Standard Technical Specifications
General Electric Plants, BWR/6

Specifications

Issued by the
U.S. Nuclear Regulatory Commission
Office of Nuclear Reactor Regulation

April 1995
AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555–0001

3. The National Technical Information Service, Springfield, VA 22161–0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. Federal Register notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington DC 20555–0001.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, MD 20852–2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018–3308.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
This NUREG contains the improved Standard Technical Specifications (STS) for General Electric (GE) BWR/6 plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the GE Owners Group, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency.
Table of Contents

1.0 USE AND APPLICATION ... 1.1-1
1.1 Definitions ... 1.1-1
1.2 Logical Connectors ... 1.2-1
1.3 Completion Times .. 1.3-1
1.4 Frequency ... 1.4-1

2.0 SAFETY LIMITS (SLs) ... 2.0-1
2.1 SLs .. 2.0-1
2.2 SL Violations ... 2.0-1

3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY .. 3.0-1
3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY 3.0-4

3.1 REACTIVITY CONTROL SYSTEMS 3.1-1
3.1.1 SHUTDOWN MARGIN (SDM) 3.1-1
3.1.2 Reactivity Anomalies ... 3.1-5
3.1.3 Control Rod OPERABILITY 3.1-7
3.1.4 Control Rod Scram Times 3.1-13
3.1.5 Control Rod Scram Accumulators 3.1-16
3.1.6 Rod Pattern Control ... 3.1-19
3.1.7 Standby Liquid Control (SLC) System 3.1-21
3.1.8 Scram Discharge Volume (SDV) Vent and Drain Valves 3.1-26

3.2 POWER DISTRIBUTION LIMITS 3.2-1
3.2.1 AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) 3.2-1
3.2.2 MINIMUM CRITICAL POWER RATIO (MCPR) 3.2-2
3.2.3 LINEAR HEAT GENERATION RATE (LHGR) (Optional) 3.2-3
3.2.4 Average Power Range Monitor (APRM) Gain and Setpoints (Optional) 3.2-4

3.3 INSTRUMENTATION ... 3.3-1
3.3.1 Reactor Protection System (RPS) Instrumentation 3.3-1
3.3.2 Source Range Monitor (SRM) Instrumentation 3.3-10
3.3.3 Control Rod Block Instrumentation 3.3-15
3.3.4 Post Accident Monitoring (PAM) Instrumentation 3.3-20
3.3.5 Remote Shutdown System 3.3-24
3.3.4.1 End of Cycle Recirculation Pump Trip (EOC-RPT) Instrumentation 3.3-27
3.3.4.2 Anticipated Transient Without Scram Recirculation Pump Trip (ATWS-RPT) Instrumentation 3.3-31
3.3.5.1 Emergency Core Cooling System (ECCS) Instrumentation 3.3-34
3.3.5.2 Reactor Core Isolation Cooling (RCIC) System Instrumentation 3.3-46
3.3.6 Primary Containment Isolation Instrumentation 3.3-50
3.3.6.2 Secondary Containment Isolation Instrumentation 3.3-62

(continued)
TABLE OF CONTENTS

3.3 INSTRUMENTATION (continued)
- **3.3.6.3** Residual Heat Removal (RHR) Containment Spray System Instrumentation ... 3.3-66
- **3.3.6.4** Suppression Pool Makeup (SPMU) System Instrumentation .. 3.3-70
- **3.3.6.5** Relief and Low-Low Set (LLS) Instrumentation ... 3.3-74
- **3.3.7.1** [Control Room Fresh Air (CRFA)] System Instrumentation .. 3.3-76
- **3.3.8.1** Loss of Power (LOP) Instrumentation .. 3.3-80
- **3.3.8.2** Reactor Protection System (RPS) Electric Power Monitoring .. 3.3-83

3.4 REACTOR COOLANT SYSTEM (RCS)
- **3.4.1** Recirculation Loops Operating .. 3.4-1
- **3.4.2** Flow Control Valves (FCVs) ... 3.4-3
- **3.4.3** Jet Pumps ... 3.4-5
- **3.4.4** Safety/Relief Valves (S/RVs) ... 3.4-7
- **3.4.5** RCS Operational LEAKAGE .. 3.4-9
- **3.4.6** RCS Pressure Isolation Valve (PIV) Leakage .. 3.4-11
- **3.4.7** RCS Leakage Detection Instrumentation .. 3.4-14
- **3.4.8** RCS Specific Activity .. 3.4-17
- **3.4.9** Residual Heat Removal (RHR) Shutdown Cooling System—Hot Shutdown ... 3.4-19
- **3.4.10** Residual Heat Removal (RHR) Shutdown Cooling System—Cold Shutdown ... 3.4-22
- **3.4.11** RCS Pressure and Temperature (P/T) Limits .. 3.4-24
- **3.4.12** Reactor Steam Dome Pressure ... 3.4-28

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM
- **3.5.1** ECCS—Operating .. 3.5-1
- **3.5.2** ECCS—Shutdown .. 3.5-7
- **3.5.3** RCIC System ... 3.5-11

3.6 CONTAINMENT SYSTEMS
- **3.6.1.1** Primary Containment .. 3.6-1
- **3.6.1.2** Primary Containment Air Locks .. 3.6-3
- **3.6.1.3** Primary Containment Isolation Valves (PCIVs) ... 3.6-9
- **3.6.1.4** Primary Containment Pressure ... 3.6-19
- **3.6.1.5** Primary Containment Air Temperature ... 3.6-20
- **3.6.1.6** Low-Low Set (LLS) Valves ... 3.6-21
- **3.6.1.7** Residual Heat Removal (RHR) Containment Spray System .. 3.6-23
- **3.6.1.8** Penetration Valve Leakage Control System (PVLCS) .. 3.6-25
- **3.6.1.9** Main Steam Isolation Valve (MSIV) Leakage Control System (LCS) .. 3.6-27
- **3.6.2.1** Suppression Pool Average Temperature ... 3.6-29
- **3.6.2.2** Suppression Pool Water Level .. 3.6-32

(continued)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>CONTAINMENT SYSTEMS (continued)</td>
<td></td>
</tr>
<tr>
<td>3.6.2.3</td>
<td>Residual Heat Removal (RHR) Suppression Pool Cooling</td>
<td>3.6-33</td>
</tr>
<tr>
<td>3.6.2.4</td>
<td>Suppression Pool Makeup (SPMU) System</td>
<td>3.6-35</td>
</tr>
<tr>
<td>3.6.3.1</td>
<td>Primary Containment Hydrogen Recombiners (if permanently installed)</td>
<td>3.6-37</td>
</tr>
<tr>
<td>3.6.3.2</td>
<td>Primary Containment and Drywell Hydrogen Ignitors</td>
<td>3.6-39</td>
</tr>
<tr>
<td>3.6.3.3</td>
<td>[Drywell Purge System]</td>
<td>3.6-41</td>
</tr>
<tr>
<td>3.6.4.1</td>
<td>[Secondary Containment]</td>
<td>3.6-44</td>
</tr>
<tr>
<td>3.6.4.2</td>
<td>Secondary Containment Isolation Valves (SCIVs)</td>
<td>3.6-47</td>
</tr>
<tr>
<td>3.6.4.3</td>
<td>Standby Gas Treatment (SGT) System</td>
<td>3.6-51</td>
</tr>
<tr>
<td>3.6.5.1</td>
<td>Drywell</td>
<td>3.6-54</td>
</tr>
<tr>
<td>3.6.5.2</td>
<td>Drywell Air Lock</td>
<td>3.6-56</td>
</tr>
<tr>
<td>3.6.5.3</td>
<td>Drywell Isolation Valve[s]</td>
<td>3.6-61</td>
</tr>
<tr>
<td>3.6.5.4</td>
<td>Drywell Pressure</td>
<td>3.6-65</td>
</tr>
<tr>
<td>3.6.5.5</td>
<td>Drywell Air Temperature</td>
<td>3.6-66</td>
</tr>
<tr>
<td>3.6.5.6</td>
<td>Drywell Vacuum Relief System</td>
<td>3.6-67</td>
</tr>
<tr>
<td>3.7</td>
<td>PLANT SYSTEMS</td>
<td>3.7-1</td>
</tr>
<tr>
<td>3.7.1</td>
<td>[Standby Service Water (SSW)] System and [Ultimate Heat Sink (UHS)]</td>
<td>3.7-1</td>
</tr>
<tr>
<td>3.7.2</td>
<td>High Pressure Core Spray (HPCS) Service Water System (SWS)</td>
<td>3.7-5</td>
</tr>
<tr>
<td>3.7.3</td>
<td>[Control Room Fresh Air (CRFA)] System</td>
<td>3.7-7</td>
</tr>
<tr>
<td>3.7.4</td>
<td>[Control Room Air Conditioning (AC)] System</td>
<td>3.7-11</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Main Condenser Offgas</td>
<td>3.7-14</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Main Turbine Bypass System</td>
<td>3.7-16</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Fuel Pool Water Level</td>
<td>3.7-18</td>
</tr>
<tr>
<td>3.8</td>
<td>ELECTRICAL POWER SYSTEMS</td>
<td>3.8-1</td>
</tr>
<tr>
<td>3.8.1</td>
<td>AC Sources—Operating</td>
<td>3.8-1</td>
</tr>
<tr>
<td>3.8.2</td>
<td>AC Sources—Shutdown</td>
<td>3.8-20</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Diesel Fuel Oil, Lube Oil, and Starting Air</td>
<td>3.8-24</td>
</tr>
<tr>
<td>3.8.4</td>
<td>DC Sources—Operating</td>
<td>3.8-27</td>
</tr>
<tr>
<td>3.8.5</td>
<td>DC Sources—Shutdown</td>
<td>3.8-31</td>
</tr>
<tr>
<td>3.8.6</td>
<td>Battery Cell Parameters</td>
<td>3.8-33</td>
</tr>
<tr>
<td>3.8.7</td>
<td>Inverters—Operating</td>
<td>3.8-37</td>
</tr>
<tr>
<td>3.8.8</td>
<td>Inverters—Shutdown</td>
<td>3.8-39</td>
</tr>
<tr>
<td>3.8.9</td>
<td>Distribution Systems—Operating</td>
<td>3.8-41</td>
</tr>
<tr>
<td>3.8.10</td>
<td>Distribution Systems—Shutdown</td>
<td>3.8-44</td>
</tr>
<tr>
<td>3.9</td>
<td>REFUELING OPERATIONS</td>
<td>3.9-1</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Refueling Equipment Interlocks</td>
<td>3.9-1</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Refuel Position One-Rod-Out Interlock</td>
<td>3.9-2</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Control Rod Position</td>
<td>3.9-4</td>
</tr>
<tr>
<td>3.9.4</td>
<td>Control Rod Position Indication</td>
<td>3.9-5</td>
</tr>
<tr>
<td>3.9.5</td>
<td>Control Rod OPERABILITY—Refueling</td>
<td>3.9-7</td>
</tr>
</tbody>
</table>

