequently reported symptoms associated with G-LOC experiences. It is commonly associated with autoscopy, automatic movement, paralysis, a sense of dissociation, and being pleasurable enough to result in the individual not wanting to be disturbed. Overall, the majority of individuals consider the G-LOC experience not only pleasurable, but euphoric. Much less frequently, on the other hand, an occasional individual does find the experience to be disagreeable and frustrating.

Many of these psychologic alterations persist for several hours following the G-LOC episode, with the individuals indicating that they feel normal only following a subsequent period of sleep. This is particularly true for the feelings of detachment, dissociation, and the inability to concentrate. Although not a common occurrence, out-of-body experiences (OBEs) are reported in association with G-LOC episodes. These OBEs have been associated with longer G-LOC episodes and multiple, closely-spaced G-LOC episodes, as many as five within a 15-minute period (Whinnery and Jones, 1987). This may indicate that OBEs are more likely to occur with increasingly severe ischemic insults to the nervous system. One associated OBE, for example, oc-
curred following multiple G-LOC episodes. The individual walking
down a hallway immediately after a centrifuge exposure became
aware not only that he was walking down the hallway, but also that
he was above and behind himself, watching his own body walking.
The duality persisted for approximately three minutes before the ex-
perience ended with what was described as a reintegration process
with his body.

The above symptoms might be predicted to result from +Gz stress
causing G-LOC, as illustrated in Figure 2. Loss of sensory input to
the nervous system essentially produces a de-afferentiation. Loss of
motor output eliminates the effective link of the nervous system with
the remainder of the organism, or de-efferentiation, the net result
being a perception of nervous system detachment or dissociation and
the sensation of floating or being out of, and not connected to, the
body.

**Figure 2. Kinetic sequence of the loss and recovery of
consciousness effectively resulting in the isolation of the
nervous system from its environment, including the rest of
the body.**
Dreamlets

The characteristics of G-LOC episodes in which dreamlets occur have been reported elsewhere (Forster and Whinnery, 1988; Whinnery and Whinnery, 1990). It is clear that dreamlets are much more likely to occur and be memorable as the severity of the ischemic insult increases; there is a strong correlation between memorable dreamlets during G-LOC and the magnitude of the ischemia (Whinnery and Whinnery, 1990). The longer the absolute incapacitation period, the more likely it is that a dreamlet will be reported. Overall, our results suggest that about 35 to 40 percent of our G-LOC episodes have dreamlets, or closely related thought processes that occur and are reportable. We have chosen to refer to these as dreamlets since the individuals describe them as indistinguishable from the dreams they experience during regular sleep, the only difference being the short duration of G-LOC dreamlets in comparison to sleep-associated dreams. It should be noted that these G-LOC experiments allow a dreamlet to be isolated to a specific 12-second or shorter period of time.

An immediate question that arises regarding G-LOC dreamlets is whether or not they are associated with rapid eye movements. This is an important question because the answer would enhance our ability to link our results with sleep dream research. The question is not easily resolvable however, not only because of the very short duration of the G-LOC episode, of which the dream period is only a part, but because of the concurrent myoclonic jerking and vestibular stimulation that occur. The vestibular stimulation results in coriolis and vertical nystagmus that occurs transiently in the centrifuge during +Gz onset and offset. We have not, as yet, resolved the question of whether or not there is rapid eye movement associated with G-LOC dreamlets. The electroencephalographic (EEG) response during G-LOC is a transition to and then out of a delta wave pattern. In any case, our dreamlets meet the characteristic features of dreams described by Allan Hobson (1988), including emotional intensity, detailed sensory imagery, illogical content and organization, uncritical acceptance, and difficulty in remembering once it is over.

The dreamlets are vivid and frequently include family members and close friends. They commonly have beautiful settings and their content includes prior memories and thoughts of significance to the individual. We might describe the dreamlets as being very memorable, when they are remembered; they have a significant impact on
individuals who experience them, and remain crystal clear for years after they occur. There is a very strong urge in most individuals to try to understand and explain what they experienced.

The G-LOC Experience

The major characteristics of G-LOC experiences that are shared in common with NDEs include tunnel vision and bright lights, floating sensations, automatic movement, autoscopy, out-of-body experiences, not wanting to be disturbed, paralysis, vivid dreamlets of beautiful places, pleasurable sensations, psychological alterations of euphoria and dissociation, inclusion of friends and family, inclusion of prior memories and thoughts, the experience being very memorable (when it can be remembered), confabulation, and a strong urge to understand the experience. The similarities between NDEs reported by patients and the G-LOC episodes reported by healthy individuals may be compared in a few examples taken from G-LOC and NDE descriptions.

NDE #1. A 39-year-old housewife described the following near-death experience resulting from a cardiac arrest (Sabom and Kreutz-iger, 1977, p. 650):

I knew I was dying because the pain was so bad. . . . It was like a bullet hitting my heart. . . . I called the nurse and by then she couldn't find no respiration or nothing. . . . And you could see yourself just floating up in the air and you could see your own body and them working on it while you're just floating. And you see people who have been dead for years and you talk to them. . . . I love them, like my mother and daddy. And they were both dead. In fact she had her own baby that was still-born in her arms . . . it was like a borderline. There was a gate-like and it was real beautiful. . . . the sun was so bright and shiny. It was like another world . . . it's white with clouds and grass and beautiful trees . . . like this but a beautiful sunny day, but everything is so bright and clean.

G-LOC subject #1. A 20-year-old male centrifuge experimental subject experienced two successive G-LOC episodes with the following descriptions:

[First G-LOC episode] I was home . . . saw my mom and my brother. . . . I could not see myself. . . . I can't remember what we were doing, but when I came back [return of consciousness] I thought I shouldn't be here [in the centrifuge]. We were outdoors; it was wild! . . . I got to go home [by dreaming] without taking [military] leave!
He knew he was in his home in Michigan, and this dreamlet was vivid and in color.

[Second G-LOC episode] There was a sunset. I cannot remember where. The sun was orange-red; an October sunset Maybe it was in Michigan.

He considered this experience very intense and pleasant.

G-LOC subject #2. A 31-year-old male centrifuge experimental subject who suffered a G-LOC episode described the following experience:

I was floating in a blue ocean, on my back . . . kind of asleep but not asleep. I knew the sun was up . . . like someone was trying to wake me up. Finally, I woke up and I was on the centrifuge! I did not want to wake up I could see myself on the water and also look at the sun; the sky was very blue, the sun very yellow.

The subject stated that he enjoyed the experience, especially the sensation of floating.

NDE #2. A typical response, from a patient-physician who had a near-death experience resulting from ventricular fibrillation associated with a myocardial infarction, included the following (Anonymous, 1969, p. 263):

. . . I could not phonate. The words just would not come out. I decided to feel for his [the doctor’s] arm (because I was still unable to see) and was distressed to find I could not move either hand.

A similar incident was reported by Barney Dlin, Andrew Stern, and Steven Poliakoff (1974, p. 63):

One patient recalled thinking “I’m trying to signal you that I’m alive,” and feeling a tremendous sense of desperation because “my lips wouldn’t move . . . I couldn’t even move my hand.”

G-LOC subject #3. This sense of paralysis and associated frustration is extremely common in G-LOC episodes. A typical example from a centrifuge subject is as follows:

I was in the grocery store going down one of the aisles. I was . . . being propelled by something like a magic carpet, although I could not make movements. I wanted to reach out and get a carton of ice cream but could not move my arm or even my eyes to look for it. It was intensely frustrating to hear the warning horn and not be able to get my arm down to turn the darn thing off.

The sense of paralysis was extremely frustrating, especially as he found he could hear a G-LOC warning tone in the centrifuge and
could not move to turn it off initially as consciousness returned. It was apparent that sensory function, memory, vision, and hearing returned before return of motor function and the ability to move the upper extremities.

Both G-LOC and the NDE are usually very significant events that can result in subsequent behavior modification. It has been shown that in subsequent G-LOC episodes following the first one, the period of relative incapacitation (confusion/disorientation) is reduced. This demonstrated ability to recognize that G-LOC has occurred and then recover more quickly has prompted us to recommend that all fighter aircrew undergo "G-LOC training" as an enhanced flight safety measure (Whinnery and Burton, 1987).

