THE ENGLISH HORN: ITS HISTORY AND DEVELOPMENT
INTO ORCHESTRAL MUSIC

THESIS

Presented to the Graduate Council of the
North Texas State University in Partial
Fulfillment of the Requirements

For the Degree of

MASTER OF MUSIC

By

Robert E. Stanton, B. M.
Denton, Texas
January, 1968
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Illustrations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>iv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. HISTORY OF THE ENGLISH HORN</td>
<td>1</td>
</tr>
<tr>
<td>II. GENERAL CHARACTERISTICS OF THE ENGLISH HORN</td>
<td>26</td>
</tr>
<tr>
<td>III. ORCHESTRAL DEVELOPMENT</td>
<td>44</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>64</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Alto pommer</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Oboe da caccia</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Tenor Oboe of Bach-Handel Period</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>Hornpipe</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>(5) Tenor Hautboy; (6) Cor Anglais (Eighteenth century)</td>
<td>12</td>
</tr>
<tr>
<td>6.</td>
<td>Cor Anglais, Curved and Angular Types, (2) and (4)</td>
<td>13</td>
</tr>
<tr>
<td>7.</td>
<td>Hautbois Baryton, (4) and (5)</td>
<td>14</td>
</tr>
<tr>
<td>8.</td>
<td>Vox Humana</td>
<td>16</td>
</tr>
<tr>
<td>9.</td>
<td>Fontanelle</td>
<td>17</td>
</tr>
<tr>
<td>10.</td>
<td>Bulb-bell</td>
<td>18</td>
</tr>
<tr>
<td>11.</td>
<td>Hunting Oboe</td>
<td>20</td>
</tr>
<tr>
<td>12.</td>
<td>Notation for Cor Anglais</td>
<td>29</td>
</tr>
<tr>
<td>13.</td>
<td>Construction of Bent Cor Anglais; (A), (B), (C)</td>
<td>33</td>
</tr>
<tr>
<td>14.</td>
<td>Bow-drill in use</td>
<td>36</td>
</tr>
<tr>
<td>15.</td>
<td>Cor Anglais reeds</td>
<td>41</td>
</tr>
<tr>
<td>16.</td>
<td>Range of English Horn</td>
<td>43</td>
</tr>
<tr>
<td>17.</td>
<td>Tenoroon</td>
<td>45</td>
</tr>
<tr>
<td>18.</td>
<td>List of Bach's Use of Oboe da caccia</td>
<td>47</td>
</tr>
<tr>
<td>19.</td>
<td>Oboe da caccia Accompaniment, St. Matthew Passion</td>
<td>48</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>20. Oboe da caccia part, St. Matthew Passion</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>21. Gluck: Orfeus for Corno Inglese</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>22. Berlioz: Roman Carnival</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>23. Berlioz: Symphonie Fantastique</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>24. Wagner: Tristan and Isolde</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>25. Dvorák: New World Symphony</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER I

HISTORY OF THE ENGLISH HORN

The English horn has a background of historical confusion because the instrument was built in many different shapes and was given a new name for each change of form. The shapes ranged from the one-piece straight body (pommer) to various degrees of bending in an arc, and finally returned to a straight body, bulb-bell, and a slightly bent bocal. The alto pommer, tenor oboe, taille, oboe da caccia, haute contre de hautbois, hautbois de chasse, cor anglais, corno inglese, Englisch Horn, and finally the English horn are the names used down through the years for this instrument.

There is no doubt that the instruments built a fifth lower in pitch (below C) were used before the end of the seventeenth century to complete the harmony of the oboes. Many historians have concluded that the tenor instruments developed more gradually than the treble, and for the same reason it took longer to find recognition as a member of the orchestra. Anthony Baines' reexamination of the Talbot manuscript has enabled us to date the advent of the oboe proper with some certainty. Writing about the year 1700, James Talbot said, "The present hautbois is not forty years old," and again under the same heading, "Tenor hautbois differ not
from treble in shape."¹ We may therefore assume that the two instruments appeared almost simultaneously. The Talbot manuscript gives, in particular, details and measurements of a tenor oboe made by the celebrated Bressan which was probably a true oboe, and not a shawm, although no mention is made of joint construction. None of Bressan's oboes have survived, though some of his recorders have been found. The workmanship of these instruments shows him to have been a fine craftsman. A further note to Talbot's manuscript refers to his having seen another tenor oboe, this time by John Ashbury (c. 1690), which was made in one piece. In spite of having this feature which characterizes the shawm in general, the specimen is carefully recorded by Talbot under the heading "French hautbois," which seems to indicate that at least some of the instruments he knew were of the transitional type.²

The oboes with pear-shaped bells such as the oboe d'amore and the cor anglais, were not a new invention in the eighteenth century. Instruments of this kind appeared as early as the thirteenth century in the miniatures of King Alfonso el Sabio's Cantigos en loor de Santa Maria at the Escorial, and certain provinces of France have preserved the form

²Ibid.
(pear-shaped bells) in instruments called musettes, which should not be confused with the bagpipes of the same name.\(^3\)

The tenor or alto oboes trace their descent from the alto shawm (pommer or bombard). The transformation of these oboes did not take place at the same time as did the transformation of the treble shawm to the oboe in C, but it must have been accomplished before the end of the seventeenth century, for in his music to Dioclesian (1691), Purcell asked for a "tenor hautboy." It was the instrument sounding a fifth below the oboe in C which, after having figured as the oboe da caccia, taille or haute contre de hautbois, became the cor anglais some time after the middle of the eighteenth century.\(^4\)

The alto pommer (see Figure 1) developed into the oboe da caccia which was brought into prominence through the music of J. S. Bach. This instrument was longer than the oboe, being pitched a fifth below C. During the first part of the eighteenth century the oboe da caccia assumed a curved shape for the player's convenience in handling, an innovation attributed by Bate to the Italian oboists Giovanni and Giuseppe Ferlendis. The attribution, if correct, would imply that Bach was familiar with only the straight form of the instrument,

\(^4\)Bate, *The Oboe*, p. 91.
since Giuseppe Ferlendis was not born until five years (1755) after the death of Bach.

Whether curved or straight, the oboe da caccia (see Figure 2) at Bach's disposal was uniform in compass and mechanism. He used it generally in the lowest extremity of its range. As with the oboe in C, Bach used the simpler keys: sharp signatures are rare with those of two and three flats being the most numerous. As yet, the bell was flared, the tone penetrating, mellower, and more plaintive than that of the ordinary oboe.

Bach, in a memorandum to the Leipzig Council in August, 1730, complained that no player was available for the "3 Hautbois oder Taille." This problem must have often confronted the composer, for three oboes were prescribed only in thirty-two cantatas, the "Sanctus" of the Höhe Messe, one secular cantata, and three orchestral works. The oboe da caccia

7 Ibid.
caccia replaced the Taille, as third oboe, in six cantatas, Numbers 6, 74, 87, 110, 128, and 176. As stated earlier, both of these instruments were pitched in F.