(continued)
TABLE OF CONTENTS

3.9 REFUELING OPERATIONS (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.6</td>
<td>[Reactor Pressure Vessel (RPV)] Water Level—Irradiated Fuel</td>
<td>3.9-8</td>
</tr>
<tr>
<td>3.9.7</td>
<td>[Reactor Pressure Vessel (RPV)] Water Level—New Fuel or Control Rods</td>
<td>3.9-9</td>
</tr>
<tr>
<td>3.9.8</td>
<td>Residual Heat Removal (RHR)—High Water Level</td>
<td>3.9-10</td>
</tr>
<tr>
<td>3.9.9</td>
<td>Residual Heat Removal (RHR)—Low Water Level</td>
<td>3.9-13</td>
</tr>
</tbody>
</table>

3.10 SPECIAL OPERATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10.1</td>
<td>Inservice Leak and Hydrostatic Testing Operation</td>
<td>3.10-1</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Reactor Mode Switch Interlock Testing</td>
<td>3.10-4</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Single Control Rod Withdrawal—Hot Shutdown</td>
<td>3.10-6</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Single Control Rod Withdrawal—Cold Shutdown</td>
<td>3.10-9</td>
</tr>
<tr>
<td>3.10.5</td>
<td>Single Control Rod Drive (CRD) Removal—Refueling</td>
<td>3.10-13</td>
</tr>
<tr>
<td>3.10.6</td>
<td>Multiple Control Rod Withdrawal—Refueling</td>
<td>3.10-16</td>
</tr>
<tr>
<td>3.10.7</td>
<td>Control Rod Testing—Operating</td>
<td>3.10-18</td>
</tr>
<tr>
<td>3.10.8</td>
<td>SHUTDOWN MARGIN (SDM) Test—Refueling</td>
<td>3.10-19</td>
</tr>
<tr>
<td>3.10.9</td>
<td>Recirculation Loops—Testing</td>
<td>3.10-23</td>
</tr>
<tr>
<td>3.10.10</td>
<td>Training Startups</td>
<td>3.10-25</td>
</tr>
</tbody>
</table>

4.0 DESIGN FEATURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Site Location</td>
<td>4.0-1</td>
</tr>
<tr>
<td>4.2</td>
<td>Reactor Core</td>
<td>4.0-1</td>
</tr>
<tr>
<td>4.3</td>
<td>Fuel Storage</td>
<td>4.0-1</td>
</tr>
</tbody>
</table>

5.0 ADMINISTRATIVE CONTROLS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Responsibility</td>
<td>5.0-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Organization</td>
<td>5.0-2</td>
</tr>
<tr>
<td>5.3</td>
<td>Unit Staff Qualifications</td>
<td>5.0-5</td>
</tr>
<tr>
<td>5.4</td>
<td>Procedures</td>
<td>5.0-6</td>
</tr>
<tr>
<td>5.5</td>
<td>Programs and Manuals</td>
<td>5.0-7</td>
</tr>
<tr>
<td>5.6</td>
<td>Reporting Requirements</td>
<td>5.0-18</td>
</tr>
<tr>
<td>5.7</td>
<td>High Radiation Area</td>
<td>5.0-24</td>
</tr>
</tbody>
</table>
1.0 USE AND APPLICATION

1.1 Definitions

The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIONS</td>
<td>ACTIONS shall be that part of a Specification that prescribes Required Actions to be taken under designated Conditions within specified Completion Times.</td>
</tr>
<tr>
<td>^VERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)</td>
<td>The APLHGR shall be applicable to a specific planar height and is equal to the sum of the [LHGRs] [heat generation rate per unit length of fuel rod] for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle [at the height].</td>
</tr>
<tr>
<td>CHANNEL CALIBRATION</td>
<td>A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds within the necessary range and accuracy to known values of the parameter that the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel, including the required sensor, alarm, display, and trip functions, and shall include the CHANNEL FUNCTIONAL TEST. Calibration of instrument channels with resistance temperature detector (RTD) or thermocouple sensors may consist of an inplace qualitative assessment of sensor behavior and normal calibration of the remaining adjustable devices in the channel. The CHANNEL CALIBRATION may be performed by means of any series of sequential, overlapping, or total channel steps so that the entire channel is calibrated.</td>
</tr>
<tr>
<td>CHANNEL CHECK</td>
<td>A CHANNEL CHECK shall be the qualitative assessment, by observation, of channel behavior during operation. This determination shall include, where possible, comparison of the channel indication and status to other indications or</td>
</tr>
</tbody>
</table>

(continued)
1.1 Definitions

CHANNEL CHECK (continued) status derived from independent instrument channels measuring the same parameter.

CHANNEL FUNCTIONAL TEST A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated or actual signal into the channel as close to the sensor as practicable to verify OPERABILITY, including required alarm, interlock, display, and trip functions, and channel failure trips. The CHANNEL FUNCTIONAL TEST may be performed by means of any series of sequential, overlapping, or total channel steps so that the entire channel is tested.

CORE ALTERATION CORE ALTERATION shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. The following exceptions are not considered to be CORE ALTERATIONS:

a. Movement of source range monitors, local power range monitors, intermediate range monitors, traversing incore probes, or special movable detectors (including undervessel replacement);

b. Control rod movement, provided there are no fuel assemblies in the associated core cell.

Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position.

CORE OPERATING LIMITS REPORT (COLR) The COLR is the unit specific document that provides cycle specific parameter limits for the current reload cycle. These cycle specific limits shall be determined for each reload cycle in accordance with Specification 5.6.5. Plant operation within these limits is addressed in individual Specifications.

DOSE EQUIVALENT I-131 DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microcuries/gram) that alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and I-135 actually present. The thyroid dose
1.1 Definitions

DOSE EQUIVALENT I-131

Conversion factors used for this calculation shall be those listed in [Table III of TID-14844, AEC, 1962, "Calculation of Distance Factors for Power and Test Reactor Sites" or those listed in Table E-7 of Regulatory Guide 1.109, Rev. 1, NRC, 1977, or ICRP 30, Supplement to Part 1, page 192-212, Table titled, "Committed Dose Equivalent in Target Organs or Tissues per Intake of Unit Activity"].

EMERGENCY CORE COOLING SYSTEM (ECCS) RESPONSE TIME

The ECCS RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its ECCS initiation setpoint at the channel sensor until the ECCS equipment is capable of performing its safety function (i.e., the valves travel to their required positions, pump discharge pressures reach their required values, etc.). Times shall include diesel generator starting and sequence loading delays, where applicable. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.

END OF CYCLE RECIRCULATION PUMP TRIP (EOC-RPT) SYSTEM RESPONSE TIME

The EOC-RPT SYSTEM RESPONSE TIME shall be that time interval from initial signal generation by [the associated turbine stop valve limit switch or from when the turbine control valve hydraulic oil control oil pressure drops below the pressure switch setpoint] to complete suppression of the electric arc between the fully open contacts of the recirculation pump circuit breaker. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured, [except for the breaker arc suppression time, which is not measured but is validated to conform to the manufacturer's design value].

ISOLATION SYSTEM RESPONSE TIME

The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation initiation setpoint at the channel sensor until the isolation valves travel to their required positions. Times shall include diesel generator starting and sequence loading...
1.1 Definitions

ISOLATION SYSTEM RESPONSE TIME
(delays, where applicable. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.

\[L_a \]

The maximum allowable primary containment leakage rate, \(L_a \), shall be [\(\% \)] of primary containment air weight per day at the calculated peak containment pressure (\(P_a \)).

LEAKAGE

LEAKAGE shall be:

a. **Identified LEAKAGE**
 1. LEAKAGE into the drywell such as that from pump seals or valve packing, that is captured and conducted to a sump or collecting tank; or
 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE;

b. **Unidentified LEAKAGE**
 All LEAKAGE into the drywell that is not identified LEAKAGE;

c. **Total LEAKAGE**
 Sum of the identified and unidentified LEAKAGE;

d. **Pressure Boundary LEAKAGE**
 LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or vessel wall.

LINEAR HEAT GENERATION RATE (LHGR)

The LHGR shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length.
1.1 Definitions (continued)

LOGIC SYSTEM FUNCTIONAL TEST
A LOGIC SYSTEM FUNCTIONAL TEST shall be a test of all required logic components (i.e., all required relays and contacts, trip units, solid state logic elements, etc.) of a logic circuit, from as close to the sensor as practicable up to, but not including, the actuated device, to verify OPERABILITY. The LOGIC SYSTEM FUNCTIONAL TEST may be performed by means of any series of sequential, overlapping, or total system steps so that the entire logic system is tested.

MAXIMUM FRACTION OF LIMITING POWER DENSITY (MFLPD)
The MFLPD shall be the largest value of the fraction of limiting power density in the core. The fraction of limiting power density shall be the LHGR existing at a given location divided by the specified LHGR limit for that bundle type.

MINIMUM CRITICAL POWER RATIO (MCPR)
The MCPR shall be the smallest critical power ratio (CPR) that exists in the core [for each class of fuel]. The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

MODE
A MODE shall correspond to any one inclusive combination of mode switch position, average reactor coolant temperature, and reactor vessel head closure bolt tensioning specified in Table 1.1-1 with fuel in the reactor vessel.

OPERABLE—OPERABILITY
A system, subsystem, division, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified safety function(s) and when all necessary attendant instrumentation, controls, normal or emergency electrical power, cooling and seal water, lubrication, and other auxiliary equipment that are required for the system, subsystem, division, component, or device to perform its specified safety function(s) are also capable of performing their related support function(s).
1.1 Definitions (continued)

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
</table>
| PHYSICS TESTS | PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation. These tests are:
 a. Described in Chapter [14, Initial Test Program] of the FSAR;
 b. Authorized under the provisions of 10 CFR 50.59; or
 c. Otherwise approved by the Nuclear Regulatory Commission. |
| PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR) | The PTLR is the unit specific document that provides the reactor vessel pressure and temperature limits, including heatup and cooldown rates, for the current reactor vessel fluence period. These pressure and temperature limits shall be determined for each fluence period in accordance with Specification 5.6.6. Plant operation within these operating limits is addressed in LCO 3.4.11, "RCS Pressure and Temperature (P/T) Limits." |
| RATED THERMAL POWER (RTP) | RTP shall be a total reactor core heat transfer rate to the reactor coolant of [3833] MWt. |
| REACTOR PROTECTION SYSTEM (RPS) RESPONSE TIME | The RPS RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its RPS trip setpoint at the channel sensor until de-energization of the scram pilot valve solenoids. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. |
| SHUTDOWN MARGIN (SDM) | SDM shall be the amount of reactivity by which the reactor is subcritical or would be subcritical assuming that:
 a. The reactor is xenon free;
 b. The moderator temperature is 68°F; and |
1.0 USE AND APPLICATION

1.2 Logical Connectors

PURPOSE
The purpose of this section is to explain the meaning of logical connectors.

Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings.

BACKGROUND
Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentions of the logical connectors.

When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.

EXAMPLES
The following examples illustrate the use of logical connectors.

(continued)
1.2 Logical Connectors

EXAMPLES

(continued)

<table>
<thead>
<tr>
<th>EXAMPLE 1.2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIONS</td>
</tr>
<tr>
<td>CONDITION</td>
</tr>
<tr>
<td>A. LCO not met.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

In this example, the logical connector **AND** is used to indicate that, when in Condition A, both Required Actions A.1 and A.2 must be completed.
EXAMPLE 1.2-2

CONDITION	**REQUIRED ACTION**	**COMPLETION TIME**
A. LCO not met. | A.1 Trip . . . |
OR | A.2.1 Verify . . . |
AND | A.2.2.1 Reduce . . . |
OR | A.2.2.2 Perform . . . |
OR | A.3 Align . . . |

This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector OR and the left justified placement. Any one of these three Actions may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector AND. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.
Completion Times
1.3

1.3 Completion Times

DESCRIPTION (continued) However, when a subsequent division, subsystem, component, or variable expressed in the Condition is discovered to be inoperable or not within limits, the Completion Time(s) may be extended. To apply this Completion Time extension, two criteria must first be met. The subsequent inoperability:

a. Must exist concurrent with the first inoperability; and

b. Must remain inoperable or not within limits after the first inoperability is resolved.

The total Completion Time allowed for completing a Required Action to address the subsequent inoperability shall be limited to the more restrictive of either:

a. The stated Completion Time, as measured from the initial entry into the Condition, plus an additional 24 hours; or

b. The stated Completion Time as measured from discovery of the subsequent inoperability.

The above Completion Time extensions do not apply to those Specifications that have exceptions that allow completely separate re-entry into the Condition (for each division, subsystem, component, or variable expressed in the Condition) and separate tracking of Completion Times based on this re-entry. These exceptions are stated in individual Specifications.

The above Completion Time extension does not apply to a Completion Time with a modified "time zero." This modified "time zero" may be expressed as a repetitive time (i.e., "once per 8 hours," where the Completion Time is referenced from a previous completion of the Required Action versus the time of Condition entry) or as a time modified by the phrase "from discovery . . ." Example 1.3-3 illustrates one use of this type of Completion Time. The 10 day Completion Time specified for Conditions A and B in Example 1.3-3 may not be extended.
EXAMPLES

The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.

EXAMPLE 1.3-1

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours AND 36 hours</td>
</tr>
</tbody>
</table>

Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.

The Required Actions of Condition B are to be in MODE 3 within 12 hours AND in MODE 4 within 36 hours. A total of 12 hours is allowed for reaching MODE 3 and a total of 36 hours (not 48 hours) is allowed for reaching MODE 4 from the time that Condition B was entered. If MODE 3 is reached within 6 hours, the time allowed for reaching MODE 4 is the next 30 hours because the total time allowed for reaching MODE 4 is 36 hours.

If Condition B is entered while in MODE 3, the time allowed for reaching MODE 4 is the next 36 hours.
1.3 Completion Times

EXAMPLE 1.3-2

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One pump inoperable.</td>
<td>A.1 Restore pump to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

When a pump is declared inoperable, Condition A is entered. If the pump is not restored to OPERABLE status within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the inoperable pump is restored to OPERABLE status after Condition B is entered, Condition A and B are exited, and therefore, the Required Actions of Condition B may be terminated.

When a second pump is declared inoperable while the first pump is still inoperable, Condition A is not re-entered for the second pump. LCO 3.0.3 is entered, since the ACTIONS do not include a Condition for more than one inoperable pump. The Completion Time clock for Condition A does not stop after LCO 3.0.3 is entered, but continues to be tracked from the time Condition A was initially entered.

While in LCO 3.0.3, if one of the inoperable pumps is restored to OPERABLE status and the Completion Time for Condition A has not expired, LCO 3.0.3 may be exited and operation continued in accordance with Condition A.
EXAMPLES

EXAMPLE 1.3-2 (continued)

While in LCO 3.0.3, if one of the inoperable pumps is restored to OPERABLE status and the Completion Time for Condition A has expired, LCO 3.0.3 may be exited and operation continued in accordance with Condition B. The Completion Time for Condition B is tracked from the time the Condition A Completion Time expired.

On restoring one of the pumps to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first pump was declared inoperable. This Completion Time may be extended if the pump restored to OPERABLE status was the first inoperable pump. A 24 hour extension to the stated 7 days is allowed, provided this does not result in the second pump being inoperable for > 7 days.
1.3 Completion Times

EXAMPLES

(continued)

<table>
<thead>
<tr>
<th>EXAMPLE 1.3-3</th>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION</td>
<td>REQUIRED ACTION</td>
</tr>
<tr>
<td>A. One Function X subsystem inoperable.</td>
<td>A.1 Restore Function X subsystem to OPERABLE status.</td>
</tr>
<tr>
<td>B. One Function Y subsystem inoperable.</td>
<td>B.1 Restore Function Y subsystem to OPERABLE status.</td>
</tr>
<tr>
<td>C. One Function X subsystem inoperable.</td>
<td>C.1 Restore Function X subsystem to OPERABLE status.</td>
</tr>
<tr>
<td>AND</td>
<td>OR</td>
</tr>
<tr>
<td>One Function Y subsystem inoperable.</td>
<td>C.2 Restore Function Y subsystem to OPERABLE status.</td>
</tr>
</tbody>
</table>
EXAMPLE 1.3-3 (continued)

When one Function X subsystem and one Function Y subsystem are inoperable, Condition A and Condition B are concurrently applicable. The Completion Times for Condition A and Condition B are tracked separately for each subsystem, starting from the time each subsystem was declared inoperable and the Condition was entered. A separate Completion Time is established for Condition C and tracked from the time the second subsystem was declared inoperable (i.e., the time the situation described in Condition C was discovered).

If Required Action C.2 is completed within the specified Completion Time, Conditions B and C are exited. If the Completion Time for Required Action A.1 has not expired, operation may continue in accordance with Condition A. The remaining Completion Time in Condition A is measured from the time the affected subsystem was declared inoperable (i.e., initial entry into Condition A).

The Completion Times of Conditions A and B are modified by a logical connector, with a separate 10 day Completion Time measured from the time it was discovered the LCO was not met. In this example, without the separate Completion Time, it would be possible to alternate between Conditions A, B, and C in such a manner that operation could continue indefinitely without ever restoring systems to meet the LCO. The separate Completion Time modified by the phrase "from discovery of failure to meet the LCO" is designed to prevent indefinite continued operation while not meeting the LCO. This Completion Time allows for an exception to the normal "time zero" for beginning the Completion Time "clock". In this instance, the Completion Time "time zero" is specified as commencing at the time the LCO was initially not met, instead of at the time the associated Condition was entered.
1.3 Completion Times

EXAMPLE 1.3-4

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more valves inoperable.</td>
<td>A.1 Restore valve(s) to OPERABLE status.</td>
<td>4 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

A single Completion Time is used for any number of valves inoperable at the same time. The Completion Time associated with Condition A is based on the initial entry into Condition A and is not tracked on a per valve basis. Declaring subsequent valves inoperable, while Condition A is still in effect, does not trigger the tracking of separate Completion Times.

Once one of the valves has been restored to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first valve was declared inoperable. The Completion Time may be extended if the valve restored to OPERABLE status was the first inoperable valve. The Condition A Completion Time may be extended for up to 4 hours provided this does not result in any subsequent valve being inoperable for > 4 hours.

If the Completion Time of 4 hours (plus the extension) expires while one or more valves are still inoperable, Condition B is entered.

1.3 Completion Times

EXAMPLES (continued)

<table>
<thead>
<tr>
<th>EXAMPLE 1.3-5</th>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOTE</td>
</tr>
<tr>
<td>Separate Condition entry is allowed for each inoperable valve.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more valves inoperable.</td>
<td>A.1 Restore valve to OPERABLE status.</td>
<td>4 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

The Note above the ACTIONS Table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.

The Note allows Condition A to be entered separately for each inoperable valve, and Completion Times tracked on a per valve basis. When a valve is declared inoperable, Condition A is entered and its Completion Time starts. If subsequent valves are declared inoperable, Condition A is entered for each valve and separate Completion Times start and are tracked for each valve.
1.3 Completion Times

EXAMPLES

EXAMPLE 1.3-5 (continued)

If the Completion Time associated with a valve in Condition A expires, Condition B is entered for that valve. If the Completion Times associated with subsequent valves in Condition A expire, Condition B is entered separately for each valve and separate Completion Times start and are tracked for each valve. If a valve that caused entry into Condition B is restored to OPERABLE status, Condition B is exited for that valve.

Since the Note in this example allows multiple Condition entry and tracking of separate Completion Times, Completion Time extensions do not apply.

EXAMPLE 1.3-6

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One channel inoperable.</td>
<td>A.1 Perform SR 3.x.x.x. OR A.2 Reduce THERMAL POWER to (\leq 50%) RTP.</td>
<td>Once per 8 hours 8 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

(continued)
EXAMPLE 1.3-6 (continued)

Entry into Condition A offers a choice between Required Action A.1 or A.2. Required Action A.1 has a "once per" Completion Time, which qualifies for the 25% extension, per SR 3.0.2, to each performance after the initial performance. The initial 8 hour interval of Required Action A.1 begins when Condition A is entered and the initial performance of Required Action A.1 must be complete within the first 8 hour interval. If Required Action A.1 is followed and the Required Action is not met within the Completion Time (plus the extension allowed by SR 3.0.2), Condition B is entered. If Required Action A.2 is followed and the Completion Time of 8 hours is not met, Condition B is entered.