The significance of an in-flight G-LOC episode is illustrated by an incident that occurred to a distinguished fighter pilot in an F-86 aircraft. The pilot had an in-flight G-LOC episode with an associated dreamlet about flying his fighter aircraft. The pilot recovered his aircraft without incident and had not previously told anyone about the G-LOC episode over the subsequent 20 years. The pilot related that since his in-flight G-LOC episode, he had trained himself to wake up whenever he had a normal sleep dream that involved flying a fighter aircraft. The reason for his actions was that he could never be sure whether he was asleep and dreaming about flying or whether he was actually flying, suffering a G-LOC episode, and having a dreamlet about flying.

Discussion

The resulting psychophysiologic symptoms and alterations produced by transient +Gz-induced ischemia and hypoxia of the cephalic nervous system have been collectively described as the G-LOC syndrome (Whinnery, 1990). A lot happens in a very short time over the course of the loss and recovery of consciousness. On the average, this sequence of degradation and recovery of normal neurologic function takes from 12 to 24 seconds. The experimental evidence reveals a consistent pattern of both physiologic events and psychologic experiences that occur in the course of ischemic challenge to the nervous system. It is logical to assume that the psychologic experiences reported result from the overall neurologic substrate configurations that are sequentially produced. The overall neurologic configurations result from fully functional areas, functionally compromised areas as
blood supply to the cephalic nervous system is modified, and the interactions between combinations of functional and nonfunctional neurologic substrate configurations.

The overall perceived experience of a G-LOC episode represents the complex integration of all the psychophysiologic inputs and memory existing within the nervous system during various stages of functional neurologic capability. When consciousness has been lost and then recovered, the nervous system is faced with logically integrating all its prior and current activities—sensory input, memory, analysis, and responsive output—into a rational experience that "makes sense." In trying to develop such an overall rational experience, the nervous system has to work with the information that it gained from a minimally functional system through various stages of neurologic function, up to and including a fully functional system. It has to accomplish this essentially instantaneously. Such a remarkable feat results in the experience that an individual reports when asked: "What do you remember?" An abrupt alteration such as loss of consciousness would likely leave whatever was occurring in the nervous system open-ended and not disposed of in the usual manner. It is not surprising that some loose ends may be tied together that are not quite in the usually correct sequence for being tied together. Perhaps the nervous system indeed recognizes this, which would explain why many subjects who have G-LOC episodes report they remain feeling dissociated until a period of sleep occurs. Sleep could potentially serve as a period that provides the nervous system an opportunity to consolidate more appropriately the loose ends resulting from an abrupt interruption of consciousness. For these reasons, pilots who have a G-LOC episode are usually restricted from flying until a sleep period has transpired.

For a G-LOC episode, it is important to develop a composite list of all the co-existing sensory input present during the average 12-second period of altered consciousness. This sensory input represents all of the new information that might be made available in the nervous system, combined with the already existing information within short- and long-term memory. Memory function itself is also in various stages of functional compromise as consciousness is lost and regained, and therefore contributes to the experiences in a piecemeal fashion. This complex sum of information is what is available within the nervous system during a G-LOC episode. A complication arises because some of the sensory input may be received when the nervous system is only partially functional and therefore may be processed
in a nonstandard manner. Some of the sensory input that must be considered in association with a G-LOC episode in the centrifuge includes vestibular stimulation, such as a tumbling sensation known as coriolis; myoclonic convulsive movements; auditory stimulation, such as the G-LOC warning tone; visual stimulation, such as the G-LOC warning light; tunnel vision; paralysis, or loss of motor control; and transient loss of sensory ability.

Although some of these stimuli may also occur in NDEs and "sudden death" episodes, others do not. Vestibular stimulation, for instance, is unlikely to be associated with anything except a G-LOC episode. Myoclonic convulsive activity may or may not be as frequently associated with NDEs or "sudden death" episodes. We have observed vestibular manifestations and myoclonic convulsive movement manifestations in G-LOC dreamlets. Such unique events would be expected to be observed in G-LOC episodes, but rarely if ever in NDEs or "sudden death" episodes, unless the necessary physiologic stimulation occurred. On the other hand, most of the other sensory events are present in both, and would be predicted to be a frequent part of both G-LOC and NDEs. This includes such events as tunnel vision, paralysis, and auditory and visual environmental sensations. A complete kinetic categorization of such sensory events for both NDEs and loss of consciousness episodes are key aspects of understanding both phenomena.

The main point of the current discussion is that we observe G-LOC experiences in which dreamlets occur whose content frequently reflects the inclusion of coincident physiological stimuli. The best examples of this are the occurrence of myoclonic convulsions, paralysis, and tunnel vision that are incorporated into the dreamlets. We would therefore postulate that many of the same or similar occurrences would be a part of NDEs and "sudden death" episodes. The insult to the nervous system in NDEs is very likely much more severe, and that difference should be reflected in the reported events. It would appear that many, but not necessarily all, of the characteristics of NDEs are consistent with what happens with a loss of consciousness episode. All the events being received and processed in the functional nervous system must ultimately be incorporated into memory in order for them to become included in the NDE or G-LOC experience. Memory must be functional in order for the experience to be memorable and subsequently reported. It should be recognized that NDErs who fail to recover completely may not be able to report their experiences or, for that matter, even respond. Even the individuals who
are able to report the NDE may, in fact, have permanent anatomic and physiologic alterations or damage that may influence the NDE. These NDEs would be expected to be significantly different from G-LOC experiences.

A Protective Mechanism

Loss of consciousness is considered only a symptom in clinical medicine, and because of that it has not been systematically studied. Clinical medicine has little motivation to study in depth something that can be prevented by correcting the underlying problem that causes it; no one dies directly from loss of consciousness. In addition to its clinical classification as a symptom, there remains considerable fear about transient loss of consciousness being a dangerous event. Therefore, there have been considerable barriers to conducting experiments involving ischemia or hypoxia in completely healthy humans. At least part of the concern over loss of consciousness being potentially pathological comes from its automatic clinical association as a symptom with life-threatening primary problems such as cardiac arrest. The loss of consciousness is usually what we observe in a cardiac arrest, not the actual asystole or ventricular fibrillation. The real concern, however, is not the loss of consciousness, but rather the cardiac arrest (ischemia) persisting long enough for nervous system pathology to occur.

In contrast, loss of consciousness is considered a primary problem in fighter aviation medicine. The unique risk/benefit ratio in fighter aviation medicine provides the opportunity to investigate the G-LOC problem. For many years, even in aviation medicine, the clinical concern associating loss of consciousness with life-threatening disease processes made G-LOC experiments in healthy humans difficult. Visual symptoms such as tunnel vision and blackout were used as experimental endpoints so that G-LOC could be avoided.

Conducting G-LOC experimentation safely rests primarily on the understanding that G-LOC is a protective mechanism (Whinnery, 1989a, 1991). When the nervous system is challenged with +Gz-induced ischemia, the processes associated with G-LOC are initiated to prevent pathologic insult to the nervous system. Evolutionary development in the environment of the earth's gravitation (+1Gz) would logically provide such a mechanism to preserve nervous system integrity to the greatest extent possible. When nervous system is-
chemia occurs as a result of +Gz exposure, a mechanism that not only reduces the energy expenditure requirements of the nervous system but also removes the upright organism from the +Gz stress field would be extremely advantageous for survival. This is exactly what G-LOC does. Nervous system energy is conserved by reducing the expenditures required by conscious functioning, and the body is placed in a horizontal position, with heart and brain at the same level in the +Gz field. Loss of consciousness is a normal process within the normal nervous system. A critical balance exists between consciousness, the neurologic state that is key for survival of the organism, and unconsciousness, the neurologic state in which the nervous system is optimally protected against +Gz-induced ischemic insult. A complete description of the entire G-LOC protective mechanism has been developed with the major sequence of events shown in Figure 3.

With respect to the current discussion concerning the overall G-LOC experience, the dreamlets and psychologic alterations are important protective mechanism components. Since G-LOC episodes are difficult to recognize and remember, it is key for there to be mechanisms that enhance the ability of the organism to recognize an event that threatens survival. The dreamlet and psychologic alterations serve as a mechanism to enhance the recognition of such an event. Recognition thereby serves to allow the organism to avoid the same situation or environment in the future. It would be logical that the same mechanism serves similar purposes for NDEs. Situational avoidance and behavior modification would be expected if threats to survival are recognized by the organism.