It is to be noted that Bach appeared to make a clear distinction between the oboe da caccia and the Taille for use as the tenor, though what special features he recognized under each is not known. Possibly it was only a distinction of usage: Taille for the tenor (see Figure 3) employed in harmony with the other oboes, and da caccia when used as a solo voice. J. S. Bach scored for the instruments mentioned previously during the period from 1723 to 1740. His works of this period will be discussed in Chapter III. Thomas Stansby, Jr. made an oboe da caccia in 1740 of straight pattern in four pieces, having a bent metal crook for the insertion of the reed and two saddle keys; but the bell was like the bell of the oboe, not globular like that of the cor anglais. After 1760 little more is heard of the oboe da caccia, but a pair of corni inglesi began to appear in Viennese scores (e.g., Gluck and Haydn). As far as is known, the corno inglese was the same instrument as the oboe da caccia, except perhaps for the details of the bell; but why

8Terry, Bach's Orchestra, p. 99.
9Bate, The Oboe, p. 91.
XXX. OTHER 18TH-CENTURY WOODWIND TYPES

Fig. 3.--Tenor oboe of Bach-Handel Period
the "hunting oboe" should have become the English horn is a mystery. 11

It was the awkwardness of holding such a long straight instrument which caused makers to bend the tube (bocal) of the tenor oboe, and when this instrument was made in a curved form with a bulb-bell it began to acquire the name cor anglais. The reason for a Continental tenor oboe having been named an "English horn" has never been quite satisfactorily explained. The curved shape does explain why it was called a horn, for horns were usually curved or coiled, but no convincing reason has been offered as to why it was associated with England. 12 Some authorities say it took its name from the fact that it resembled in tone quality an old English instrument called the hornpipe. 13 (See Figure 4.)

It has been suggested that anglais is a corruption of angé (angular, or bent at an angle). If that were so, one would certainly expect to find the term cor angé at an earlier period than cor anglais; as a matter of fact, angé does not occur at all until it was offered as a possible origin of anglais in the nineteenth century. In any case the instrument

12 Bate, The Oboe, p. 92.
13 Karl Geiringer, Musical Instruments, Their History in Western Culture from the Stone Age to the Present, translated by Bernard Miall (New York, 1945), p. 94.
1. PIBCORN or HORNPIPE, EIGHTEENTH CENTURY (LONDON SOCIETY OF ANTIQUARIES).
 A.—THE PIPES WITH ANTE-BORSE, SHOWING THE BORES.
2. DOUBLE RECORDER, SIXTEENTH CENTURY. ALL SOLES' COLLEGE, OXFORD

Fig. 4—Hornpipe
appears as the *corno inglese* in a few scores around the middle of the eighteenth century, including those of Jomelli (1741), Haydn (1764), and Gluck (1767).\(^{14}\)

At the beginning of the eighteenth century the most extensive use of the tenor oboe was in the military service, and in many of the marches and flourishes included in the famous "Collection Philidor" we find typical scoring for the instruments. Two treble oboes, a *taille* (tenor), and a *basse de hautbois* (bassoon) was the most frequent combination for military use.\(^{15}\)

In England, toward the close of the seventeenth century, bands of hautbois supplanted the drum and fifes for military service. It is probably for this reason that the tenor oboe was called the *cor anglais* or English horn, a title which appears to have been given to the instrument in the early part of the eighteenth century, when on the Continent, the horn, *Cor de chasse*, an instrument of the same pitch, had already superseded the tenor oboe in the wind bands. This suggestion seems to receive some corroboration in an extraction taken from a newspaper, which describes a performance given in Paris in 1782 on the *Cor de chasse anglais*. This, the

writer said, would be more correctly termed a cor anglais or hautbois de forêt—a tenor oboe with a soft sound. In England it appeared to have always been constructed in a straight form (see Figure 5), with a spreading bell, but when the instrument was made on the Continent it was curved in the arc of a circle, and the bell was contracted to give a veiled tone (see Figure 5).

Perhaps because the deeper-toned oboes were particularly valued in England—Purcell's use of a "tenor hoboy" in his Dioclesian (1691)—it became the custom to describe this new form as the English horn.

During the greater part of the eighteenth century the tenor oboe exhibited a curious instability of form, the tube being anything from completely straight to curved in a half-circle. Occasionally, near the end of the century, it was built in two straight sections jointed by an angular "knee" (see Figure 6). Nineteenth century examples are also known which have a straight tube doubled on itself near the bell (see Figure 7). Some authorities see this peculiarity as a survival from military days and regard the bending of the tube as evidence of an attempt to make it more convenient for use on horseback.

16 Galpin, Textbook, pp. 165-166.
17 Geiringer, Musical Instruments, p. 135.
18 Bate, The Oboe, p. 2.
Fig. 5--(5) Tenor Hautboy; (6) Cor Anglais (Eighteenth century).
CORS ANGLAIS, CURVED AND ANGULAR TYPES

1. Hardwood, leather covered. Ivory mounts and keys. *Italian*. Early 18th century. The instrument is thought to have been repaired and later marked by *Pomarini of Venice*.

2. Stained wood, brass keys, some late additions. *P. di Azzi, Venetian Republic*. Late 18th century.

Fig. 6—Cors Anglais, curved and angular types, (2) and (4)
PLATE VIII

OBOI D'AMORE AND BASS OBOES

2. Cocobol, German silver mounts and keys. V. Mahillon, Brussels. c. 1890. Bernard Hugue Collection

3. 'Hautbois Baryton,' brass keys. C. Bizet, Paris. c. 1740 Paris Conservatoire Collection

4. 'Hautbois Baryton,' brass keys. G. Triebert, Paris. c. 1823

5. 'Hautbois Baryton,' German silver mounts and keys. F. Triebert, Paris. Mid 19th century

Nos. 3 - 5 approx. ½ scale of 1 and 2

Fig. 7—Hautbois Baryton, (4) and (5)
In England the problem of compactness was attacked in a different manner with the introduction of a rather inelegant instrument called the "vox humana." This instrument had a straight tube, but it was made in two pieces only, with no separate bell, while the rather large crook was bent sharply at a right angle (see Figure 8). Thus the instrument would be held canted to the side of the player with his hands close to his body. The bell was a simple expansion of the main bore, with very little flare, and it was no longer than the necessary length to sound the lowest note. By this treatment the instrument was shortened a good deal, but the advantage of the typical eighteenth century bell as a resonator was sacrificed, and the tone was undoubtedly lacking in "body."