If after entry into Condition B, Required Action A.1 or A.2 is met, Condition B is exited and operation may then continue in Condition A.
EXAMPLE 1.3-7 (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One subsystem inoperable.</td>
<td>A.1 Verify affected subsystem isolated.</td>
<td>1 hour AND Once per 8 hours thereafter</td>
</tr>
<tr>
<td></td>
<td>A.2 Restore subsystem to OPERABLE status.</td>
<td>72 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours AND 36 hours</td>
</tr>
</tbody>
</table>

Required Action A.1 has two Completion Times. The 1 hour Completion Time begins at the time the Condition is entered and each "Once per 8 hours thereafter" interval begins upon performance of Required Action A.1.

If after Condition A is entered, Required Action A.1 is not met within either the initial 1 hour or any subsequent 8 hour interval from the previous performance (plus the extension allowed by SR 3.0.2), Condition B is entered. The Completion Time clock for Condition A does not stop after Condition B is entered, but continues from the time Condition A was initially entered. If Required Action A.1
EXAMPLE 1.3-7 (continued)

is met after Condition B is entered, Condition B is exited and operation may continue in accordance with Condition A, provided the Completion Time for Required Action A.2 has not expired.

IMMEDIATE COMPLETION TIME

When "Immediately" is used as a Completion Time, the Required Action should be pursued without delay and in a controlled manner.
1.0 USE AND APPLICATION

1.4 Frequency

PURPOSE
The purpose of this section is to define the proper use and application of Frequency requirements.

DESCRIPTION
Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated LCO. An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.

The "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each SR, as well as certain Notes in the Surveillance column that modify performance requirements.

Sometimes special situations dictate when the requirements of a Surveillance are to be met. They are "otherwise stated" conditions allowed by SR 3.0.1. They may be stated as clarifying Notes in the Surveillance, as part of the Surveillance, or both. Example 1.4-4 discusses these special situations.

Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction.

The use of "met" or "performed" in these instances conveys specified meanings. A Surveillance is "met" only when the acceptance criteria are satisfied. Known failure of the requirements of a Surveillance, even without a Surveillance specifically being "performed," constitutes a Surveillance not "met." "Performance" refers only to the requirement to specifically determine the ability to meet the acceptance

(continued)
1.4 Frequency

DESCRIPTION

criteria. SR 3.0.4 restrictions would not apply if both the following conditions are satisfied:

a. The Surveillance is not required to be performed; and

b. The Surveillance is not required to be met or, even if required to be met, is not known to be failed.

EXAMPLES

The following examples illustrate the various ways that Frequencies are specified. In these examples, the Applicability of the LCO (LCO not shown) is MODES 1, 2, and 3.

EXAMPLE 1.4-1

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by SR 3.0.2 for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment is inoperable, a variable is outside specified limits, or the unit is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the unit is in a MODE or other specified condition in the Applicability of the LCO, and the performance of the Surveillance is not otherwise modified (refer to Examples 1.4-3 and 1.4-4), then SR 3.0.3 becomes applicable.
If the interval as specified by SR 3.0.2 is exceeded while the unit is not in a MODE or other specified condition in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the MODE or other specified condition. Failure to do so would result in a violation of SR 3.0.4.

Example 1.4-2

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify flow is within limits.</td>
<td>Once within 12 hours after ≥ 25% RTP</td>
</tr>
<tr>
<td></td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td>24 hours thereafter</td>
</tr>
</tbody>
</table>

Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time reactor power is increased from a power level < 25% RTP to ≥ 25% RTP, the Surveillance must be performed within 12 hours.

The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the extension allowed by SR 3.0.2.
EXAMPLE 1.4-2 (continued)

"Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If reactor power decreases to < 25% RTP, the measurement of both intervals stops. New intervals start upon reactor power reaching 25% RTP.

EXAMPLE 1.4-3

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NOTE</td>
<td>7 days</td>
</tr>
<tr>
<td>Not required to be performed until 12 hours after ≥ 25% RTP.</td>
<td></td>
</tr>
<tr>
<td>Perform channel adjustment.</td>
<td></td>
</tr>
</tbody>
</table>

The interval continues whether or not the unit operation is < 25% RTP between performances.

As the Note modifies the required performance of the Surveillance, it is construed to be part of the "specified Frequency." Should the 7 day interval be exceeded while operation is < 25% RTP, this Note allows 12 hours after power reaches ≥ 25% RTP to perform the Surveillance. The Surveillance is still considered to be within the "specified Frequency." Therefore, if the Surveillance were not performed within the 7 day interval (plus the extension allowed by SR 3.0.2), but operation was < 25% RTP, it would not constitute a failure of the SR or failure to meet the LCO. Also, no violation of SR 3.0.4 occurs when changing MODES, even with the 7 day Frequency not met, provided operation does not exceed 12 hours with power ≥ 25% RTP.
1.4 Frequency

EXAMPLES

EXAMPLE 1.4-3 (continued)

Once the unit reaches 25% RTP, 12 hours would be allowed for completing the Surveillance. If the Surveillance were not performed within this 12 hour interval, there would then be a failure to perform a Surveillance within the specified Frequency, and the provisions of SR 3.0.3 would apply.

EXAMPLE 1.4-4

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>Only required to be met in MODE 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify leakage rates are within limits.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

Example 1.4-4 specifies that the requirements of this Surveillance do not have to be met until the unit is in MODE 1. The interval measurement for the Frequency of this Surveillance continues at all times, as described in Example 1.4-1. However, the Note constitutes an "otherwise stated" exception to the Applicability of this Surveillance. Therefore, if the Surveillance were not performed within the 24 hour interval (plus the extension allowed by SR 3.0.2) interval, but the unit was not in MODE 1, there would be no failure of the SR nor failure to meet the LCO. Therefore, no violation of SR 3.0.4 occurs when changing MODES, even with the 24 hour Frequency exceeded, provided the MODE change was not made into MODE 1. Prior to entering MODE 1 (assuming again that the 24 hour Frequency were not met), SR 3.0.4 would require satisfying the SR.
2.0 SAFETY LIMITS (SLs)

2.1 SLs

2.1.1 Reactor Core SLs

2.1.1.1 With the reactor steam dome pressure < 785 psig or core flow < 10% rated core flow:

THERMAL POWER shall be ≤ 25% RTP.

2.1.1.2 With the reactor steam dome pressure ≥ 785 psig and core flow ≥ 10% rated core flow:

MCPR shall be ≥ [1.07] for two recirculation loop operation or ≥ [1.08] for single recirculation loop operation.

2.1.1.3 Reactor vessel water level shall be greater than the top of active irradiated fuel.

2.1.2 Reactor Coolant System Pressure SL

Reactor steam dome pressure shall be ≤ 1325 psig.

2.2 SL Violations

With any SL violation, the following actions shall be completed:

2.2.1 Within 1 hour, notify the NRC Operations Center, in accordance with 10 CFR 50.72.

2.2.2 Within 2 hours:

2.2.2.1 Restore compliance with all SLs; and

2.2.2.2 Insert all insertable control rods.

2.2.3 Within 24 hours, notify the [General Manager—Nuclear Plant and Vice President—Nuclear Operations].
2.2 SL Violations (continued)

2.2.4 Within 30 days, a Licensee Event Report (LER) shall be prepared pursuant to 10 CFR 50.73. The LER shall be submitted to the NRC and the [General Manager—Nuclear Plant and Vice President—Nuclear Operations].

2.2.5 Operation of the unit shall not be resumed until authorized by the NRC.
3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY

LCO 3.0.1 LCOs shall be met during the MODES or other specified conditions in the Applicability, except as provided in LCO 3.0.2 and LCO 3.0.7.

LCO 3.0.2 Upon discovery of a failure to meet an LCO, the Required Actions of the associated Conditions shall be met, except as provided in LCO 3.0.5 and LCO 3.0.6.

If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.

LCO 3.0.3 When an LCO is not met and the associated ACTIONS are not met, an associated ACTION is not provided, or if directed by the associated ACTIONS, the unit shall be placed in a MODE or other specified condition in which the LCO is not applicable. Action shall be initiated within 1 hour to place the unit, as applicable, in:

a. MODE 2 within 7 hours;
b. MODE 3 within 13 hours; and
c. MODE 4 within 37 hours.

Exceptions to this Specification are stated in the individual Specifications.

Where corrective measures are completed that permit operation in accordance with the LCO or ACTIONS, completion of the actions required by LCO 3.0.3 is not required.

LCO 3.0.3 is only applicable in MODES 1, 2, and 3.

LCO 3.0.4 When an LCO is not met, entry into a MODE or other specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the MODE or other specified condition in the Applicability for an unlimited period of time. This

(continued)
3.0 LCO APPLICABILITY

LCO 3.0.4

Specification shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

Exceptions to this Specification are stated in the individual Specifications. These exceptions allow entry into MODES or other specified conditions in the Applicability when the associated ACTIONS to be entered allow unit operation in the MODE or other specified condition in the Applicability only for a limited period of time.

LCO 3.0.4 is only applicable for entry into a MODE or other specified condition in the Applicability in MODES 1, 2, and 3.

Reviewers's Note: LCO 3.0.4 has been revised so that changes in MODES or other specified conditions in the Applicability that are part of a shutdown of the unit shall not be prevented. In addition, LCO 3.0.4 has been revised so that it is only applicable for entry into a MODE or other specified condition in the Applicability in MODES 1, 2, and 3. The MODE change restrictions in LCO 3.0.4 were previously applicable in all MODES. Before this version of LCO 3.0.4 can be implemented on a plant-specific basis, the licensee must review the existing technical specifications to determine where specific restrictions on MODE changes or Required Actions should be included in individual LCOs to justify this change; such an evaluation should be summarized in a matrix of all existing LCOs to facilitate NRC staff review of a conversion to the STS.

LCO 3.0.5

Equipment removed from service or declared inoperable to comply with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate its OPERABILITY or the OPERABILITY of other equipment. This is an exception to LCO 3.0.2 for the system returned to service under administrative control to perform the testing required to demonstrate OPERABILITY.
3.0 LCO APPLICABILITY (continued)

LCO 3.0.6 When a supported system LCO is not met solely due to a support system LCO not being met, the Conditions and Required Actions associated with this supported system are not required to be entered. Only the support system LCO ACTIONS are required to be entered. This is an exception to LCO 3.0.2 for the supported system. In this event, additional evaluations and limitations may be required in accordance with Specification 5.5.12, "Safety Function Determination Program (SFDP)." If a loss of safety function is determined to exist by this program, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered.