Neurologic States

Treatment of the nervous system by classical thermodynamics results in the establishment of neurologic states based on energy relationships (Whinnery, in press). Consciousness and unconsciousness represent different states of the nervous system. Relative to +Gz stress affecting the otherwise normal nervous system, the neurologic state is dependent on the existing neurologic energy. The transitions between consciousness and unconsciousness that result from manipulation of +Gz stress are caused by energy (blood supply) alterations. Between these two states there is the subconscious state, which corresponds to a partially functioning nervous system. Each of these
Figure 3. Schematic flow diagram of the postulated psychophysiologic protective mechanism sequence that underlies +Gz-induced loss of consciousness (G-LOC). The nervous system is housed within the body, which serves to provide anatomic protection.

G-LOC
PROTECTIVE MECHANISM

1. CARDIOVASCULAR RESERVE
2. CARDIOVASCULAR REFLEXES
3. NEUROVASCULAR RESERVE/REFLEXES
4. FUNCTIONAL BUFFER PERIOD
5. WARNING SYMPTOMS
6. LOSS OF CONSCIOUSNESS
7. INTERNAL MECHANISMS
 - ACTIVATION REDUCTION
 - INHIBITION ENHANCEMENT
8. MYOCLONIC CONVULSIONS
9. PSYCHOLOGIC PROTECTION
10. INTEGRITY BUFFER PERIOD
 RECOVERY

neurologic states—consciousness, subconsciousness, and unconsciousness—represents a range of neurologic energy distributed over a spe-
cific nervous system structure. It is necessary to define at least one additional neurologic state, a state that corresponds to a critical range of reduced energy, from which, by definition, it is impossible to regain a neurologic state above unconsciousness. This neurologic state is death.

The relation of these neurologic states is illustrated in Figure 4. The neurologic state of consciousness is a high energy state as compared to the lowest energy state of death. Loss of consciousness induced by +Gz stress results from decreased energy and results in transitions through the subconscious state to unconsciousness. Recovery of consciousness requires the restoration of energy to the nervous system and transition from unconsciousness through the subconscious state back to the normal conscious state. When the insult mechanisms are similar for G-LOC and NDEs—for instance, cardiac arrest and G-LOC—the general difference between the two experiences becomes a difference in the kinetics of the processes, nervous system ischemia being more frequently prolonged in the NDE. These neurologic energy-state relationships provide a theoretical framework for understanding the G-LOC syndrome and NDEs.

Figure 4. Comparison of the theoretical energy-dependent processes associated with +Gz-induced loss of consciousness (G-LOC) episodes and with near-death experiences (NDEs). The resulting experiences reported upon recovery are dependent on the depth and duration of time within the states of the nervous system.
Experiences Involving Unconsciousness

Both NDEs and G-LOC experiences commonly involve a transient sojourn into the unconscious state. Both also involve a return to the conscious state with the ability to recall certain activities that occurred sometime during loss of consciousness, the transitions through subconsciousness and unconsciousness, and/or the return of consciousness. The differences between these experiences in a normal nervous system are related to the magnitude, duration, and distribution of energy deprivation within the nervous system. As previously described, for the activities to be remembered, various areas of the nervous system, including those underlying memory, must be functional. For the experiences to be reported, the nervous system must ultimately return to a state of consciousness that is considered essentially normal. Although changes may have occurred, including pathologic ones, they cannot be so extensive or critically located to prevent establishment of the state of consciousness within the normal range, if the experience is to be accurately reported. Evidence from G-LOC experiences reveals that memory is compromised when an individual is unconscious. Evidence also reveals that memory becomes functional before the state of consciousness is restored. Memory is at least partially functional within the subconscious state that exists during transitions between consciousness and unconsciousness.

We would therefore predict that the content of both NDEs and G-LOC experiences are those neurologic activities captured within the subconscious state. Various neurologic activities may occur within subconsciousness or lower neurologic states, but they would be unlikely to be captured in a state lower than subconsciousness. It follows that if indeed it is the subconscious state that is key to remembering these experiences, then the characteristics of the experiences are at least partially related to the duration within the subconscious state. Although the duration and depth of the ischemic insult that produces unconsciousness may have an effect on the experiences, we would not predict that experiences in the unconscious or lower states would become memorable. To be described to others, the experiences must be reportable. To be reportable, the nervous system must be in a state of consciousness. The neurologic states induced by +Gz stress are energy dependent, as illustrated in Figure 4.
Conclusions

Solving the G-LOC problems in fighter aviation requires understanding the neurologic states of consciousness, subconsciousness, and unconsciousness, along with the mechanisms that cause the transitions between neurologic states. The same need for understanding is shared by those investigating NDEs. Loss and recovery of consciousness are events common to individuals who have G-LOC and to NDErs. From this perspective, G-LOC provides a model for understanding neurologic states that are shared in common with the NDE. I have previously classified G-LOC episodes based on the magnitude of the ischemic (energy deficit) insult to the nervous system to establish a framework for conducting G-LOC research safely (Whinnery, 1989a, 1991). The NDE can be included in this classification, based on physiologic insult similarity. This classification scheme has the potential for establishing a framework for the systematic study of the NDE and for relating near-death research to other psychophysiological research efforts.

There are several types of alteration that can disturb the normal state of consciousness. There may well be similar neurologic shutdown and start-up mechanisms responsible for the transitions between consciousness and unconsciousness for different alteration etiologies. Although the kinetics of the loss and recovery of consciousness are different for hypoxia due to altitude exposure and ischemic hypoxia (G-LOC), many of the symptoms are similar. For instance, the enjoyable, lightheaded, euphoric feeling of altitude-induced hypoxia is not that different from the feelings that frequently result from G-LOC. These symptoms are shared by other mechanisms that also produce loss of consciousness. They have been pleasurable enough to cause addictive behavior for re-experiencing these symptoms (Lai and Ziegler, 1983) and to enhance sexual experience (Resnik, 1972). The loss of consciousness associated with the NDE, in comparison, has been described as resulting in an “elevated level of consciousness,” transcendence, or a mystical state of consciousness. Indeed, it appears that many of the psychophysiological symptoms reported following G-LOC episodes are remarkably similar to those of the NDE. As illustrated in Figures 3 and 4, G-LOC episodes and NDEs would be predicted to have commonality based on the shared neurologic state alterations that occur. The G-LOC/NDE common experience would be attributed to the psychophysiological changes associated with loss and recovery of consciousness. The unique aspects
of the NDE should become evident by comparison with the G-LOC symptoms.

The various alterations that lead to loss and recovery of consciousness can produce a wide spectrum of insults to the nervous system. The ischemic insults associated with G-LOC represent a narrow band within this overall spectrum. Although G-LOC in itself represents only a narrow band within the overall range of mechanisms that produce loss of consciousness, it results from a range of neurologic insults from minimal to severe. The symptoms observed reflect this range. G-LOC episodes represent a range within the minimal insult spectrum, while NDEs represent a range within the more severe neurologic insult spectrum. To gain command of the entire spectrum of symptoms that can result from various processes inducing loss and recovery of consciousness, it is necessary to compile the dispersed information that exists in the literature covering many disciplines. Loss and recovery of consciousness should be recognized as an integral part of the NDE and thoroughly investigated.

It is imperative that the most precise definitions be made of all terms pertaining to alterations of neurologic states, along with the most detailed descriptions of all symptoms and processes. Events described as "sudden death" can be misleading. If there is a spontaneous recovery and/or successful resuscitation, in which an individual regains a higher state of neurologic function than death, then the event was only a loss of consciousness episode. If the term "sudden death" is used to describe such events, then we would have to acknowledge that some individuals have died hundreds of times (Schwartz and Jezer, 1932). From a neurophysiologic perspective, such phenomena as sustained periods of cardiac asystole or ventricular fibrillation are not sudden death. They are just loss of consciousness episodes, albeit significant ones, since "no one has returned from the dead and given an account of his experience" (Noyes, 1972, p. 174). Although it may sound like a trivial statement, from a kinetic standpoint, if an organism is classified as dead, it must stay dead. If an organism regains higher neurologic states (above death), then it was not the state of death that the organism was in. It is for this reason that "near-death" rather then "sudden death" is much more appropriate terminology.