The vox humana was known in England before 1759 and it continued in use until nearly the end of the century, and quite a number of specimens are preserved in public and private collections. A rare fingering chart for the instrument by Thomas Stansby, Jr., published by Longman, Lukey and Company, is located in the Music Library of the British Museum.19

In a 17th century MS. (add. 30, 342 f 145) in the British Museum, written in French, giving pen and ink sketches of many instruments, is an "accord de hautbois" which comprises a pedalle (bass oboe or pommer), a sacquebute (sackbut), a basse-contre, a taille (tenor) with a note that the haute-contre (the cor anglais) est de

19Bate, The Oboe, p. 2.
PLATE VI

TENOR OBOES

2. J. H. Rottenburgh, Brussels. c. 1750
3. 'Vox Humana.' Longman and Broderip, London. c. 1785. Boosey and Hawkes Collection
4. 'Cor Anglais Moderne.' H. Brod, Paris. pre-1839
5. Cor Anglais. Triébert, Paris. c. 1875

Fig. 8—Vox Humana
mesme sinon plus petite. The tubes of all the members of the hautbois family are straight in this drawing.

The Continental tenor oboe, whether straight or curved, was a more elaborate instrument than the vox humana, and it was usually made in three sections with a separate bell joint and a small metal crook. Normal oboe features, such as "airholes" (see Figure 9) in the middle of the bell, and twinned fingerhole, were regularly present. The bell itself was commonly of the pear shape which is characteristic of the lower pitched oboes of today, but this was by no means

universal. Tenor oboes with an open bell have existed side by side with the more common type.21

The acoustic behavior of the bulb-bell (see Figure 10) requires a full investigation which will be covered in Chapter II. Whatever the acoustical properties, the bulb-bell

![Diagram of three characteristic oboe bells in section]

Fig. 15. Three characteristic oboe bells in section
A. Late 18th-century type with tuning holes
B. Modern French type
C. Cor anglais; Trièbert model c. 1880

The arrows indicate the position of the lowest note-hole in each case.

Fig. 10--Bulb-bell

developed at first as a result of practical rather than aesthetic needs. One view is that for use in the early times it proved more convenient and less liable to damage than the

21Bate, \textit{The Oboe}, p. 93.
flared bell. Another point is that it (the bulb-bell) came into use as a matter of economy in an effort to secure the resonating qualities of a flare with less expenditure of material. The large bell of some early tenors must have required huge pieces of flawless wood of which much was cut to waste.22

Throughout the eighteenth century English makers concentrated almost exclusively on straight tenors, while in the rest of Europe these models were fairly soon overtaken and supplanted by the curved types. Such were the instruments which came to be known as corno inglese, cor anglais, and Englisch horn. The origin of these names has never really been satisfactorily determined. From their first appearance these terms were regularly used by specialists, so we cannot pass them over just on the basis that the layman tends to call any curved instrument a "horn." The tenor oboe is obviously neither a horn nor of English origin. Probably the best explanation is that cor anglais was at first a nickname resulting from a close resemblance to a semi-circular hunting horn or forester's horn said to have been common at one time in England. This suggestion might be stretched to give a rather far-fetched explanation of the earlier name oboe da caccia (hunting oboe). (See Figure 11.)23

22 Bate, The Oboe, p. 93.

23 Ibid., pp. 92-93.
A few collections possess specimens of a tenor oboe built in the picturesque curved 18th century features of construction, and generally accepted as being oboi da caccia. There is a pair at Bologna, rather roughly-made instruments of some softish wood planed to an octagonal cross-section and painted as if to imitate copper. They have wide bugle-like bells and would have matched the semicircular metal harns that were
carried, according to Zedler, by certain hunt officials bearing the title Flügelmeister.24

There is also another possible derivation. In Zedler's Universal Lexikon of 1735 it is stated that reed instruments were actually used in the chase. The idea is unthinkable in connection with hunting as it is known in England, but perhaps under the picturesque codes of Continental venery it is not so impossible.25 We do not know if the instruments referred to by Zedler were in fact capsuled shawms (\textit{hautbois de Poitou}), or true oboes, but according to French usage the term \textit{hautbois de chasse} would be applicable to either type of instrument if they were used in the hunt.26

It was probably in France, where the \textit{hautbois} played such an important part in court music, that the \textit{cor anglais}, under the name of \textit{haut-contre de hautbois}, was also provided with keys. At the end of the seventeenth century there were two players of the \textit{haut-contre de hautbois} among the musicians of the "Grande Ecurie du Roi."27 It was not until 1808 that

\begin{flushright}
24Baines, \textit{Woodwind Instruments}, pp. 304-306. \\
25Bate, \textit{The Oboe}, p. 93. \\
26Ibid. \\
\end{flushright}
the cor anglais was heard at the Paris Opera, when it was played by the oboist Vogt in Catel's *Alexandre chez Apelle*.

As has already been mentioned, the idea of bending the instrument (cor anglais) is attributed to Giovanni and Giuseppe Ferlendis of Bergamo, Italy, brothers and virtuosi on the oboe. One of these men settled in Salisbury, and both were equally renowned as performers on the English horn. They performed in Venice, Trieste, Vienna, London (1795), and Lisbon, where Giuseppe died. In this case we might expect the name of the instrument to have been given in Italian, corno inglese; yet Gluck in his Italian edition had already used the French name in 1767, when Giuseppe (1755) was but twelve years old. It may be suggested that the new name was given the instrument because it assumed a form entirely new to the family of hautbois. The cor anglais was well known in England before 1774, for in a quaint book of travels through England, published in the same year, we read that Signor Sougelder, an eminent surgeon of Bristol, was a performer on the English horn.

The cor anglais had achieved its characteristic form in the previous century and it came to the nineteenth-century craftsmen as a desirable but rather weak relative of the oboe.

28 *Encyclopaedia Britannica.*
Because of its greater length the discrepancy between theoretical and practical placing of the fingerholes was greater than with the treble oboe. Until the advent of the Triébert key mechanism (see Figures 6 and 8) solved this problem, little could be done to make the cor anglais useful in all keys. Attempts to bore holes on a slant through the comparatively thin wall of the tube helped a little, but this could hardly be carried far enough. From 1850, however, all the difficulties with the proper placing of the tone-holes had virtually disappeared.

The cor anglais continued to be made in a curved form even as late as 1870 although this called for an elaborate technique of boring and bending by heat and moisture, or else of piecemeal building up. Either of these methods must have been very tedious and expensive. 30 Although H. Brod's cor anglais moderne (see Figure 8) of 1839 was the modern straight body, the eighteenth century curved form persisted surprisingly late in the nineteenth century (at least until 1900 in Italy). A curved, leather covered cor anglais was in the possession of a Bayreuth oboist when Tristan was first performed there, but this may not have been the one actually used in the performance. The composer's notes in some of the early editions of The Ring state that the Althoboe must in

the future be substituted for the "English Horn." No doubt this changing of instruments by Wagner indicated the arrival of the straight form of the cor anglais in Germany.