When a support system's Required Action directs a supported system to be declared inoperable or directs entry into Conditions and Required Actions for a supported system, the applicable Conditions and Required Actions shall be entered in accordance with LCO 3.0.2.

LCO 3.0.7 Special Operations LCOs in Section 3.10 allow specified Technical Specifications (TS) requirements to be changed to permit performance of special tests and operations. Unless otherwise specified, all other TS requirements remain LCO 3.0.7 unchanged. Compliance with Special Operations LCOs is optional. When a Special Operations LCO is desired to be met but is not met, the ACTIONS of the Special Operations LCO shall be met. When a Special Operations LCO is not desired to be met, entry into a MODE or other specified condition in the Applicability shall only be made in accordance with the other applicable Specifications.
3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

SR 3.0.1 SRs shall be met during the MODES or other specified conditions in the Applicability for individual LCOs, unless otherwise stated in the SR. Failure to meet a Surveillance, whether such failure is experienced during the performance of the Surveillance or between performances of the Surveillance, shall be failure to meet the LCO. Failure to perform a Surveillance within the specified Frequency shall be failure to meet the LCO except as provided in SR 3.0.3. Surveillances do not have to be performed on inoperable equipment or variables outside specified limits.

SR 3.0.2 The specified Frequency for each SR is met if the Surveillance is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.

For Frequencies specified as "once," the above interval extension does not apply.

If a Completion Time requires periodic performance on a "once per . . ." basis, the above Frequency extension applies to each performance after the initial performance.

Exceptions to this Specification are stated in the individual Specifications.

SR 3.0.3 If it is discovered that a Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the LCO not met may be delayed, from the time of discovery, up to 24 hours or up to the limit of the specified Frequency, whichever is less. This delay period is permitted to allow performance of the Surveillance.

If the Surveillance is not performed within the delay period, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.

When the Surveillance is performed within the delay period and the Surveillance is not met, the LCO must immediately be declared not met. This delay period is permitted to allow performance of the Surveillance.

(continued)
3.0 SR APPLICABILITY

SR 3.0.3 (continued) declared not met, and the applicable Condition(s) must be entered.

SR 3.0.4 Entry into a MODE or other specified condition in the Applicability of an LCO shall not be made unless the LCO’s Surveillances have been met within their specified Frequency. This provision shall not prevent entry into MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.

SR 3.0.4 is only applicable for entry into a MODE or other specified condition in the Applicability in MODES 1, 2, and 3.

Reviewers’s Note: SR 3.0.4 has been revised so that changes in MODES or other specified conditions in the Applicability that are part of a shutdown of the unit shall not be prevented. In addition, SR 3.0.4 has been revised so that it is only applicable for entry into a MODE or other specified condition in the Applicability in MODES 1, 2, and 3. The MODE change restrictions in SR 3.0.4 were previously applicable in all MODES. Before this version of SR 3.0.4 can be implemented on a plant-specific basis, the licensee must review the existing technical specifications to determine where specific restrictions on MODE changes or Required Actions should be included in individual LCOs to justify this change; such an evaluation should be summarized in a matrix of all existing LCOs to facilitate NRC staff review of a conversion to the STS.
3.1 REACTIVITY CONTROL SYSTEMS

3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be:

a. \(\geq 0.38\% \Delta k/k \), with the highest worth control rod analytically determined; or

b. \(\geq 0.28\% \Delta k/k \), with the highest worth control rod determined by test.

APPLICABILITY: MODES 1, 2, 3, 4, and 5.

<table>
<thead>
<tr>
<th>ACTIONS</th>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>SDM not within limits in MODE 1 or 2.</td>
<td>A.1 Restore SDM to within limits.</td>
<td>6 hours</td>
</tr>
<tr>
<td>B.</td>
<td>Required Action and associated Completion Time of Condition A not met.</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>C.</td>
<td>SDM not within limits in MODE 3.</td>
<td>C.1 Initiate action to fully insert all insertable control rods.</td>
<td>Immediately</td>
</tr>
<tr>
<td>D.</td>
<td>SDM not within limits in MODE 4.</td>
<td>D.1 Initiate action to fully insert all insertable control rods.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
<td>(continued)</td>
</tr>
<tr>
<td>CONDITION</td>
<td>REQUIRED ACTION</td>
<td>COMPLETION TIME</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>D. (continued)</td>
<td>D.2 Initiate action to restore [secondary containment] to OPERABLE status.</td>
<td>1 hour</td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.3 Initiate action to restore one standby gas treatment (SGT) subsystem to OPERABLE status.</td>
<td>1 hour</td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.4 Initiate action to restore isolation capability in each required [secondary containment] penetration flow path not isolated.</td>
<td>1 hour</td>
<td></td>
</tr>
<tr>
<td>E. SDM not within limits in MODE 5.</td>
<td>E.1 Suspend CORE ALTERATIONS except for control rod insertion and fuel assembly removal.</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td>(continued)</td>
<td></td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. (continued)</td>
<td>E.2 Initiate action to fully insert all insertable control rods in core cells containing one or more fuel assemblies.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E.3 Initiate action to restore [secondary containment] to OPERABLE status.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E.4 Initiate action to restore one SGT subsystem to OPERABLE status.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E.5 Initiate action to restore isolation capability in each required [secondary containment] penetration flow path not isolated.</td>
<td>1 hour</td>
</tr>
<tr>
<td>SURVEILLANCE REQUIREMENTS</td>
<td>SURVEILLANCE</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SR 3.1.1.1 Verify SDM is:</td>
<td>a. (\geq [0.38%] \Delta k/k) with the highest worth control rod analytically determined; or</td>
<td>Prior to each in vessel fuel movement during fuel loading sequence AND</td>
</tr>
<tr>
<td></td>
<td>b. (\geq [0.28%] \Delta k/k) with the highest worth control rod determined by test.</td>
<td>Once within 4 hours after criticality following fuel movement within the reactor pressure vessel or control rod replacement</td>
</tr>
</tbody>
</table>
3.1 REACTIVITY CONTROL SYSTEMS

3.1.2 Reactivity Anomalies

LCO 3.1.2 The reactivity [difference] between the [monitored core k_{eff} and the predicted core k_{eff}] shall be within $\pm 1\% \Delta k/k$.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Core reactivity [difference] not within limit.</td>
<td>A.1 Restore core reactivity [difference] to within limit.</td>
<td>72 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.1.2.1</td>
<td>Once within 24 hours after reaching equilibrium conditions following startup after fuel movement within the reactor pressure vessel or control rod replacement AND 1000 MWD/T thereafter during operations in MODE 1</td>
</tr>
</tbody>
</table>

Verify core reactivity [difference] between the [monitored core k_{eff} and the predicted core k_{eff}] is within $\pm 1\% \Delta k/k$.

BWR/6 STS 3.1-6 Rev 1, 04/07/95
3.1 REACTIVITY CONTROL SYSTEMS

3.1.3 Control Rod OPERABILITY

LCO 3.1.3 Each control rod shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

---NOTE--- Separate Condition entry is allowed for each control rod.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One withdrawn control rod stuck.</td>
<td>------------------NOTE------------------ A stuck rod may be bypassed in the Rod Action Control System (RACS) in accordance with SR 3.3.2.1.8 if required to allow continued operation.</td>
<td>2 hours</td>
</tr>
<tr>
<td>A.1 Disarm the associated control rod drive (CRD).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td>(continued)</td>
</tr>
</tbody>
</table>
Control Rod OPERABILITY

3.1.3

<table>
<thead>
<tr>
<th>ACTIONS</th>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. (continued)</td>
<td>A.2</td>
<td>NOTE
Not applicable when less than or equal to the low power setpoint (LPSP) of the Rod Pattern Control System (RPCS).

Perform SR 3.1.3.2 and SR 3.1.3.3 for each withdrawn OPERABLE control rod.</td>
</tr>
<tr>
<td></td>
<td>A. (continued)</td>
<td>A.3</td>
<td>Perform SR 3.1.1.1.</td>
</tr>
<tr>
<td></td>
<td>B. Two or more withdrawn control rods stuck.</td>
<td>B.1</td>
<td>Disarm the associated CRD.</td>
</tr>
<tr>
<td></td>
<td>B. Two or more withdrawn control rods stuck.</td>
<td>B.2</td>
<td>Be in MODE 3.</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
</table>
| C. One or more control rods inoperable for reasons other than Condition A or B. | C.1
--- NOTE ---
Inoperable control rods may be bypassed in RACS in accordance with SR 3.3.2.1.8, if required, to allow insertion of inoperable control rod and continued operation.
--- NOTE ---
Fully insert inoperable control rod.
AND
C.2
Disarm the associated CRD. | 3 hours
4 hours |
| D. Not applicable when THERMAL POWER > [10]% RTP. | D.1
Restore compliance with BPWS.
OR
D.2
Restore control rod to OPERABLE status. | 4 hours
4 hours |

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.--------NOTE-------- Not applicable when THERMAL POWER > [10]% RTP.</td>
<td>E.1 Restore the control rod to OPERABLE status.</td>
<td>4 hours</td>
</tr>
<tr>
<td>One or more groups with four or more inoperable control rods.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Required Action and associated Completion Time of Condition A, C, D, or E not met. OR Nine or more control rods inoperable.</td>
<td>F.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.1.3.1</td>
<td>Determine the position of each control rod.</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>SR 3.1.3.2</td>
</tr>
<tr>
<td>SR 3.1.3.3</td>
</tr>
<tr>
<td>SR 3.1.3.4</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.1.3.5 Verify each control rod does not go to the withdrawn overtravel position.</td>
<td>Each time the control rod is withdrawn to "full out" position AND Prior to declaring control rod OPERABLE after work on control rod or CRD System that could affect coupling</td>
</tr>
</tbody>
</table>
3.1 REACTIVITY CONTROL SYSTEMS

3.1.4 Control Rod Scram Times

LCO 3.1.4
a. No more than [14] OPERABLE control rods shall be "slow," in accordance with Table 3.1.4-1; and
b. No more than 2 OPERABLE control rods that are "slow" shall occupy adjacent locations.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Requirements of the LCO not met.</td>
<td>A.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

--- NOTE ---

During single control rod scram time Surveillances, the control rod drive (CRD) pumps shall be isolated from the associated scram accumulator.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.1.4.1</td>
<td>Prior to exceeding 40% RTP after fuel movement within the reactor pressure vessel AND (continued)</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SR 3.1.4.1 (continued)</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to exceeding 40% RTP after each reactor shutdown ≥ 120 days</td>
<td></td>
</tr>
</tbody>
</table>

| SR 3.1.4.2 | Verify, for a representative sample, each tested control rod scram time is within the limits of Table 3.1.4-1 with reactor steam dome pressure ≥ [950] psig. | 120 days cumulative operation in MODE 1 |

| SR 3.1.4.3 | Verify each affected control rod scram time is within the limits of Table 3.1.4-1 with any reactor steam dome pressure. | Prior to declaring control rod OPERABLE after work on control rod or CRD System that could affect scram time |

| SR 3.1.4.4 | Verify each affected control rod scram time is within the limits of Table 3.1.4-1 with reactor steam dome pressure ≥ [950] psig. | Prior to exceeding 40% RTP after work on control rod or CRD System that could affect scram time |
Table 3.1.4-1
Control Rod Scram Times

<table>
<thead>
<tr>
<th>NOTCH POSITION</th>
<th>SCRAM TIMES(^{(a)})((^{(b)})) (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REACTOR STEAM DOME PRESSURE(^{(c)}) [950] psig</td>
</tr>
<tr>
<td>[43]</td>
<td>[0.30]</td>
</tr>
<tr>
<td>[29]</td>
<td>[0.78]</td>
</tr>
<tr>
<td>[13]</td>
<td>[1.40]</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Maximum scram time from fully withdrawn position, based on de-energization of scram pilot valve solenoids as time zero.