These altered neurologic state experiences, whether resulting from G-LOC or the NDE, are vivid reality to those who have them. Differences between G-LOC episodes and NDEs would be expected, if for no other reasons other than the circumstances that cause them
and the magnitude of the insults to the nervous system. The G-LOC syndrome is the normal response of completely healthy individuals. If there are unique characteristics associated with the NDE, then their identification would be facilitated by focusing on the real differences in the individuals, the physical states, the environmental situation, and the symptomatology between G-LOC episodes and NDEs.

The situation associated with G-LOC is not life-threatening and is not perceived as a life-threatening situation by the individual. No resuscitation efforts other than removing the +Gz stress is needed for recovery from a G-LOC episode. The NDE frequently requires heroic efforts to restore consciousness. No panoramic memory or life review has been reported in association with G-LOC episodes. Panoramic memory is frequently reported in situations that are recognized by the individuals as being life-threatening (Noyes and Kletti, 1977). By itself, loss of consciousness does not appear to be the cause of panoramic memory. It is more common for the NDE to be associated with a life-threatening experience, and therefore more common for panoramic memory to be a part of the NDE. Identification of such differences is key to defining the unique symptom complex of the NDE.

Loss of consciousness episodes of all types appear to have an explainable physiologic basis. They are therefore open for scientific investigation. At least the loss of consciousness aspect of the NDE, therefore, has a potentially explainable basis. It would be odd if the symptoms associated with loss and recovery of consciousness were not part of the NDE. The fact that many of the NDE symptoms are similar to those resulting from loss and recovery of consciousness should suggest that individuals who report their NDEs have provided accurate symptom descriptions. This includes those symptoms beyond the scope of G-LOC experimentation, which are unique to the NDE.

References

Surprise—and Discovery?—in the Near-Death Experience

John C. Gibbs, Ph.D.

The Ohio State University

ABSTRACT: Expressions of surprise and puzzlement lend a ring of authenticity to self-reports of near-death experiences (NDEs). In the autoscopic component of the NDE, experiencers have reported surprise upon identifying an observed body as their own; upon finding that they are unable to affect earthly events or people; and upon experiencing extraordinary visual and mobile abilities. In the transcendental component, experiencers are often surprised that their "eyes" do not hurt in the presence of an intense light, and that deceased loved ones come to them, particularly in those cases in which the subject reports the presence of a loved one whose recent death was not known to the subject. Surprise typically indicates the discovery of novel features of reality during the cognition-reality interplay that makes learning possible. If at least some NDE surprises are discoveries in a nonsubjective sense, then that cognition-reality interplay can continue during moments near death as subjects learn that self and reality must be understood to include a nonmaterial realm.

A surprise is a reaction to an unexpected or extraordinary occurrence. According to the Random House Unabridged Dictionary, to be "surprised" is to be struck "with a sudden feeling of wonder or astonishment," or "to discover suddenly and unexpectedly" (Flexner, 1993, p. 1915). A surprise that is a discovery implies that one has
learned something new concerning a real event or phenomenon. Expressions of surprise in recollecting the near-death experience (NDE) lend a ring of authenticity to the account, and suggest that the NDE events “really” happened. It is perhaps not coincidental that a faked NDE account reported by Kenneth Ring and Madelaine Lawrence (1993) lacked any expression of surprise.

The present article reviews and reflects upon the ontological implications of commonly reported surprises in the NDE. I have organized the review in terms of the elements and components of the NDE as presented by Michael Sabom (1982). I will then ponder the ontological issue of whether such surprises are subjective phenomena, as when one experiences an unexpected subjective event in a dream or hallucination, or whether the surprises are discoveries in some nonsubjective sense. Although I will not resolve this issue definitively, I will indicate the main interpretive positions in the literature, and review findings in near-death research that are suggestive of the possibility that at least some NDE surprises are indeed discoveries. Ulric Neisser’s (1976) depiction of perception and cognitive development emphasizes the importance of being open to surprise and discovery if learning or growth is to take place in the interplay between cognition and reality. If NDE surprises are to some extent discoveries in a nonsubjective sense, then such phenomena suggest that learning about self and reality can take place even during moments near death.

NDE Surprises

Core features of the NDE have been described in various typologies (Greyson, 1983, 1985, 1990, 1993; Lundahl, 1993; Moody, 1975; Ring, 1980; Sabom, 1982). For example, Sabom specified ten descriptive features or elements such as a sense of bodily separation, observation of physical objects and events, dark region or void, entering a transcendental environment, a light, encountering others, life review, and return after reaching but not exceeding a border or dividing line. He then categorized these elements as either autoscopic, entailing visualization of the body, or transcendental, entailing “descriptions of objects and events that ‘transcend’ or surpass our earthly limits” (Sabom, 1982, p. 41). A full NDE entails elements in both the autoscopic and the transcendental components. One-third of Sabom’s NDE cases entailed only the autoscopic component, 48 percent en-
tailed only transcendental elements, and 19 percent entailed elements of both, such that “the transcendental portion of the experience followed the autoscopic portion in a continuous, unbroken sequence” (p. 52). I will use Sabom’s autoscopic/transcendental dichotomy as an organizing framework for my review of recollections of surprise as commonly reported in the NDE. An addendum will note the “secondary” surprise of those who hear secondhand from the NDEr details that the NDEr could scarcely have known in ordinary ways.

Autoscopic-Component Surprises

In terms of the autoscopic component, especially in regard to Sabom’s elements of a sense of bodily separation and observation of physical objects and events, NDErs have recollected various feelings of surprise, puzzlement, or shock. Such feelings have typically pertained to experiences such as the identification of an observed body as their own; the inability to affect earthly events, objects, or people; and the “discovery” of extraordinary abilities pertaining to mobility and perception.

Identification of one’s body. Raymond Moody reported that “overwhelming surprise” often occurs as a person near death finds himself or herself “looking down upon his own body from a point outside of it, as though he were a ‘spectator’ or ‘a third person in the room’” (1975, p. 34). Recognition of one’s body is not necessarily immediate. An oncology hospice worker hospitalized for acute leukemia recollected a shock while scrutinizing in an out-of-body state a cardiac monitor hanging on the wall above the head of her hospital bed:

> Oh, heart rate 200, 180, 200, blood pressure 40 over zero, and things are going off, and I’m thinking, “Wow, this person’s really in serious condition,” and then all of a sudden it dawns on me that *moi* [my body] is hooked up to this monitor! (Brown, 1994)

Similarly, another woman, in emergency surgery for a postpartum hemorrhage, reported:

> I was watching this bevy of nurses and doctors rushing madly around the room, all very much intent on bringing that poor young girl back to life. . . . And then suddenly, I . . . realized with utter shock and amazement that that thin, pallid, bloody body was indeed *my* body. (Greyson, 1993, p. 393)
After mentioning that "it took me a few moments to recognize myself," another subject continued:

Boy, I sure didn't realize that I looked like that! You know, I'm only used to seeing myself in pictures or from the front in a mirror, and both of those look flat. But all of a sudden there I—or my body—was and I could see it. I could definitely see it, full view, from about five feet away. (Moody, 1975, p. 39)

In his NDE, psychiatrist George Ritchie described his unfamiliarity with his full three-dimensional appearance as an "alarming truth" (Ritchie and Sherrill, 1978, p. 43) that hindered his out-of-body search for his clinically dead body.

Once the body is recognized as one's own, the autoscopic NDEr may express concern or pity: "I kept thinking, 'I don't want them to use that body as a cadaver'"; and, "I felt real bad when I looked at my body and saw how badly it was messed up" (Moody, 1975, p. 39). A 54-year-old construction worker who had a cardiac arrest recollected almost with disdain: "I recognized me laying there... like looking at a dead worm or something" (Sabom, 1982, p. 21).