In perusing the older musical dictionaries one cannot fail to remark the number of incompatible accounts one finds of the early tenor oboe. It has been alleged, for instance, that the only method of constructing a curved tube was to curve it out of plank-wood in two halves, and to glue and pin these together, as in the cornetts. From this it has been argued that the bores must necessarily remained rough and ill-formed, with consequent bad effects on the tone, and from this again so distinguished a scholar as Professor Sanford Terry has concluded that the curved cor anglais proved unsatisfactory and was soon displaced by a return to the original straight form.

There is ample evidence to prove all parts of the quoted material to be a fallacy. In the first place, museum specimens show that at least three different methods of construction were employed in the eighteenth and nineteenth century. Secondly, the bores of many built-up curved instruments were in fact quite as smooth because of the method of construction (which will be illustrated in Chapter II) as those of the straight types, and their tone was equally as good. Finally, the curved cor anglais was a favored type in France at least until c. 1870, and in Italy for a considerably longer period. As recently as 1900 an Italian oboist named Tromba was playing on a curved instrument at the Opera in London.

32 Bate, The Oboe, pp. 94-95. 33 Ibid., p. 95.
Therefore, the latter part of the nineteenth century was the termination of the curved *cor anglais* as the standard shape of the English horn. The curved instruments could be found in museums, but they were no longer played by professional musicians.
CHAPTER II

GENERAL CHARACTERISTICS OF THE ENGLISH HORN

The early oboes, bassoons, and English horns were mostly made of yellow boxwood and were fitted with a few brass keys. As more keys were added over a period of time, the key hinges became longer and longer. This mechanical development spelled the doom of boxwood, for while it was hard and close-grained, it had the weakness of warping. When short single keys were used on the body of the instrument, it did not matter if there was a slight bit of warping. But when the hinges became long, the least amount of warping caused the long hinges to bind and consequently they stopped working. Sometimes cocuswood was substituted for boxwood, but grenadilla wood finally became the most universally used material. It is the best wood for fine quality oboes and English horns.¹

The curve of the tube, which varied from a gentle bend to almost a semicircle, brought the lower hand of the player nearer to his body, but the necessity for placing the finger-holes within reach of the fingers (i.e., too close together) remained an acoustical weakness of the cor anglais. This problem was not solved until modern mechanisms, such as those used by Brod

¹Geiringer, Musical Instruments, p. 108.
and Triébert, came to the rescue and enabled the note-holes to be properly spaced while keeping the finger-plates comfortably under the fingers. At a later period during the acoustical development of the cor anglais the upper and lower of each group of finger-holes were bored diagonally outwards, as on a bassoon, in order to mitigate to some extent the disadvantage incurred when the note-holes were situated too close together for the length of the tube. In spite of the difficulty of making this hollowed-out tube, the curved cor anglais persisted until the middle of the nineteenth century. The curved tube was avoided on some of the nineteenth century instruments, by using straight tubes which were joined together in the middle of the instrument by a small knee-joint (see Figure 7). The key-work of the cor anglais has always gone hand in hand with that of the oboe, except for the absence of the B flat key on the English horn. Through the years there have been instruments built with a B flat key. The fingering system of the cor anglais is the same as for the oboe except that the standard English horn has no low B flat. Its bottom note is B, sounding concert E.

2Carse, Musical Wind Instruments, p. 144.

3Albert J. Andraud, formerly the English horn soloist with the Cincinnati Symphony, played such an English horn. This instrument, a Cabart, was made for Mr. Debert, English horn soloist with the Brussels Opera orchestra, and it was later brought to Cincinnati by Marcel Dandois who sold it to Albert J. Andraud. This English horn is now the property of Claude Reynolds of Dallas, Texas.
Some composers, including of course Mahler, write the B flat, and one of Mahler's B flats has a most charming effect through its absence; in the Song of the Earth (1st movement), where the composer directs the player to play B instead, which is what we always hear, Mahler's typical bugle-call theme thus being quaintly altered.⁴

Since the oboe and English horn are in different keys, there arose a curious notation which was used in France as late as Halévy's time, the early nineteenth century. The oboe player who performed on the cor anglais had to finger when he wished to produce the concert sound. The French composer Halévy, therefore, satisfied his sense of logic by placing the mezzo-soprano clef on the second line and leaving the player to image a treble clef instead. For the sound "middle C" in the mezzo-soprano clef the player read. There seemed to have been some difference of routine as to key-signatures and accidentals. According to Bate, "this perhaps explains what they did at rehearsals in those days."⁵ In Italy composers before Verdi's time adopted the absurd plan of writing the sounds required in the bass-clef an octave below their actual pitch (see Figure 12). Bach, in writing for the oboe da caccia, also in the key of F, set down the actual sound required in the alto-clef on the third line (see Figure 12).

⁴Baines, Woodwind Instruments, p. 221.
⁵Bate, The Oboe, p. 39.
The following shows at a glance the three obsolete notations and the now universal modern notation:

Bach's Oboe as Caccia Notation.

Old French Notation.

Old Italian Notation.

Modern Notation. Actual sounds

Fig. 12--Notation for cor anglais

Bate has said "The methods of the oboe makers of c. 1700 show that, except in the one matter of key mounting, the modern techniques follow directly in the same tradition, representing no more than a development of the old principles with perhaps the assistance of power-driven lathes and drills."

In the study of obsolete wind instruments one is bound to become familiar with bent wooden tubes. The most common instruments of this type were the crumhorn, the curved cornetto, and the serpent, all of which really belong to the Medieval period, and which were in their last decline by the time the oboe appeared. The construction of the surviving examples of all of these instruments is fairly obvious. They were produced by hollowing out two shells of plankwood.

6Bate, The Oboe, p. 39.
and gluing and pinning these together, subsequently binding the formed tube with strips of cloth and covering the entire instrument with a skin of leather.

Many writers have repeatedly insisted that the curved oboe da caccia or English horn of the eighteenth century was made by the plankwood method. There is, in fact, almost no justification to this statement. Very few specimens show any signs of a seam along the length of the tube. There is only one example of this type of construction which was formerly in the Galpin collection, and is now No. 142 of the Leslie Lindsey Mason collection in the Museum of Fine Arts, Boston, Massachusetts. This instrument is a two-keyed, flared bell type with a rather wide bore which was designated an oboe da caccia.

It is very doubtful that the narrow-bored cor anglais was ever constructed by the "plank" method. If we were to look at a picture of a cornett player we would notice that the instrument was held with the curve in a more or less horizontal plane and that the finger-holes were bored perpendicular to this plane; i.e., through one of the component shells. The playing position of the bent cor anglais, on the other hand, required that the holes be drilled along the outer

7Bate, The Oboe, p. 39.
8Ibid.
curvature in the same plane as the supported junction between
the two halves of wood. This was obviously a most unsatis-
factory arrangement with a glued joint especially if under-
cutting were required.9 There is also the objection that,
in playing, the glued seam on the inner curve would be in
line with the point where the moisture would collect. It
appears that the idea of a lengthwise joint in the \textit{cor anglais}
should be rejected.10

Toward the end of the nineteenth century certain French
\textit{cors anglais} were made with only the upper joint gently
curved. In such cases the top section was built up by using
five or six separate pieces of wood secured by tenons. Since
there were no covers on these instruments, the seams were
clearly visible. Most curved tenors were, however, leather-
covered, and both joints were quite strongly bent. That was
the most common form of the instrument. Some very strange
theories have nevertheless been advanced and until recently
have been left unchallenged. For instance, it was suggested
that the joints were turned and bored from a straight piece
of wood and then forcibly bent with the aid of heat and
moisture. This theory could not hold up in the light of
practical experiment. Also, among other things, there is no
explanation of how the curve was to be prevented from changing

9Bate, \textit{The Oboe}, p. 39. \hspace{1cm} 10Ibid.
under varying conditions of use, a very serious matter because those instruments were fitted with much keywork.