\(^{(b)}\) Scram times as a function of reactor steam dome pressure, when < 950 psig, are within established limits.

\(^{(c)}\) For intermediate reactor steam dome pressures, the scram time criteria are determined by linear interpolation.
3.1 REACTIVITY CONTROL SYSTEMS

3.1.5 Control Rod Scram Accumulators

LCO 3.1.5 Each control rod scram accumulator shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One control rod scram accumulator inoperable with reactor steam dome pressure (\geq [900]) psig.</td>
<td>A.1 --------NOTE-------- Only applicable if the associated control rod scram time was within the limits of Table 3.1.4-1 during the last scram time Surveillance. Declare the associated control rod scram time "slow."</td>
<td>8 hours</td>
</tr>
<tr>
<td>OR</td>
<td>A.2 Declare the associated control rod inoperable.</td>
<td>8 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Two or more control rod scram accumulators inoperable with reactor steam dome pressure (\geq 900) psig.</td>
<td>B.1 Restore charging water header pressure to (\geq 1520) psig.</td>
<td>20 minutes from discovery of Condition B concurrent with charging water header pressure (< 1520) psig</td>
</tr>
<tr>
<td>AND</td>
<td>B.2.1 --------NOTE-------- Only applicable if the associated control rod scram time was within the limits of Table 3.1.4-1 during the last scram time Surveillance.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>Declare the associated control rod scram time "slow."</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>B.2.2 Declare the associated control rod inoperable.</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

| **C.** One or more control rod scram accumulators inoperable with reactor steam dome pressure \(< 900 \) psig. | **C.1** Verify all control rods associated with inoperable accumulators are fully inserted. | Immediately upon discovery of charging water header pressure \(< 1520 \) psig |
| AND | (continued) | |
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. (continued)</td>
<td>C.2 Declare the associated control rod inoperable.</td>
<td>1 hour</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time of Required Action B.1 or C.1 not met.</td>
<td>D.1 Not applicable if all inoperable control rod scram accumulators are associated with fully inserted control rods.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place the reactor mode switch in the shutdown position.</td>
<td></td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.1.5.1 Verify each control rod scram accumulator pressure is $\geq [1520]$ psig.</td>
<td>7 days</td>
</tr>
</tbody>
</table>
3.1 REACTIVITY CONTROL SYSTEMS

3.1.6 Rod Pattern Control

LCO 3.1.6 OPERABLE control rods shall comply with the requirements of the [banked position withdrawal sequence (BPWS)].

APPLICABILITY: MODES 1 and 2 with THERMAL POWER ≤ [10]% RTP.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
</table>
| A. One or more OPERABLE control rods not in compliance with [BPWS]. | A.1 -------NOTE--------
Affected control rods may be bypassed in Rod Action Control System (RACS) in accordance with SR 3.3.2.1.8.

Move associated control rod(s) to correct position. | 8 hours |

OR

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2 Declare associated control rod(s) inoperable.</td>
<td>8 hours</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Nine or more OPERABLE control rods not in compliance with [BPWS].</td>
<td>B.1 --------NOTE-------- Affected control rods may be bypassed in RACS in accordance with SR 3.3.2.1.8 for insertion only.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>Suspend withdrawal of control rods.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Place the reactor mode switch in the shutdown position.</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.1.6.1 Verify all OPERABLE control rods comply with [BPWS].</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
3.1 REACTIVITY CONTROL SYSTEMS

3.1.7 Standby Liquid Control (SLC) System

LCO 3.1.7 Two SLC subsystems shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Concentration of boron in solution not within limits but $> [\]$</td>
<td>A.1 Restore concentration of boron in solution to within limits.</td>
<td>72 hours AND 10 days from discovery of failure to meet the LCO</td>
</tr>
<tr>
<td>B. One SLC subsystem inoperable [for reasons other than Condition A].</td>
<td>B.1 Restore SLC subsystem to OPERABLE status.</td>
<td>7 days AND 10 days from discovery of failure to meet the LCO</td>
</tr>
<tr>
<td>C. Two SLC subsystems inoperable [for reasons other than Condition A].</td>
<td>C.1 Restore one SLC subsystem to OPERABLE status.</td>
<td>8 hours</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time not met.</td>
<td>D.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SURVEILLANCE REQUIREMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>FREQUENCY</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>SR 3.1.7.1</td>
<td>24 hours</td>
<td></td>
</tr>
<tr>
<td>Verify available volume of sodium pentaborate solution is [≥ 4530 gallons].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 3.1.7.2</td>
<td>24 hours</td>
<td></td>
</tr>
<tr>
<td>Verify temperature of sodium pentaborate solution is within the limits of [Figure 3.1.7-1].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 3.1.7.3</td>
<td>24 hours</td>
<td></td>
</tr>
<tr>
<td>Verify temperature of pump suction piping is within the limits of [Figure 3.1.7-1].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 3.1.7.4</td>
<td>31 days</td>
<td></td>
</tr>
<tr>
<td>Verify continuity of explosive charge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 3.1.7.5</td>
<td>31 days</td>
<td></td>
</tr>
<tr>
<td>Verify the concentration of boron in solution is [within the limits of Figure 3.1.7-1].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Once within 24 hours after water or boron is added to solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Once within 24 hours after solution temperature is restored within the limits of [Figure 3.1.7-1]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.1.7.6</td>
<td>Verify each SLC subsystem manual, power operated, [and automatic valve] in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position, or can be aligned to the correct position.</td>
</tr>
<tr>
<td>SR 3.1.7.7</td>
<td>Verify each pump develops a flow rate $\geq [41.2]$ gpm at a discharge pressure $\geq [1300]$ psig.</td>
</tr>
<tr>
<td>SR 3.1.7.8</td>
<td>Verify flow through one SLC subsystem from pump into reactor pressure vessel.</td>
</tr>
<tr>
<td>SR 3.1.7.9</td>
<td>Verify all heat traced piping between storage tank and pump suction is unblocked.</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>SR 3.1.7.10 Verify sodium pentaborate enrichment is (\geq [60.0]) atom percent B-10.</td>
</tr>
</tbody>
</table>
Figure 3.1.7-1 (page 1 of 1)

This figure for illustration only. Do not use for operation.

- (13.6%, 130°F)
- (28%, 130°F)

ACCEPTABLE OPERATION

UNACCEPTABLE OPERATION

Sodium Pentaborate Solution Temperature/Concentration Requirements

TANK CONCENTRATION (% by weight)

TEMPERATURE (°F)

5 10 13.6 15 20 25 30 35 40

5 40 70 80 90 100 110 120 130 140
3.1 REACTIVITY CONTROL SYSTEMS

3.1.8 Scram Discharge Volume (SDV) Vent and Drain Valves

LCO 3.1.8 Each SDV vent and drain valve shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more SDV vent or drain lines with one valve inoperable.</td>
<td>A.1 Restore valve to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>B. One or more SDV vent or drain lines with both valves inoperable.</td>
<td>B.1 An isolated line may be unisolated under administrative control to allow draining and venting of the SDV. Isolate the associated line.</td>
<td>8 hours</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.1.8.1 Not required to be met on vent and drain valves closed during performance of SR 3.1.8.2.</td>
<td>31 days</td>
</tr>
<tr>
<td>Verify each SDV vent and drain valve is open.</td>
<td></td>
</tr>
<tr>
<td>SR 3.1.8.2 Cycle each SDV vent and drain valve to the fully closed and fully open position.</td>
<td>92 days</td>
</tr>
<tr>
<td>SR 3.1.8.3 Verify each SDV vent and drain valve:</td>
<td>[18] months</td>
</tr>
<tr>
<td>a. Closes in $\leq [30]$ seconds after receipt of an actual or simulated scram signal; and</td>
<td></td>
</tr>
<tr>
<td>b. Opens when the actual or simulated scram signal is reset.</td>
<td></td>
</tr>
</tbody>
</table>
3.2 POWER DISTRIBUTION LIMITS

3.2.1 AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)

LCO 3.2.1 All APLHGRs shall be less than or equal to the limits specified in the COLR.

APPLICABILITY: THERMAL POWER ≥ 25% RTP.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Any APLHGR not within limits.</td>
<td>A.1 Restore APLHGR(s) to within limits.</td>
<td>2 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Reduce THERMAL POWER to < 25% RTP.</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.2.1.1 Verify all APLHGRs are less than or equal to the limits specified in the COLR.</td>
<td>Once within 12 hours after ≥ 25% RTP AND 24 hours thereafter</td>
</tr>
</tbody>
</table>
3.2 POWER DISTRIBUTION LIMITS

3.2.2 MINIMUM CRITICAL POWER RATIO (MCPR)

LCO 3.2.2 All MCPRs shall be greater than or equal to the MCPR operating limits specified in the COLR.

APPLICABILITY: THERMAL POWER ≥ 25% RTP.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Any MCPR not within limits.</td>
<td>A.1 Restore MCPR(s) to within limits.</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

| B. Required Action and associated Completion Time not met. | B.1 Reduce THERMAL POWER to < 25% RTP. | 4 hours |

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.2.2.1 Verify all MCPRs are greater than or equal to the limits specified in the COLR.</td>
<td>Once within 12 hours after ≥ 25% RTP AND 24 hours thereafter</td>
</tr>
</tbody>
</table>
3.2 POWER DISTRIBUTION LIMITS

3.2.3 LINEAR HEAT GENERATION RATE (LHGR) (Optional)

LCO 3.2.3
All LHGRs shall be less than or equal to the limits specified in the COLR.