Inability to affect others. Surprise to the point of shock may characterize the autoscopic NDErs' typical emotion upon finding that in their out-of-body state they have no impact on others, that is, that they are not audible, apparent, or corporeal to people on the scene whom they can see and hear so clearly. The sense of shock or perplexity is evident in the following experiencer's recollection:

The doctors and nurses were pounding on my body to try to get IV's started and to get me back, and I kept trying to tell them, "... Quit pounding on me." But they didn't hear me. So I tried to move their hands to keep them from beating on my body, but nothing would happen. I couldn't get anywhere. It was like—I don't really know what happened, but I couldn't move their hands. It looked like I was touching their hands and I tried to move them—yet when I would give it the stroke, their hands were still there. I don't know whether my hand was going through it, around it, or what. I didn't feel any pressure against their hands when I was trying to move them. (Moody, 1975, p. 44)

Similarly, a soldier critically wounded in Vietnam remembered "watching" with frustration his own operation in the field hospital:

I'm trying to stop them [the doctors]. I really did try to grab a hold of them and stop them, because I really felt happy where I was. ... I actually remember grabbing the doctor...
It was almost like he wasn’t there. I grabbed and he wasn’t there or either I just went through him or whatever. (Sabom, 1982, p. 33)

Another critically wounded soldier, still on a Vietnam battlefield, remembered a similar frustration after identifying his body:

I could see me. . . . It was just like I was looking at a manikin laying down there. . . . I was pretty well burnt up and there was blood all over the place. . . . When the [Vietcong] guy was at my boots, I could see that and at the same time it was like waiting for him to get through so when he turned his attention I could get to my rifle, but . . . I couldn’t get that manikin to get to the rifle. (Sabom, 1982, p. 82)

Another subject, the visual aspect of her experience all the more remarkable because she is congenitally blind, recollected during her emergency operation:

trying to scream at them and I kept saying, “I’m right here, I’m fine, can’t you hear me?” . . . and I was shouting with every ounce of strength I had and they couldn’t hear me, but I could hear them and . . . I felt this terrible sense of desperation and frustration for a while about not being able to get through to them. (Ring, 1995b)

In another case, involving a car accident,

People were walking up from all directions to get to the wreck. I could see them, and I was in the middle of a very narrow walkway. Anyway, as they came by they wouldn’t seem to notice me. They would just keep walking with their eyes straight ahead. As they came real close, I would try to turn around, to get out of their way, but they would just walk through me. (Moody, 1975, p. 45; see also Wilson, 1987, p. 112)

Ritchie recalled agonizing over this odd state of affairs:

I did some incredulous thinking. The strangest, most difficult thinking I had ever done. The man in a cafe [who hadn’t heard me], this telephone pole [that my body had passed through] . . . suppose they were perfectly normal. Suppose I was the one who was—changed, somehow. What if in some impossible, unimaginable way, I lost my . . . my hardness. My ability to grasp things, to make contact with the world. Even to be seen! (Ritchie and Sherrill, 1978, p. 40)

Extraordinary mobility and perception. Equally surprising, however, may be the apparent discovery of certain extraordinary abilities pertaining to mobility and perception. As Moody noted, these abilities are in some respects the flip side of the inabilities just described (1975, p. 46):
though the doorknob seems to go through his hand when he touches it, it really doesn't matter anyway, because he soon finds that he can just go through the door. . . . Physical objects present no barrier, and movement from one place to another can be extremely rapid, almost instantaneous.

After experiencing "desperation and frustration" at her inability to "get through" to her doctors, the congenitally blind woman quoted above continued: "Then I went up through the roof and that freaked me out. Objects were like nothing" (Ring, 1995b). Another subject reported joy at his discovery of unimpeded flight:

I very quickly discovered . . . that not only was I floating and hence free from gravity but free also from any of the other constrictions that inhibit flight. . . . I could also fly at a terrific rate of speed . . . and it seemed to produce a feeling of great joy and sense of actually flying in this total fashion. (Ring, 1984, p. 39)

Extraordinary movement is often felt to take place as a result of a thought or wish, and is associated with expanded perception. One subject recollected that during his resuscitation: "I could just think, 'Hey, it would be nice to be [a certain other place] and I would just be there" (Sabom, 1982, p. 33). Another subject was puzzled: "I just can't understand how I could see so far" (Moody, 1975, p. 51; see also Farr, 1993, p. 25). Another of Sabom's subjects recollected:

I could see anywhere I wanted to. I could see out in the parking lot, but I was still in the corridor It was just like I said, "O.K., what's going on out in the parking lot?" and part of my brain would go over and take a look at what's going on over there and come back and report to me. (1982, p. 34; see also Moody, 1975, p. 52)

Ritchie expressed astonishment at his extraordinary mobility:

Almost without knowing it [after wishing to get to Richmond, Virginia] I found myself outside, racing swiftly along, traveling faster in fact than I'd ever moved in my life. . . .

Looking down I was astonished to see not the ground, but the tops of mesquite bushes beneath me. . . . My mind kept telling me that what I was doing was impossible, and yet . . . it was happening. . . . I wished I could go down there [to a city below me] and find someone who could give me directions.

Almost immediately I noticed myself slowing down. . . . Even as the idea occurred to me—as though thought and motion had become the same thing—I found myself down on the sidewalk. (Ritchie and Sherrill, 1978, pp. 38-39)
Transcendental-Component Surprises

Surprise is also evident in the transcendental component of the NDE, especially in connection with elements of encountering the light and deceased loved ones.

Encountering the light. Profoundly affecting the NDEr is a not uncommon encounter with a very bright and personal being of light, described by one experiencer as “a very powerful, completely loving being” (Moody, 1975, p. 70). Another subject described the light as “sharper than the light of any star” (Ring, 1991, p. 26). Some subjects express amazement that this light does not hurt their eyes. Ritchie recounted, again with astonishment:

I wasn't sure when the light in the room began to change; suddenly I was aware that it was brighter, a lot brighter, than it had been. I whirled to look at the night-light on the bedside table. Surely a single 15-watt bulb couldn't turn out that much light?

I stared in astonishment as the brightness increased, coming from nowhere, seeming to shine everywhere at once. All the light bulbs in the ward couldn't give off that much light. All the bulbs in the world couldn't! It was impossibly bright: it was like a million welders' lamps all blazing at once. And right in the middle of my amazement came a prosaic thought probably born of some biology lecture back at the university: “I'm glad I don't have physical eyes at this moment,” I thought. “This light would destroy the retina in a tenth of a second.” (Ritchie and Sherrill, 1978, p. 48; see also Ring, 1980, p. 63; Sabom, 1982, p. 43)

A 54-year-old respondent attempted to explain: “This light was so total and complete that you didn't look at the light, you were in the light. See what I'm saying?” (Sabom, 1982, p. 44). Other subjects report the light as emanating from the end of a tunnel or from persons encountered in the experience (Owens, Cook, and Stevenson, 1993).

Encountering deceased loved ones. Those who have had NDEs may also report surprise and puzzlement upon encountering other presences that include deceased friends, family members, and other loved ones (Moody, 1975, pp. 55-56; Ring, 1980, pp. 67-68; Sabom, pp. 47-48). For example, a male subject recollected:

Several weeks before I nearly died, a good friend of mine, Bob, had been killed. Now the moment I got out of my body I had the feeling that Bob was standing there, right next to me. I could see him in my mind and felt like he was there, but it was strange. I didn't see him as his physical body. I could see things, but not in the physical
form, yet just as clearly, his looks, everything. Does that make sense? (Moody, 1975, p. 56)

The NDEr quoted above who had been blind from birth reported that caring friends “came to meet” her:

Two of them had attended the school for the blind with me and they were both retarded and I had befriended them when a lot of the other kids had made fun of them . . . and then they both had died and they came to meet me but they wouldn't touch me but they were near me . . . There was [also] a neighbor lady who had taken care of me . . . and her husband was there also and they had been deceased for some years as well. (Ring, 1995b)

Interestingly, subjects may also report having perceived with some surprise a relative or friend who was not known by them to have died (Ring, 1980, pp. 207-208)—or who was not known by them at the time at all. Jenny Wade noted “accounts of meetings with pre-deceased relatives who were unknown to the subject during life (such as a grandfather or aunt), whose identifications were later confirmed by photographic or anecdotal evidence” (1996, p. 229). A child puzzled by the identity of an NDE presence subsequently asked her aunt, to whom the presence had referred; the identity was revealed with hidden photographs and involved a secret love relationship about which the child could not have known. The aunt was shocked by the child’s information (Atwater, 1996). An adult whose NDE occurred in childhood reported that while in the light, he became aware that

there were some presences there. There were some ladies. . . . I didn't know them at the time. They were my great-grandmothers who had died years before I was born. I didn't see any pictures of them until I was an adult, but then I said, “Oh, yeah.” . . . They were so loving and so wonderful and I just didn’t want to come back. (Wilson, 1995)

Expressions of surprise or puzzlement at encountering loved ones not known to have died have also been noted in the context of what have been called death-bed visions (Osis and Haraldsson, 1977) or “nearing death awareness” (Callanan and Kelley, 1992), in which a dying person “becomes aware of a dimension that lies beyond” and “apparently drift[s] between the two [worlds]” (Callanan and Kelley, 1992, p. 17). Maggie Callanan and Patricia Kelley recounted the case, typical of many such cases (see Serdahely, 1992), of a 93-year-old woman, Su, whose dying visions of her late husband began to include her sister:
“Why is my sister with my husband?” she asked. “They are both calling me to come.”