The idea of simply boring and bending the tube of the cor anglais will not hold up and it must be concluded that some method of building up, other than in longitudinal halves, was employed.

It is here that the late French instruments give some sort of a lead. If such construction as theirs was used, the outer seams would be covered by the leather wrapping; but what about the inside of the tube? This area would surely reveal the joints. Recently a large number of specimens from different periods have been viewed internally with the aid of a modified surgical inspection lamp. All of these instruments that were examined show distinct transverse joints. The final evidence appeared in 1956. A two-keyed cor anglais, probably of early eighteenth century Italian origin, was uncovered. This instrument had suffered badly from dampness, and on both joints the leather had partly peeled away. Inside it showed the usual transverse joints, but outside the corresponding seams did not pass all the way around the tube. The various sections comprising each joint were not entirely separate, as in the French examples, but they had been produced

11 Bate, The Oboe, pp. 140-141.
12 Ibid., p. 141.
13 Ibid.
by cutting out a series of wedges across a normally turned tube (see (A), Figure 13). The apex of each wedge had penetrated on half of the thickness of the tube wall which would

Fig. 19. Construction of the bent Cor Anglais
A. The tube turned and bored; wedges cut out
B. The tube bent. Retaining 'splint' shaded
C. Alternative method. Retaining 'keys' shaded

Fig. 13—Construction of bent cor anglais; (A), (B), (C)

be the section facing the player. This left only a strip of wood thin enough to bend without undue strain and allowing the gaps to be closed and glued. According to Bate, the resultant
structure was completely firm and solid and showed no sign of ever having moved. \(^{14}\)

Here was positive evidence of a very interesting and completely practical method of construction, but there was only one example of this type of construction. In order to confirm these findings, X-ray examination was used. A series of bent cors anglais was photographed, in which four structural variations were discovered. First, the oldest type was exactly as previously described. Second, a ten-keyed German instrument of the early nineteenth century showed the same joining process, but with a metal splint running along the inner curvature (see (B), Figure 13). This piece of metal was screwed to each section between the notches. The third variety was exemplified by a Triébert model of c. 1850 with ten keys. The X-ray proved that each joint was built up of several detached sections butted together without any tenons, although externally this instrument appeared to have no unusual features. Each section was attached to the next by three or four wooden "keys" which bridged the joints (see (C), Figure 13). Each key was placed in a deep groove in the wall and pinned into place by use of wooden pegs. \(^{15}\)

Another eighteenth-century instrument, made by G. Bimboni of Florence, Italy, was examined. This cors anglais showed

\(^{14}\)Bate, The Oboe, pp. 141-143. \(^{15}\)Ibid.
an interesting variation which combined the features of both the second and third types of construction. The body had been notched and bent, but, instead of a splint, the curve was held firm by a series of inserted keys, each shaped like two keystones joined together at the narrow ends . This method prevented the seams from opening by virtually "dovetailing" them together. Finally, one of the late Triébert instruments, c. 1870, without leather, was X-rayed for comparison and a surprising find was made. It had been recognized after viewing with the naked eye that tenons were used, but the photograph revealed that these had not been turned down from the actual sections. They were independent small wooden tubes that were pinned in place with wooden pegs, and altogether there were five sections to one very gently curved joint. "The X-ray had confirmed that, in general, the bore of the bent tenor oboe passed through a series of very obtuse angles and was not a true curve, although in the later examples a very fair approximation was achieved." In all cases, however, the smoothness and finish of the bore were of the original straight-bored material and it could be as good as in any straight instrument of the period.

Drilling the holes was a delicate and tedious process. The following quotation by Bate most aptly describes the hazards of drilling:

16Bate, The Oboe, p. 143.
The piercing of side-holes is always a matter of some anxiety to instrument makers, on account of the risk of splitting a joint, and before the days of power tools this must have been even more acute. Some early makers are believed to have avoided the danger by burning out finger-holes with hot irons, but simple openings were usually made with a spear-point bit driven by the drillbow. This, in skilled hands, gave fast, clean cutting and a sensitive control of direction. [See Figure 14.]

Fig. 14--Bow-drill in use

The lower members of the oboe family have a different appearance mainly because of the bell on these instruments. This is called the "d'amore" bell, which is pear-shaped outside, spheroidal within, and has a constricted opening.

[17] Ibid., p. 133.
Though often regarded as a product of the early eighteenth century, the bulb-bell has been associated with double reed instruments since the thirteenth century, thus pre-dating the treble oboe by five hundred years. The earliest information we have about it is provided by two beautiful illustrations in the *Cantigas de Santa Maria*—a most important manuscript prepared for Alphonso the Wise of Spain (1221-1284) and now preserved in the Escorial. Despite its ancient origin, the bulb-bell seems to have had a curiously disjointed life. This type of bell has disappeared for long periods of time, only to be reintroduced or perhaps reinvented at a later time by an instrument maker.\(^{18}\)

The "d'amore" bell has shown a curious inconsistency both in form and dimension, even in the work of craftsmen during the same time period, and instruments of identical pitch with both plain and bulb-bells are known to have existed side by side. It is also found associated with the larger clarinets (see Figure 3) up to about 1850.