APPLICABILITY: THERMAL POWER ≥ 25% RTP.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Any LHGR not within limits.</td>
<td>A.1 Restore LHGR(s) to within limits.</td>
<td>2 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Reduce THERMAL POWER to < 25% RTP.</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.2.3.1 Verify all LHGRs are less than or equal to the limits specified in the COLR.</td>
<td>Once within 12 hours after ≥ 25% RTP AND 24 hours thereafter</td>
</tr>
</tbody>
</table>
3.2 POWER DISTRIBUTION LIMITS

3.2.4 Average Power Range Monitor (APRM) Gain and Setpoints (Optional)

LCO 3.2.4

a. MFLPD shall be less than or equal to Fraction of RTP; or

b. Each required APRM setpoint specified in the COLR shall be made applicable; or

c. Each required APRM gain shall be adjusted such that the APRM readings are \(\geq 100\% \times \) MFLPD.

APPLICABILITY: THERMAL POWER \(\geq 25\% \) RTP.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Requirements of the LCO not met.</td>
<td>A.1 Satisfy the requirements of the LCO.</td>
<td>6 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Reduce THERMAL POWER to < 25% RTP.</td>
<td>4 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.2.4.1</td>
<td>Once within 12 hours after ≥ 25% RTP AND 24 hours thereafter</td>
</tr>
<tr>
<td></td>
<td>Verify MFLPD is within limits.</td>
</tr>
</tbody>
</table>

NOTE

Not required to be met if SR 3.2.4.2 is satisfied for LCO 3.2.4 Item b or c requirements.

| **SR 3.2.4.2** | 12 hours |
| | Verify APRM setpoints or gains are adjusted for the calculated MFLPD. |

NOTE

Not required to be met if SR 3.2.4.1 is satisfied for LCO 3.2.4 Item a requirements.
3.3 INSTRUMENTATION

3.3.1.1 Reactor Protection System (RPS) Instrumentation

LCO 3.3.1.1 The RPS instrumentation for each Function in Table 3.3.1.1-1 shall be OPERABLE.

APPLICABILITY: According to Table 3.3.1.1-1.

ACTIONS

NOTE
Separate Condition entry is allowed for each channel.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more required channels inoperable.</td>
<td>A.1 Place channel in trip.</td>
<td>12 hours</td>
</tr>
<tr>
<td>OR</td>
<td>A.2 Place associated trip system in trip.</td>
<td>12 hours</td>
</tr>
<tr>
<td>B. One or more Functions with one or more required channels inoperable in both trip systems.</td>
<td>B.1 Place channel in one trip system in trip.</td>
<td>6 hours</td>
</tr>
<tr>
<td>OR</td>
<td>B.2 Place one trip system in trip.</td>
<td>6 hours</td>
</tr>
<tr>
<td>C. One or more Functions with RPS trip capability not maintained.</td>
<td>C.1 Restore RPS trip capability.</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Required Action and associated Completion Time of Condition A, B, or C not met.</td>
<td>D.1 Enter the Condition referenced in Table 3.3.1.1-1 for the channel.</td>
<td>Immediately</td>
</tr>
<tr>
<td>E. As required by Required Action D.1 and referenced in Table 3.3.1.1-1.</td>
<td>E.1 Reduce THERMAL POWER to < [40]% RTP.</td>
<td>4 hours</td>
</tr>
<tr>
<td>F. As required by Required Action D.1 and referenced in Table 3.3.1.1-1.</td>
<td>F.1 Reduce THERMAL POWER to < 25% RTP.</td>
<td>4 hours</td>
</tr>
<tr>
<td>G. As required by Required Action D.1 and referenced in Table 3.3.1.1-1.</td>
<td>G.1 Be in MODE 2.</td>
<td>6 hours</td>
</tr>
<tr>
<td>H. As required by Required Action D.1 and referenced in Table 3.3.1.1-1.</td>
<td>H.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>I. As required by Required Action D.1 and referenced in Table 3.3.1.1-1.</td>
<td>I.1 Initiate action to fully insert all insertable control rods in core cells containing one or more fuel assemblies.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

1. Refer to Table 3.3.1.1-1 to determine which SRs apply for each RPS Function.

2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains RPS trip capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.1.1.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SR 3.3.1.1.2 Adjust the channel to conform to a calibrated flow signal.</td>
<td>7 days</td>
</tr>
<tr>
<td>SR 3.3.1.1.4 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>7 days</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.1.1.5 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>7 days</td>
</tr>
<tr>
<td>SR 3.3.1.1.6 Verify the source range monitor (SRM) and intermediate range monitor (IRM) channels overlap.</td>
<td>Prior to withdrawing SRMs from the fully inserted position</td>
</tr>
<tr>
<td>SR 3.3.1.1.7 ------------------NOTE------------------</td>
<td>7 days</td>
</tr>
<tr>
<td></td>
<td>Only required to be met during entry into MODE 2 from MODE 1.</td>
</tr>
<tr>
<td></td>
<td>Verify the IRM and APRM channels overlap.</td>
</tr>
<tr>
<td>SR 3.3.1.1.8 Calibrate the local power range monitors.</td>
<td>1000 MWD/T average core exposure</td>
</tr>
<tr>
<td>SR 3.3.1.1.9 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.1.1.10 Calibrate the trip units.</td>
<td>[92] days</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.1.1.11</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SR 3.3.1.1.12</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SR 3.3.1.1.13</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SR 3.3.1.1.14</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SR 3.3.1.1.15</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.1.1.16 Verify Turbine Stop Valve Closure, Trip Oil Pressure—Low and Turbine Control Valve Fast Closure Trip Oil Pressure—Low Functions are not bypassed when THERMAL POWER is $\geq 40%$ RTP.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

SR 3.3.1.1.17

<table>
<thead>
<tr>
<th>NOTES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Neutron detectors are excluded.</td>
<td></td>
</tr>
<tr>
<td>2. For Function 6, "n" equals 4 channels for the purpose of determining the STAGGERED TEST BASIS Frequency.</td>
<td></td>
</tr>
</tbody>
</table>

| Verify the RPS RESPONSE TIME is within limits. | [18] months on a STAGGERED TEST BASIS |

RPS Instrumentation

3.3.1.1
Table 3.3.1.1-1 (page 1 of 3)
Reactor Protection System Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>CONDITION</th>
<th>REQUIREMENTS VALUE</th>
<th>CONDITIONS REFERENCED FROM</th>
<th>SURVEILLANCE ACTION D.1</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intermediate Range Monitors</td>
<td>a. Neutron Flux – High</td>
<td>2</td>
<td>[3]</td>
<td>H</td>
<td>SR 3.3.1.1.1 ≤ [122/125] divisions of full scale SR 3.3.1.1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>[3]</td>
<td>H</td>
<td>SR 3.3.1.1.1 ≤ [122/125] divisions of full scale SR 3.3.1.1.5 scale SR 3.3.1.1.13 of full scale SR 3.3.1.1.15 scale</td>
</tr>
<tr>
<td>b. Inop</td>
<td>2</td>
<td>[3]</td>
<td>H</td>
<td>SR 3.3.1.1.4 NA SR 3.3.1.1.15 NA</td>
<td></td>
</tr>
<tr>
<td>2. Average Power Range Monitors</td>
<td>a. Neutron Flux – High, Setdown</td>
<td>2</td>
<td>[3]</td>
<td>H</td>
<td>SR 3.3.1.1.1 ≤ [20]% RTP SR 3.3.1.1.4 SR 3.3.1.1.7 SR 3.3.1.1.8 SR 3.3.1.1.11 SR 3.3.1.1.15</td>
</tr>
<tr>
<td></td>
<td>b. Flow Biased Simulated Thermal Power – High</td>
<td>1</td>
<td>[3]</td>
<td>G</td>
<td>SR 3.3.1.1.1 ≤ [0.66 W + 43%] RTP when reset for single loop operation per LCO 3.4.1, "Recirculation Loops Operating." SR 3.3.1.1.2 671% RTP SR 3.3.1.1.3 and SR 3.3.1.1.8 ≤ [113]% SR 3.3.1.1.9 RTP[(b)] SR 3.3.1.1.11 SR 3.3.1.1.14 SR 3.3.1.1.15 SR 3.3.1.1.17</td>
</tr>
</tbody>
</table>

(a) With any control rod withdrawn from a core cell containing one or more fuel assemblies.

(b) Allowable Value is [≤ 0.66 W + 43%] RTP when reset for single loop operation per LCO 3.4.1, "Recirculation Loops Operating."
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS</th>
<th>REQUIRED CHANNELS SPECIFIED PER TRIP</th>
<th>CONDITIONS REFERENCED FROM SPECIFIED REQUIREMENTS</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Average Power Range Monitors (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Fixed Neutron Flux—High</td>
<td>1</td>
<td>(3)</td>
<td>G</td>
<td>SR 3.3.1.1.1</td>
<td>≤ [120]% RTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.2</td>
<td>SR 3.3.1.1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.9</td>
<td>SR 3.3.1.1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.15</td>
<td>SR 3.3.1.1.17</td>
</tr>
<tr>
<td>d. Inop</td>
<td>1,2</td>
<td>(3)</td>
<td>H</td>
<td>SR 3.3.1.1.8</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.9</td>
<td>SR 3.3.1.1.15</td>
</tr>
<tr>
<td>3. Reactor Vessel Steam Dome Pressure—High</td>
<td>1,2</td>
<td>(2)</td>
<td>H</td>
<td>SR 3.3.1.1.1</td>
<td>≤ [1079.7] psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.9</td>
<td>SR 3.3.1.1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.13</td>
<td>SR 3.3.1.1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.17</td>
<td></td>
</tr>
<tr>
<td>4. Reactor Vessel Water Level—Low, Level 3</td>
<td>1,2</td>
<td>(2)</td>
<td>H</td>
<td>SR 3.3.1.1.1</td>
<td>≥ [10.8] inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.9</td>
<td>SR 3.3.1.1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.13</td>
<td>SR 3.3.1.1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.17</td>
<td></td>
</tr>
<tr>
<td>5. Reactor Vessel Water Level—High, Level 8</td>
<td>≥ 25% RTP</td>
<td>(2)</td>
<td>G</td>
<td>SR 3.3.1.1.1</td>
<td>≤ [54.1] inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.9</td>
<td>SR 3.3.1.1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.13</td>
<td>SR 3.3.1.1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.17</td>
<td></td>
</tr>
<tr>
<td>6. Main Steam Isolation Valve—Closure</td>
<td>1</td>
<td>(8)</td>
<td>G</td>
<td>SR 3.3.1.1.9</td>
<td>≤ [7]% closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.13</td>
<td>SR 3.3.1.1.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.17</td>
<td></td>
</tr>
<tr>
<td>7. Drywell Pressure—High</td>
<td>1,2</td>
<td>(2)</td>
<td>H</td>
<td>SR 3.3.1.1.1</td>
<td>≤ [1.43] psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.9</td>
<td>SR 3.3.1.1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.1.13</td>
<td>SR 3.3.1.1.15</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE MODES OR OTHER CHANNELS SPECIFIED PER TRIP</th>
<th>REQUIRED CONDITIONS FROM SYSTEM</th>
<th>CONDITIONS REFERENCED</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Scram Discharge Volume Water Level - High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Transmitter/Trip Unit</td>
<td>1, 2 [2]</td>
<td>H</td>
<td></td>
<td></td>
<td>≤ [65]% of full scale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5(a) [2]</td>
<td>I</td>
<td></td>
<td></td>
<td>≤ [65]% of full scale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Float Switch</td>
<td>1, 2 [2]</td>
<td>H</td>
<td></td>
<td></td>
<td>≤ [65] inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5(a) [2]</td>
<td>I</td>
<td></td>
<td></td>
<td>≤ [65] inches</td>
</tr>
<tr>
<td>9. Turbine Stop Valve Closure, ≥ [40]% RTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥ [37] psig</td>
</tr>
<tr>
<td>Trip Oil Pressure - Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5(a) [2]</td>
<td>I</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5(a) [2]</td>
<td>I</td>
<td></td>
<td></td>
<td>NA</td>
</tr>
</tbody>
</table>