“Is your sister dead?” I [Callanan] asked.

“No, she still lives in China,” she said. “I have not seen her for many years.”

When I related this conversation to the daughter, she was astonished and tearful.

“My aunt died two days ago in China,” Lily said. “We decided not to tell Mother—her sister had the same kind of cancer. It was a very painful death; she lived in a remote village where good medical care wasn’t available. We didn’t want to upset or frighten Mother, since she is so sick herself.” . . .

When Lily tearfully told her mother about her sister’s illness and death, Su said, with a knowing smile, “Now I understand.” Her puzzle solved, she died three weeks later, at peace and with a sense of anticipation. (1992, pp. 93-94)

“Secondary” Surprises

Surprise, puzzlement, or shock can take place not only for the NDEr, but also for persons who hear from the NDEr details that the NDEr was unlikely to have been able to learn in any ordinary way. Relevant examples were the aunt’s shock at her niece’s information, and Lily’s tearful astonishment at the timing of her mother’s puzzled perception. In another case, the parents of a child who had been comatose were “shocked” by the accuracy of the child’s recollection of “vivid details” pertaining to their exact locations, clothing, and activities at home during her hospitalization (Morse and Perry, 1990, p. 7). Also astonished was a surgeon who had operated on a young woman clinically dead from cardiac arrest. The young woman reported saying to the surgeon:

“I could see you operating on me. . . . I saw you lean over to Cliff [another doctor present] to get some instruments and I saw how you were pointing around and I could see you standing here and Cliff was standing on this side of the table. . . . Cliff was giving you this instrument and you were doing this to me and, all of a sudden, all these people rushed over to me and they started sticking needles in me and doing all these things.” “That’s when you died [said the doctor]. Come on, how do you know that? . . . That’s really freaky.” (Ring, 1980, p. 50; see also Sabom, 1982)

The developmental implications of both primary and secondary surprise are discussed in the concluding section of this article. Openness to surprise and discovery may have facilitated the attitudinal
changes, such as increases in belief in life after death, reported by students exposed to research information concerning the NDE (Ring, 1995a).

Discussion

Perhaps especially in contemporary secular culture, it is not uncommon for persons to express surprise, shock, or puzzlement in response to NDEs and related phenomena. Such reactions are found in both the autoscopic and the transcendental components. It is unlikely that such expressions can be attributed to experimenter expectations, in that they are typically spontaneous rather than in response to an interviewer question. In fact, a question such as “Did you feel surprised?” is not known to have been included in any research interview protocol (K. Ring, personal communication, December 12, 1995; M. B. Sabom, personal communication, November 7, 1995). Nor is it likely that expressions of surprise at distressing inabilities would be prompted by artifactual biases such as approval motivation, social desirability, or impression management.

Are these unsolicited NDE surprises purely subjective, as in a dream, hallucination, or other typically imaginary activity, or do they entail discovery of extraordinary properties of reality? It is probably accurate to state that a majority in the scientific community believe that the NDE can be explained without resorting to extracellular or nonmaterialist notions. The predominant view is that the NDE is a dreamlike delusion, hallucination, or fantasy that engenders in the subject the false impression that perception is taking place outside the body; this view has been critiqued by Moody (1975, pp. 157-175), Melvin Morse (Morse and Perry, 1990, pp. 183-193), Ring (1980, 207-217), and Sabom (1982, pp. 165-178). Elaborations of this view entail appeals to endorphin release or flooding, massive cortical disinhibition (Siegel, 1980), oxygen deprivation to the brain, elevated levels of carbon dioxide, temporal lobe seizures or activation (Gómez-Jeria and Saavedra-Aguilar, 1994; Saavedra-Aguilar and Gómez-Jeria, 1989), a semiconscious mental construction from auditory information (critiqued by Ring and Cooper, in press; and by Sabom, 1982, pp. 153-156), and depersonalization or dissociation (Irwin, 1993). A multifaceted neurophysiological account was proposed by Susan Blackmore (1993; critiqued by Ring, 1995c).
Although a comprehensive critique of this controversy is beyond the scope of this article, I suggest that NDE reports may entail genuine discoveries about the primary nature of self, others, and reality. It is interesting that the conclusions of the investigators most familiar with the research data and findings (Ring, 1980; Ring and Lawrence, 1993; Sabom, 1982) are consistent with the thesis that at least some NDE surprises do entail ontological discovery. These researchers, among others, found a number of results that pose problems of one sort or another for the predominant interpretations (Callanan and Kelley, 1992; Gibbs, 1985; Ring, 1995a; Talbot, 1991, pp. 229-274; Wade, 1996, pp. 223-247). For example, interpretations of the NDE as an hallucination or dreamlike fantasy imply that the NDE is largely a function of the expectations and preoccupations of the experiencers; but if so, then why do NDErs even years afterward express lingering surprise, puzzlement, or astonishment (Cox-Chapman, 1995 p. 134)? Interpretations assuming expectation are also contradicted by findings that the elements of the NDE generally occur with comparable frequency across subjects likely to have differing expectations because of highly diverse backgrounds, demographic characteristics, religious beliefs, and circumstances of near death—with some exceptions, for example, that children’s NDEs are more likely to include the light and less likely to include a life review (Morse and Perry, 1990). Even more telling is that NDErs report the NDE to be starkly and uniquely real compared to dreams and hallucinations.

The ontological authenticity of the autoscopic component of the NDE is suggested by findings that NDE visual recollections have been substantiated by medical records and are dramatically more accurate than the simulated or role-play “recollections” of near-death survivors who do not report NDEs (Sabom, 1982). Accurate revelations engendering secondary surprise were noted earlier. Recent findings of visually accurate NDEs among persons who are congenitally blind (Ring, 1995b; Ring and Cooper, in press) pose a particular problem for arguments presuming that NDE visual recollections were somehow actually seen through the recollector’s physical eyes. Ontological authenticity is also suggested by NDErs’ reports of enhanced cognitive function, such as clarity of thought and perception, precisely at a time of diminished brain function (Owens, Cook, and Stevenson, 1993).

That the NDE may signify spiritual survival is suggested by findings pertaining to the near-death condition, the personages encoun-
tered, and the subsequent attitudinal and other changes. For example, NDEs are more likely to occur and to be extensive if the survivor was closer to physical death. Noted earlier were reports of surprise encounters with loved ones who the experiencer did not know had died. Highly suggestive are the consistency with which a specific feeling—unconditional love—is felt to emanate from a personal quality or being of light, as well as the consistency with which the loved ones encountered are all deceased (Serdahely, 1996; Shaver, 1986). Relative to near-death survivors who do not report NDEs, experiencers report decreased fear of death and increased belief in God (Ring, 1980; Sabom, 1982, 1994a). NDErs are also more likely to evidence antisuicidal attitudes in relation both to their pre-NDE attitudes (Sutherland, 1990) and to the attitudes of survivors who do not report NDEs (Greyson, 1992-1993). NDE survivors report their post-NDE lives to be much more caring, empathic, and intuitive in extraordinary ways (Sutherland, 1992/1995). NDE survivors' increases in loving attitudes may not exceed those of non-NDE survivors, however (Ring, 1980).