All of this suggests some degree of uncertainty as to the true worth of the d'amore bell, and there is no doubt that at various times it has been credited with more virtues than it really possesses. Older writers have often tended to regard it as something of a mystery and to talk rather extravagantly of the "melancholy" quality it imparts. Probably the chief explanation of the difference in tone-colour between larger and smaller oboes is found in the "scaling" of their tubes--

a relationship between mean diameter and length will be understood by the organ-pipe maker.\(^{19}\)

Many excellent oboe makers feel that in the case of the oboe d'amore or the cor anglais, if the instrument is reasonably well designed in the first place, all necessary "fine tuning" can be done by adjusting the inner curves of the bell alone. It should be noted also that in the eighteenth and nineteenth century the neck of the bulb was frequently made very long. To compensate for this extra length "tuning holes" were used. An investigation of the bulb-bell by Bernard Hague of the University of Glasgow has been done quite recently. Besides being an excellent oboist and a skilled mechanic, Hague has actually made instruments for his own use and his findings are therefore particularly valuable.\(^{20}\)

Working with an oboe d'amore to which he has fitted alternative plain and bulb-bells, he concludes that the latter has little effect that the unaided ear can detect beyond the first few notes of the lowest register. A typical cor anglais bell examined by Dr. Hague showed as its chief characteristic a pronounced cavity resonance in the region of 680 cycles per second. We may assume therefore that this bell would affect the tone colour of its associated instrument by reinforcing the 680 cycle frequency and its multiples wherever they occur. This fact connects rather remarkably with some purely qualitative observations of my own. A number of inexperienced listeners at different times had a cor anglais solo played to them and were asked to describe the sound. The usual adjectives, "nasal," "melancholy," etc., were forthcoming, but the interesting point was that several descriptions confirmed the impression that I myself formed many years ago when first I heard

\(^{19}\)Bate, The Oboe, p. 118. \(^{20}\)Ibid., pp. 118-119.
the cor anglais, namely that in the lowest octave it sings "aw." Now in his investigation of the vowels Dayton Miller found 730 cycles to be characteristic of the sound "aw." Fletcher, pursuing the matter rather further, concluded that each vowel shows two ranges of characteristic frequencies, a higher and a lower, and from his published table it appears that the nearest frequency in a recognized speech sound to 680 cycles is the lower one (704) typical of the shortened o as in the word "hot." My observations cannot be regarded as scientific, since conditions were not in any way controlled, but they are still interesting as suggesting the presence of the same format in a natural voice sound as in that of an artificial musical instrument.21

To sum up, it may be said that the type of bell associated with the earliest treble oboes was a great deal more specialized than the bell of even the contemporary shawms. It behaved chiefly as a selective resonator and influenced notes throughout the entire range of the instrument in varying degrees. "The acoustical properties were due to various details of construction which makers clearly recognized as desirable though they employed them in the light of empirical knowledge only."22 This type of bell along with the entire oboe underwent general refinement in the mid-nineteenth century. The instrument became simplified and reduced in size until it assumed its present form. The d'amore bell, though somewhat varying in its relative dimensions, shows little comparative range from the earliest form. It too had properties of selective resonance, "but its influence on

21 Ibid., pp. 118-119.
22 Ibid., p. 119.
tone, except in a limited part of the scale, appears to be less than commonly supposed."

Since an English horn reed does not fit directly into the instrument, but is played on a metal crook (bocal), there is no theoretical need for a staple. In the last century the reed was made like a bassoon reed, i.e., without a staple (see Figure 15). However, the English horn reed is too small to be held together strongly by this method. The reed is now always made in a short metal staple and the cane is tied to the staple as in the fashion of an oboe reed. The staple is about twenty-five millimeters long and it has no cork lapping. As for the cane strip, it is usually ninety-five millimeters long and about 8.5 millimeters wide before it is folded over to form the double reed. This reed consists of two thin shell-like pieces of cane, placed one against the other, so as to leave a very narrow orifice for the passage of the air. These pieces of cane are fastened by means of a twine to the small end of the staple, a thin brass tube, the large end of which is placed on the upper end of the bocal of the English horn. The length of the reed varies according to the size and pitch of the instrument. In order to produce a sound the player takes the reed a little way into his mouth, pressing the two edges between the lips, and

\[23\] Ibid.

\[24\] Baines, Woodwind Instruments, p. 83.
VI. DOUBLE REEDS

Top row, left to right: 1, 2, two English oboe reeds, c. 1780–1820; 3, French oboe reed c. 1870 (Tribert), showing a French V-scrape; 4, modern English oboe reed, total length 2.85 inches (Morgan); 5, 19th-century cor anglais reed, made without staple; 6, modern cor anglais reed; 7, modern shawm reed (Catalan tenor; Pardo, La Bisbal).

Bottom row, left to right: 8, an English bassoon reed c. 1810; 9, ditto c. 1890 (Morton); 10, modern bassoon reed, length 2.2 inches (Ludwig); 11, contrabassoon reed (Ludwig); 12, contrabass sarrusophone reed (Gounod).

Fig. 15--Cor anglais reeds
by forcing air through the reed, sets in vibration the air column in the tube of the instrument.25

The tone of the English horn is nearly homogeneous throughout its whole range. It can be said that the instrument is devoid of brilliancy, and it is less piercing than the oboe. The peculiar melancholy and sombre character of the cor anglais cannot be replaced by any other instrument.26

It may be noted here that as with the oboe, the sound produced on the cor anglais in England and in Europe is rather different from that normally heard in this country. "Most players abroad go for an impersonal 'pastoral' quality, thicker and reedier, and incidentally, superior in effect when the composer's allusion is pastoral, as is so often the case."27 In Germany and Austria the tone quality of the English horn is sometimes nearly as dark and velvety as that of the bassoon.28

Possibly because of its serious quality, the English horn is seldom called on to play technically complicated music, and it is not a particularly agile instrument by nature. The bottom notes are most highly effective; strangely

25Ebenezer Prout, The Orchestra (London, 1875), p. 113.
26Ibid., p. 126.
27Baines, Woodwind Instruments, p. 97.
28Ibid.
enough, they do not seem to be bothered by the coarseness that afflicts the lower register of the oboe. There is seldom any reason to write the parts above the written c''', even though notes up to the e''' are possible. The instrument loses most of its characteristic color in its uppermost register and is consequently less effective.\(^{29}\)

Here is a visual example (see Figure 17) of the range of the English horn along with a few terms describing the range and the timbre of the English horn as stated by Kennan in his book on orchestration.\(^{30}\)

(Written Notes)

\[
\text{Reedy, intense/ Reedy, mellow/}
\]

\[\begin{align*}
\text{Thin, less characteristic}
\end{align*}\]

Fig. 16--Range of English horn

\(^{30}\)Kennan, Technique of Orchestration, p. 97.
CHAPTER III

ORCHESTRAL DEVELOPMENT

For years there was a running battle for a place in the orchestra as the permanent alto member of the oboe family. This struggle was between the oboe da caccia and the cor anglais, which later became the English horn. Both instruments were, of course, in the key of F and quite similar in most other respects. Of the two, the oboe da caccia was the first to be used in orchestra scores. Its first recognition was in the passion music of J. S. Bach, which was composed between 1723 and 1740. At this time there were other altos similar to the oboe da caccia, such as the tenoroon in F (see Figure 17) and the bassoon quinte in F, but there is some controversy as to the tone quality and characteristics of these instruments. Bach's choice of the oboe da caccia would seem to indicate its superiority over the other two instruments, and for several years the oboe da caccia seemed to have a firm hand on the alto position in the double-reed family.¹

Bach used the oboe da caccia exclusively in his Leipzig music; this instrument can be found in the St. Matthew Passion.

¹ Geiringer, Musical Instruments, pp. 92-93.
Fig. 17—Tenoroone
the second part of the Christmas Oratorio, the St. John Passion, and twenty-two church cantatas (see Figure 18), but nowhere in his secular, vocal, or instrumental music.²

The texts with which Bach associated the oboe da caccia reveal its qualities. Vibrant and somewhat metallic, it was appropriate to express grief and tragedy. Its notes breathe the quintessence of anguish in the St. Matthew Passion, in which it has no voice until the dark agony of Gethsemane is unfolded. It speaks again when Christ stands condemned before Pilate, again at the supreme moment on Calvary, and for the last time at the Tomb.³

It has been noted that Bach used the oboe da caccia (actually there were two) in another vein from those mentioned in the previous quotation. The oboi da caccia were used as an accompaniment part in No. 58 (see Figure 19) in St. Matthew Passion. An illustration of how Bach normally utilized the oboi da caccia as portrayers of gloom can be seen in Figure 20.

In concluding this section on the oboe da caccia, it should be noted that Geiringer said, "Today all double-reed alto parts are played by the English horn, and the oboe da caccia is known only as an interesting antique."⁴

Following Bach's example, Haydn, Mozart, and Beethoven wrote for the oboe da caccia instead of the English horn.

²Terry, Bach's Orchestra, p. 104.
³Ibid., p. 105.
⁴Geiringer, Musical Instruments, p. 93.
TABLE X. THE OBOE (HAUTBOIS)2

<table>
<thead>
<tr>
<th>Work</th>
<th>Date</th>
<th>Movement</th>
<th>Score</th>
<th>Sounding Compass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandenburg Concerto, No. 1, in F ma.</td>
<td>1721</td>
<td>...</td>
<td>'6 Bassano'</td>
<td>{I \text{c}^#-\text{d}''} II \text{c}^#-\text{d}''</td>
</tr>
<tr>
<td>Brandenburg Concerto, No. 2, in F ma.</td>
<td>1721</td>
<td>...</td>
<td>...</td>
<td>\text{c}^#-\text{d}''</td>
</tr>
<tr>
<td>Sinfonia in D ma.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>{I \text{d}^#-\text{d}''} II \text{d}^#-\text{d}''</td>
</tr>
<tr>
<td>Overture in C ma.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>{I \text{d}^#-\text{d}''} II \text{d}^#-\text{d}''</td>
</tr>
<tr>
<td>Overture in D ma.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>{I \text{d}^#-\text{d}''} III \text{d}^#-\text{g}''</td>
</tr>
<tr>
<td>Sinfonia in F ma.</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>{I \text{c}^#-\text{d}''} II \text{c}^#-\text{g}''</td>
</tr>
<tr>
<td>Trio (Violin, Oboe, Continuo) in F ma., 1</td>
<td>...</td>
<td>Fragment</td>
<td>...</td>
<td>\text{c}^#-\text{b}''</td>
</tr>
</tbody>
</table>

1 B.-G. xxi (1), p. 65. 2 Brandenburg Concerto, No. I.

TABLE XI. THE OBOE DA CACCIA

(ENGLISH HORN: HAUTBOIS DE CHASSE)

(A) CHURCH MUSIC

<table>
<thead>
<tr>
<th>Cantata</th>
<th>Date</th>
<th>Movement</th>
<th>Score</th>
<th>Sounding Compass</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>c. 1749</td>
<td>1. Coro</td>
<td>3. Ob. + Cont.</td>
<td>{I \text{f}''} II \text{f}''</td>
</tr>
<tr>
<td>6</td>
<td>1723</td>
<td>1. Coro</td>
<td>3. Ob. + Cont.</td>
<td>\text{f}''</td>
</tr>
<tr>
<td>13</td>
<td>c. 1749</td>
<td>1. Aria (S.)</td>
<td>3. Col. A.</td>
<td>\text{f}''</td>
</tr>
<tr>
<td>16</td>
<td>1724</td>
<td>1. Aria (T.)</td>
<td>3. Choral</td>
<td>\text{f}''</td>
</tr>
<tr>
<td>27</td>
<td>1731</td>
<td>1. Aria (T.)</td>
<td>3. Choral</td>
<td>\text{f}''</td>
</tr>
<tr>
<td>46</td>
<td>c. 1725</td>
<td>1. Aria (S.)</td>
<td>3. Ob. + Cont.</td>
<td>{I \text{f}''} II \text{f}''</td>
</tr>
<tr>
<td>65</td>
<td>1724</td>
<td>1. Aria (T.)</td>
<td>3. Ob. + Cont.</td>
<td>{I \text{f}''} II \text{f}''</td>
</tr>
</tbody>
</table>

St. Matthew Passion | 1729 | 25. Recit. (T) and Coro | 37. 2 Ob. + Cont. Coro | \{I \text{f}''\} II \text{f}'' |
| 78 | 1724 | 1. Aria (S.) | 3. Ob. + Cont. | \{I \text{f}''\} II \text{f}'' |

(B) INSTRUMENTAL MUSIC

See Christmas Oratorio (supra), No. 1.

Fig. 18--List of Bach's use of oboe da caccia
Fig. 19—Oboe da caccia accompaniment, St. Matthew Passion.
ob, aus Lie, aus
Lie, be will meinHei, land ster, ben, aus
Lie, be will meinHei, land ster
ben, von ei, ner Sünde weiss er nicht,nichts, von ei, ner Sünde weiss er
nichts.
Fig. 20—Oboe da caccia part, St. Matthew Passion
Ob. d.c.

A.

Cont.

werden; die Unschuld mutterschuldig sterben. Das geht meiner Seele

Ob. d.c.

A.

Cont.

nach; ach Gol-ga-tha, um-fall' ges Gol-ga-tha!

Oboe da caccia I.

Oboe da caccia II.

Alto.

Organo e Continuo.
With such great composers as these using the oboe da caccia, it seems that it would have won out over the English horn. However, after Bach's death Gluck made the acquaintance of the English horn and found it to his liking, as he used it in his operas Alcest and Orfeus (see Figure 21). Later composers such as Schubert, Schumann, and Mendelssohn wavered back and forth between the use of the oboe da caccia and the English horn. The question was not settled until sometime in the 1840's. The French and Italian composers such as Meyerbeer, Rossini, and Berlioz quickly recognized the superiority of the English horn and they made it the permanent alto oboe voice in the orchestra. The actual turning point came about when Rossini gave the English horn the now famous solo in his William Tell opera score in 1829. Meyerbeer also used the English horn in the score of Robert le Diable in 1831.5

Although often used in the eighteenth century chamber music and the divertimento, the English horn has been a permanent member of the orchestra since the mid-nineteenth century. At first the instrument was used only occasionally for a featured solo melody which was played by the second oboist. As the English horn grew in importance the process of the interchanging of instruments brought about the development of a specialist on this instrument, who on occasion played the third or fourth oboe part. Being an auxiliary

5 Geiringer, Musical Instruments, pp. 92-93.
Fig. 21--Gluck: Orfeus for Corno Inglese
instrument, one of the functions of the English horn was to extend the lower range of the oboe family, the extension in sound being to E concert below middle C. A three-part chord for three oboes is a smoother and more homogeneous sound if the third oboe is replaced by the English horn. For singing melodies the English horn brought a new tone color to the composer. Orchestral literature has an abundance of solo passages for this unique sounding instrument.