Such findings, taken together, have led the preeminent researchers in the field to consider extracellular or nonmaterialist interpretations of the NDE. Moody concluded "that death is a separation of the mind from the body, and that mind does pass into other realms of existence at this point" (1975, p. 151). Ring concluded "that there is some conscious aspect of ourselves that can . . . separate itself from the body under conditions of extremity and not in any way be limited by the handicaps of the physical body" (1995c, p. 127; see also Arnette, 1995). Sabom, initially a skeptic aiming to debunk NDEs, was to his "utter amazement" (1982, p. 4) forced by an honest consideration of his own data and findings to ponder an affirmative answer to the question: "Is out-of-body perception indeed occurring during the NDE, and if so, is some element of the human organism (the mind?) separating from the physical determinants of consciousness (the brain?) to accomplish such a feat?" (p. 181). Interestingly, Morse, David Venecia, and Jerrold Milstein (1989) hold a similar view of the NDE yet combined such a nonmaterialist view with a neurophysiological one: they posited that the "trigger" for such a separation lies in temporal lobe activation (see also Wile, 1994; critiqued by Wade, 1996, pp. 232-234). Researchers have emphasized the crucial role that prospective (Morse, 1994) and double-blind studies (Holden and Joesten, 1990; Sabom, 1994b) can play in helping to resolve the controversy concerning the ontological status of the NDE. If such studies support
the transcendent validity of the NDE, then core NDE-derived knowledge would have to be taken seriously and could provide a basis for discriminating valid from misguided teachings and actions (e.g., the Heaven's Gate suicides in March, 1997).

What if the research findings eventually provide compelling support for the inference that NDE surprises are at least to some extent discoveries? What would be implied about the nature of mind and reality? Clearly, mind or consciousness would have to be understood as more than local cellular brain activity, and more generally, reality would have to be understood as more than material; indeed, such understandings are at the core of NDErs' noted attitudinal changes. But what can be said beyond "more than"? Kenneth Arnette (1995; cf. Goswami, 1993), in a model that encompasses yet transcends materialist ontology, has suggested that mind can be seen as part of an "essence" having an electromagnetic field that partially overlaps that of the brain. Janusz Slawinski (1987a, 1987b) speculated that the increased electromagnetic radiation of stressed or dying cell populations, especially the "death flash" of cellular necrotic radiation, may signify that mind or consciousness as light is entering a more primary reality.

The metaphor of the hologram has been suggested as a helpful preliminary way to think about both mind (Pribram, 1971) and reality (Bohm, 1993; Bohm and Hiley, 1993; Hiley and Peat, 1987). In David Bohm's terms, ordinary reality is more properly understood as an "explicate order" of emergently meaningful objects and events that derives from an "implicate order," somewhat like the emergence of a hologram from a plate of intersecting interference patterns. Broadly speaking, ordinary reality is interpreted as coordinating with a deeper or more primary level of reality. Much like waves on the surface of the ocean, matter, life, and brain-based consciousness are differentiated from yet continuous with a holistic reality (i.e., with non-local consciousness, in Goswami's [1993] alternative view). Ring was one of the first to suggest that the NDE is the direct experiencing of this primary level: "Access to this holographic reality becomes experientially available when one's consciousness is freed from its dependence on the physical body" (1980, p. 237). Although "freed," mind or consciousness, as it perhaps for the first time directly experiences the more primary level of reality, "continues to do what it does best, [namely, to] translate those frequencies into a world of appearances" (Talbot, 1991, p. 245).
In this view, NDEs entail surprises because most people are totally unfamiliar with functioning in an extra-bodily way on the primary level of reality. Moody observed that out-of-body travel initially may not be easy for experiencers until "one gets the hang of it" (1975, p. 46). When it comes to converting the directly experienced frequency patterns of the deeper reality into ordinary, familiar objects and events, the functioning of the mind in most cases is "wobbly and not yet proficient" (Talbot, 1991, p. 236).

That the mind is "wobbly" in this unfamiliar realm could also account for other emotions besides surprise, such as ineffability and depictions of one's experience as bizarre, albeit clear or real. NDErs frequently express frustration in attempting to describe adequately their experience, complaining of the paucity or absence of suitable words, and asking, "Does that make sense?" and "See what I'm saying?" (see also Berman, 1996, pp. 98-99; Cox-Chapman, 1995, p. 31; James, 1903). Interestingly, NDErs sometimes report thinking the difficult-to-describe events they experience are "strange" or "impossible"; quoted earlier was Ritchie's recollection: "My mind kept telling me that what I was doing [flying] was impossible, and yet . . . it was happening" (Ritchie and Sherrill, 1978, p. 38).

Persons from various backgrounds use a variety of word-pictures or images as they grope for adequate description. For example, the "border or limit" element has been variously imaged as "a body of water, a gray mist, a door, a fence across a field, or simply a line" (Moody, 1975, p. 73). Similarly, although "tunnel" may be the most popular image for Sabom's "dark region or void" element, other images used have included "a cave, a well, a trough, an enclosure, . . . a funnel, a vacuum, a void, a sewer, a valley, and a cylinder" (Moody, 1975, p. 31). Movement through this dark "something" may indicate a shift from the ordinary to the primary levels of reality; Arnette (1992) speculated that the "something" may be a pathway known in theoretical physics as a wormhole.

Despite the descriptive difficulty and impression of strangeness, NDEs are typically experienced as extraordinarily clear, indeed, "realer than here" (Sabom, 1982, p. 16), an additional finding consistent with the inference that the NDE is at least to some extent ontologically authentic. The depiction of the NDE as real, as distinct from dreams or hallucinations, was noted earlier. One experiencer stated: "I had hallucinations then but they weren't the same. . . . [I]n this experience [NDE] where I lifted out of my body, it was me!" (Sabom, 1982, p. 169); while another wrote:
when [you take] acid, . . . you have a sense of knowing what you are seeing is caused by the acid. With my NDE no hallucinogens were taken and I knew what I saw, heard, and felt was like no trip on acid ever taken. (Ring, 1991, pp. 23-24)

Whereas the surprises recollected in dreams or hallucinations are typically dismissed as reactions to unexpected *imaginary* events, NDE surprises may linger as awe and are typically felt to be reactions to unexpected *real* events or discoveries that are strange yet startlingly clear. The combination of strangeness with clarity is evident in one subject's recollection: “Even though my mind was saying, ‘But I can’t be seeing Daddy and talking to him—he’s dead’ . . . yet I could see him perfectly” (Sabom, 1982, p. 22).

Conclusion

We cannot perceive *unless* we anticipate, but we must not see *only* what we anticipate. . . . The outcome of any single encounter between cognition and reality is unpredictable, but in the long run such encounters must move us closer to the truth. (Neisser, 1976, pp. 43 and 194)

The ineffable yet clear character of the NDE and related phenomena can be interpreted to mean, then, that subjects have encountered a deeper level of reality. The NDErs’ surprise, shock, or puzzlement indicates that their ordinary anticipations or assumptions about reality have been violated; moreover, their surprise may mean the discovery of profound knowledge about the nature of self and reality, even—or especially—during the moments near death.

According to Jean Piaget (1947/1963, 1972/1973) and Neisser (1976), learning and the construction of knowledge take place through the interplay between cognition and reality. Cognitive schemata are necessary for the meaningful experience of reality. For example, another person’s speech is experienced as an undifferentiated flow of sounds unless the hearer “knows” that language; that is, unless the hearer has developed and can activate schemata for meaningfully experiencing that language (Neisser, 1976). Similarly, in the NDE, that which is experienced must be processed through preexisting schemata (Ring, 1980, p. 248). Someone from a rural or non-industrialized background, for example, might use the terms “valley” or “trough,” but probably not “sewer” or “cylinder,” to ascribe meaning

If learning and development are to take place, however, these necessary schemata must also be open to modification and even radical reorganization as novelities and contradictions are encountered. In Neisser's terms, quoted above, "We cannot perceive unless we anticipate, but we must not see only what we anticipate" (1976, p. 43). In Piagetian terms, experience is assimilated to a preexisting cognitive structure, which itself then undergoes—or should undergo—accommodation. For example, a child who encounters for the first time a camel may distortingly assimilate it as a horse but pause to reflect: "That surely is a funny-looking horse!" Eventually, accommodation to the novel features, such as the camel's hump, will induce a differentiation and the construction of a new structure or schema ("camel"); once the accommodation is accomplished, these new, more differentiated and integrated schemata are available to direct and render meaningful future encounters, so that the next camel encountered is accurately construed. This interactive cycle between cognition and reality can bring about learning or the construction of knowledge that is more adequate, valid, and veridical.

If the NDE contributes to a cognition-reality interplay, this interplay would appear to entail major contradictions or challenges to schema-based anticipations. These challenges may be so major as to trigger a temporary or even extended crisis or, in Piagetian terms, "disequilibration"—for example, the experiencer described above who "freaked out" as she went through the ceiling. One NDER who had always dismissed spiritual notions as "hocus-pocus bullshit" found "rather traumatically" that after his NDE he could no longer do so (Farr, 1993, p. 55; see also Atwater, 1988). In such cases, the resultant reequilibration or learning represents not a matter of differentiation as much as transformation: a funny-looking horse can be distinguished as a camel, but radically bizarre abilities and inabilities, an overwhelmingly bright and loving light that does not hurt one's eyes, dead yet alive loved ones, and so on, are difficult to assimilate adaptively without a profound reconceptualization, a transformation of worldview. Sutherland (1992/1995, pp. 205-237) discussed the social and personal aspects of typical "trajectories" in this disequilibration-reequilibration process.

Openness to surprise for the sake of learning is important not only for individual human cognitive development but also for the collective development of science. Both the lay individual and the scientist, af-
ter all, are embarked upon the development of knowledge—although the scientist brings the advantages of controlled and systematic inquiry and explicit methodology. In cognitive developmental terms, the individual has preexisting schemata or cognitive structures that generate anticipations. Discrepancies with these anticipations can be minor or major; that is, either odd little novelties and curiosities, or massively upsetting and challenging encounters. Defensive assimilations of a distorting nature are particularly likely in the face of major challenges to established convictions. In the aftermath of major discrepancies, one's defenses may weaken and disequilibration or crisis is experienced; emergent from the crisis may be a new, more adequate schema, that is, a transformed worldview that can accommodate and indeed resolve the discrepancies.

Correspondingly, the scientist's work is contextualized by a scientific paradigm, which generates hypotheses; disconfirmations of those hypotheses may be minor or major, that is, either secondary gaps in scientific knowledge or theoretically pervasive scientific anomalies. Interpretations of a defensive, reductionistic, or dismissive nature are particularly likely in the face of major scientific anomalies. As discrepancies accumulate, the defenses may weaken and disequilibration or crisis is experienced in the scientific community. Emergent from the crisis may be a new, more adequate scientific paradigm, one that can account for the anomalies (Kuhn, 1962).

Confronted with challenging or anomalous encounters, then, the person in the role of either ordinary knower or scientist is vulnerable to disequilibration or even crisis. In the NDE, the accommodatively open subject will be surprised, puzzled, or even "freaked out"; and in the careful and systematic study of NDE reports, the accommodatively open scientist (such as Sabom) will be "utterly amazed." To learn and grow, both lay person and scientist must engage in "freer" thinking to "loosen the grip of old ways of seeing" (Neisser, 1976, p. 44; see also Serdahely, 1990; Sutherland, 1992/1995, pp. 192-197). Ultimately, both may achieve a transformation of their fundamental conceptions of the nature of life, self, and reality.

References

Editor's Foreword
Bruce Greyson, M.D.

GUEST EDITORIAL
Children and the Near-Death Phenomenon: Another Viewpoint
P. M. H. Atwater, L.H.D.

ARTICLES
A Note on Anesthetically-Induced Frightening "Near-Death Experiences"
Kenneth Ring, Ph.D.

The Death Dream and Near-Death Darwinism
Stephen L. Thaler, Ph.D.

Questions for the "Dying Brain Hypothesis"
William J. Serdahely, Ph.D.

Hedonic Deactivation: A New Human Value for an Advanced Society
Emilio Tiberi

Letters to the Editor
David Wiener and Richard Abanes
Journal of Near-Death Studies

Volume 15, Number 2, Winter 1996

Editor's Foreword
Bruce Greyson, M.D.

ARTICLES
Distressing Near-Death Experiences as Photographic Negatives
Gracia Fay Ellwood, M.A.

Expanding Grof's Concept of the Perinatal: Deepening the Inquiry into Frightening Near-Death Experiences
Christopher M. Bache, Ph.D.

Commentary on “Frightening Near-Death Experiences”
Arvin S. Gibson

Letter to the Editor
Susan Youngdale and David Wiener
Editor's Foreword 153
Bruce Greyson, M.D.

GUEST EDITORIAL 155
A Contribution of Frankl's Logotherapy to the Interpretation of Near-Death Experiences
James C. Crumbaugh, Ph.D.

ARTICLES 163
The Anatomy of a Transformation: An Analysis of the Psychological Structure of Four Near-Death Experiences
Patti R. White, Ph.D.

The Near-Death Experience: A Study of Spiritual Transformation
Cassandra Musgrave

Thought Communication, Speed of Movement, and the Spirit's Ability to Absorb Knowledge: Near-Death Experiences and Early Mormon Thought
Brent L. Top, Ph.D.

BOOK REVIEW 203
After the Light: What I Discovered on the Other Side of Life That Can Change Your World, by Kimberly Clark Sharp
Reviewed by Bruce Greyson, M.D.

Letters to the Editor 223
Jim W. Knittweis, Patricia Guevara, M.Sc., and Julio Sotelo, M.D.
Journal of Near-Death Studies

Volume 15, Number 4, Summer 1997

Editor's Foreword
Bruce Greyson, M.D.

ARTICLES

Psychophysiologic Correlates of Unconsciousness and Near-Death Experiences
James E. Whinnery, Ph.D., M.D.

Surprise—and Discovery?—in the Near-Death Experience
John C. Gibbs, Ph.D.
INSTRUCTIONS TO AUTHORS

THE JOURNAL OF NEAR-DEATH STUDIES encourages submission of articles in the following categories: research reports; theoretical or conceptual statements; papers expressing a particular scientific, philosophic, religious, or historical perspective on the study of near-death experiences; cross cultural studies; individual case histories with instructive unusual features; and personal accounts of near-death experiences or related phenomena.

GENERAL REQUIREMENTS: Logical organization is essential. While headings help to structure the content, titles and headings within the manuscript should be as short as possible. Do not use the generic masculine pronoun or other sexist terminology.

MANUSCRIPTS should be typed on one side of the page only, and double spaced throughout. A margin of at least one inch should be left on all four edges. Except under unusual circumstances, manuscripts should not exceed 20, 8 1/2 x 11" white pages. Send manuscripts to: Bruce Greyson, M.D., Division of Personality Studies, Department of Psychiatric Medicine, Box 152, University of Virginia Health Sciences Center, Charlottesville, VA 22908.

TITLE PAGE should contain the names of the authors, as well as their academic degrees, affiliations, and phone number of senior author. A name and address for reprint requests should be included. A footnote may contain simple statements of affiliation, credit, and research support. Except for an introductory footnote, footnotes are discouraged.

REFERENCES should be listed on a separate page and referred to in the text by author(s) and year of publication in accordance with the style described in the Publication Manual of the American Psychological Association, 3rd Edition, 1983. Only items cited in manuscripts should be listed as references. Page numbers must be provided for direct quotations.

ILLUSTRATIONS should be self-explanatory and used sparingly. Tables and figures must be in camera-ready condition and include captions.

PERSONAL-COMPUTER DISKS: After a manuscript has been accepted for publication and after all revisions have been incorporated, manuscripts may be submitted to the Editor’s Office on personal-computer disks. Label the disk with identifying information—kind of computer used, kind of software and version number, disk format and file name of article, as well as abbreviated journal name, authors’ last names, and (if room) paper title. Package the disk in a disk mailer or protective cardboard. The disk must be the one from which the accompanying manuscript (finalized version) was printed out. The Editor’s Office cannot accept a disk without its accompanying, matching hard-copy manuscript. Disks will be used on a case-by-case basis—where efficient and feasible.