After the performance of Catel's Alexandre Chez Apelle at the Paris Opera house, in which the first oboist Vogt played the English horn, the instrument seemed to have caught the fancy of every French operatic composer. The most famous of all French composers to make use of the English horn was Hector Berlioz. Paul Bekker stated that "Berlioz who benefited by certain improvements wrought by instrument-makers in Paris, made use in unforgettable fashion of the elegiac singing of this instrument at the beginning of the Carnival Romain." (See Figure 22.) In one of the most poetic scenes that Berlioz ever wrote, the scène aux champs from the Symphonie fantastique (see Figure 23), the English horn and oboe answer each other and finally only the English horn is

left to symbolize utter loneliness. Berlioz' statement of this is much more picturesque.

In the Adagio of one of my own symphonies, the corno inglese, after having repeated in the bass octave the phrase of the hautboy—as the voice of a youth might reply to that of a young girl in a pastoral dialogue—reiterates fragments of them with a dull accompaniment of four kettle-drums. The feeling of absence, of forgetfulness, of sorrowful loneliness, which arise in the bosom of the audience on hearing this forsaken melody would lack half their power if played by any other instrument than the corno inglese.⁸

Fig. 23—Berlioz: Symphonie fantastique
In expressing ideas of sorrow and regret the English horn seems to have more personality than any other instrument in the orchestra. A fine example of this is the long un-accompanied solo at the beginning of Act III of Wagner's Tristan (see Figure 24). Beginning with Lohengrin (1847), Wagner made use of the English horn in his regular orchestra.

Another example of the same type of solo is the beautiful melody from Dvorak's Symphony from the New World (see Figure 25). Downes suggests that "Most of the melodies in the Symphony appear to be Dvorak's, though the song of the English horn in the slow movement can well have originated in a Negro spiritual. It is in this vein, and it has a typical melancholy and pathos."

Since Wagner's time, the English horn has steadily become more involved in the ensemble of the orchestra. In fact, the English horn has been successfully employed, beginning with the Romantic composers, not only for solo passages of an expressive character, but also in combination with other woodwinds, brass, and stringed instruments, to produce color and shading complimentary to the total picture in the minds-eye of the composer.

Fig. 24--Wagner: Tristan and Isolde
Fig. 25--Dvořák: *New World Symphony*

Conclusion

The ancestry of the oboe family can be traced to the shawm and pommer; more specifically, the tenor oboe is the direct descendant of the **alto pommer**. This oboe, pitched in F, was primarily used to fill out the harmony for the oboes.
in C, but gradually became a sole instrument under the name oboe da caccia. Through Bach's use of this instrument in his church music, the oboe da caccia held the position of the tenor voice of the oboe family. The cor anglais or corno inglese, terms used in France and Italy respectively, began to assert itself in the scores of Haydn and Gluck.

Several theories of the derivation of the name English horn, a translation of cor anglais, have been written. The most logical description of the name comes from the cor anglais' resemblance in tone quality to an old English instrument called the "hornpipe" (see Figure 5). The deeper-toned oboes were particularly valued in England, and their tenor hautboy was a soft-sounding instrument. The terms cor de chasse, hautbois de forêt, and oboe da caccia, all indicate a direct reference to the "hunt" or forest sounds such as distant horns across the hill. All of the earlier types of cor anglais produced a soft, mournful, elegiac sound which was the purpose of its invention. The tenor hautboy of England, an outgrowth of the vox humana, did not change in shape, but the cor anglais of the Continent had many forms before coming back to the present straight shape. The instrument makers of France and Italy developed the cor anglais to a high degree thus rendering the tenor hautboy obsolete.

The wood with which the English horn was made soon became a problem to the instrument makers. When the instrument
began to acquire more and longer key-mechanism the warping tendencies of the wood (such as yellow boxwood or cocuswood) caused this new mechanism to bend. A decision to use grenadilla wood proved satisfactory and thus it became the standard wood of fine oboes all over the world. During the nineteenth century the bend in the cor anglais took many different degrees of curvature (see Figure 6), except for H. Brod's instrument of 1839, which had a straight form (see Figure 8). After many (at least four) methods of constructing a curve had been tried, the makers went back to the straight shape. All of the curved cor anglais were wrapped with leather. This wrapping, skillfully done, was carried to the extent of having one specimen, by G. Bimboni, wrapped with gold embossed leather.

The "d'amore" bell was the principal reason for the cor anglais replacing the oboe da caccia as the tenor voice of the oboes. This bulb-bell made the English horn sound more homogeneous and much more suited for sad, mournful, and delicate solos. The tone was of a covered quality which also made a very good timbre for the third oboe harmony. As the construction improved, the English horn became more and more involved in orchestral literature.

For some time the solo English horn parts were played by the second oboist. This practice is still carried on in small orchestras, especially if there is a financial problem
of budgeting. In all full-time orchestras there are three people employed for the oboe section, first and second oboe and English horn. Employment of three people for this section came about when the composers called upon the English horn, not only as a solo voice, but for use in the ensemble.

The turning point for the English horn as an orchestral member is credited to the beautiful solo written by Rossini in his William Tell overture. Richard Wagner also had a strong voice in placing the English horn in the orchestral literature, having employed this instrument in his regular orchestra, as a third part of the oboe section, beginning with the opera, Lohengrin.10 The English horn has come of age in the twentieth century owing to its use in the many facets of the orchestral composition by the composers of this century.

10Wagner's opera, "The Flying Dutchman" is scored for two oboes and an English horn. However, all three players are never playing simultaneously, which enables the second oboist to play the English horn part, if the conductor should desire to eliminate the third player. Since all three people must play together in Lohengrin, it is considered to be the first composition requiring three players.
BIBLIOGRAPHY

Books

Stoddard, Hope, From These Comes Music, New York, Thomas Y. Crowell Co., 1952.

Dictionaries

Encyclopedias

Champlin, John Denison, Jr., editor, Encyclopedia of Music and Musicians, New York, Charles Scribner's Sons, 1890.

Musical Scores

Bach, J. S., St. Matthew Passion, No. 58.

__________, St. Matthew Passion, No. 69.
Bach, J. S., St. Matthew Passion, No. 70.

Berlioz, Hector, Overture: The Roman Carnival.

Berlioz, Hector, Symphonie Fantastique, Scene aux Champs, Adagio.

Dvořák, Antonin, Symphony from the New World, Largo.

Gluck, Christoph, Orfeus and Eurydice.

Wagner, Richard, Introduction to Act III: Tristan and Isolde.