(a) With any control rod withdrawn from a core cell containing one or more fuel assemblies.
3.3 INSTRUMENTATION

3.3.1.2 Source Range Monitor (SRM) Instrumentation

LCO 3.3.1.2 The SRM instrumentation in Table 3.3.1.2-1 shall be OPERABLE.

APPLICABILITY: According to Table 3.3.1.2-1.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more required SRMs inoperable in MODE 2 with intermediate range monitors (IRMs) on Range 2 or below.</td>
<td>A.1 Restore required SRMs to OPERABLE status.</td>
<td>4 hours</td>
</tr>
<tr>
<td>B. [Four] required SRMs inoperable in MODE 2 with IRMs on Range 2 or below.</td>
<td>B.1 Suspend control rod withdrawal.</td>
<td>Immediately</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time of Condition A or B not met.</td>
<td>C.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>D. One or more required SRMs inoperable in MODE 3 or 4.</td>
<td>D.1 Fully insert all insertable control rods.</td>
<td>1 hour</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td>(continued)</td>
</tr>
<tr>
<td>CONDITION</td>
<td>REQUIRED ACTION</td>
<td>COMPLETION TIME</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>D. (continued)</td>
<td>D.2 Place reactor mode switch in the shutdown position.</td>
<td>1 hour</td>
</tr>
<tr>
<td>E. One or more required SRMs inoperable in MODE 5.</td>
<td>E.1 Suspend CORE ALTERATIONS except for control rod insertion.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E.2 Initiate action to insert all insertable control rods in core cells containing one or more fuel assemblies.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

Refer to Table 3.3.1.2-1 to determine which SRs apply for each applicable MODE or other specified conditions.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.1.2.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SR 3.3.1.2.2</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

--- NOTES ---

1. Only required to be met during CORE ALTERATIONS.

2. One SRM may be used to satisfy more than one of the following.

Verify an OPERABLE SRM detector is located in:

a. The fueled region;

b. The core quadrant where CORE ALTERATIONS are being performed when the associated SRM is included in the fueled region; and

c. A core quadrant adjacent to where CORE ALTERATIONS are being performed, when the associated SRM is included in the fueled region.

SR 3.3.1.2.3 Perform CHANNEL CHECK. 24 hours

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.1.2.4</td>
<td></td>
</tr>
<tr>
<td>Not required to be met with less than or equal to four fuel assemblies adjacent to the SRM and no other fuel assemblies in the associated core quadrant.</td>
<td>12 hours during CORE ALTERATIONS AND 24 hours</td>
</tr>
<tr>
<td>Verify count rate is:</td>
<td></td>
</tr>
<tr>
<td>a. $\geq [3.0]$ cps with a signal to noise ratio $\geq [2:1]$, or</td>
<td></td>
</tr>
<tr>
<td>b. $\geq [0.7]$ cps with a signal to noise ratio $\geq [20:1]$.</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.1.2.5</td>
<td></td>
</tr>
<tr>
<td>Perform CHANNEL FUNCTIONAL TEST [and determination of signal to noise ratio].</td>
<td>7 days</td>
</tr>
<tr>
<td>SR 3.3.1.2.6</td>
<td></td>
</tr>
<tr>
<td>Not required to be performed until 12 hours after IRMs on Range 2 or below.</td>
<td>31 days</td>
</tr>
<tr>
<td>Perform CHANNEL FUNCTIONAL TEST [and determination of signal to noise ratio].</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.1.2.7</td>
<td></td>
</tr>
<tr>
<td>1. Neutron detectors are excluded.</td>
<td></td>
</tr>
<tr>
<td>2. Not required to be performed until 12 hours after IRMs on Range 2 or below.</td>
<td></td>
</tr>
<tr>
<td>Perform CHANNEL CALIBRATION.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
Table 3.3.1.2-1 (page 1 of 1)
Source Range Monitor Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS</th>
<th>REQUIRED CHANNELS</th>
<th>SURVEILLANCE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Source Range Monitor</td>
<td>2(a)</td>
<td>1</td>
<td>SR 3.3.1.2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.7</td>
</tr>
<tr>
<td>3,4</td>
<td>2</td>
<td></td>
<td>SR 3.3.1.2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.7</td>
</tr>
<tr>
<td>5</td>
<td>2(b),(c)</td>
<td></td>
<td>SR 3.3.1.2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.1.2.7</td>
</tr>
</tbody>
</table>

(a) With IRMs on Range 2 or below.

(b) Only one SRM channel is required to be OPERABLE during spiral offload or reload when the fueled region includes only that SRM detector.

(c) Special movable detectors may be used in place of SRMs if connected to normal SRM circuits.
3.3 INSTRUMENTATION

3.3.2.1 Control Rod Block Instrumentation

LCO 3.3.2.1 The control rod block instrumentation for each Function in Table 3.3.2.1-1 shall be OPERABLE.

APPLICABILITY: According to Table 3.3.2.1-1.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more rod withdrawal limit (RWL) channels inoperable.</td>
<td>A.1 Suspend control rod withdrawal.</td>
<td>Immediately</td>
</tr>
<tr>
<td>B. One or more rod pattern controller channels inoperable.</td>
<td>B.1 Suspend control rod movement except by scram.</td>
<td>Immediately</td>
</tr>
<tr>
<td>C. One or more Reactor Mode Switch—Shutdown Position channels inoperable.</td>
<td>C.1 Suspend control rod withdrawal.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>C.2 Initiate action to fully insert all insertable control rods in core cells containing one or more fuel assemblies.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

---NOTES---

1. Refer to Table 3.3.2.1-1 to determine which SRs apply for each Control Rod Block Function.

2. When an RWL channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains control rod block capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.2.1.1</td>
<td>[92] days</td>
</tr>
<tr>
<td></td>
<td>Not required to be performed until 1 hour after THERMAL POWER is > [70]% RTP.</td>
</tr>
<tr>
<td></td>
<td>Perform CHANNEL FUNCTIONAL TEST.</td>
</tr>
<tr>
<td>SR 3.3.2.1.2</td>
<td>[92] days</td>
</tr>
<tr>
<td></td>
<td>Not required to be performed until 1 hour after THERMAL POWER is > 35% RTP and ≤ 70% RTP.</td>
</tr>
<tr>
<td></td>
<td>Perform CHANNEL FUNCTIONAL TEST.</td>
</tr>
<tr>
<td>SR 3.3.2.1.3</td>
<td>[92] days</td>
</tr>
<tr>
<td></td>
<td>Not required to be performed until 1 hour after any control rod is withdrawn at ≤ [10]% RTP in MODE 2.</td>
</tr>
<tr>
<td></td>
<td>Perform CHANNEL FUNCTIONAL TEST.</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.2.1.4</td>
<td></td>
</tr>
<tr>
<td>Not required to be performed until 1 hour after THERMAL POWER is (\leq [10]% \text{ RTP in MODE 1.})</td>
<td></td>
</tr>
<tr>
<td>Perform CHANNEL FUNCTIONAL TEST.</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.2.1.5</td>
<td></td>
</tr>
<tr>
<td>Calibrate the trip unit.</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.2.1.6</td>
<td></td>
</tr>
<tr>
<td>Verify the RWL high power Function is not bypassed when THERMAL POWER is (> [70]% \text{ RTP.})</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.2.1.7</td>
<td></td>
</tr>
<tr>
<td>Perform CHANNEL CALIBRATION. The Allowable Value shall be:</td>
<td></td>
</tr>
<tr>
<td>a. Low power setpoint, (> [10]% \text{ RTP and } \leq [35]% \text{ RTP;}) and</td>
<td></td>
</tr>
<tr>
<td>b. High power setpoint, (\leq [70]% \text{ RTP.})</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.2.1.8</td>
<td></td>
</tr>
<tr>
<td>Not required to be performed until 1 hour after reactor mode switch is in the shutdown position.</td>
<td></td>
</tr>
<tr>
<td>Perform CHANNEL FUNCTIONAL TEST.</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>SR 3.3.2.1.9 Verify the bypassing and movement of control rods required to be bypassed in Rod Action Control System (RACS) by a second licensed operator or other qualified member of the technical staff.</td>
</tr>
</tbody>
</table>
Table 3.3.2.1-1 (page 1 of 1)

Control Rod Block Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS</th>
<th>REQUIRED CHANNELS</th>
<th>SURVEILLANCE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rod Pattern Control System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Rod withdrawal limiter</td>
<td>[(a)] 2</td>
<td>SR 3.3.2.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.2.1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.2.1.7</td>
<td></td>
</tr>
<tr>
<td>b. Rod pattern controller</td>
<td>[(b)] 2</td>
<td>SR 3.3.2.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.2.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.2.1.7</td>
<td></td>
</tr>
<tr>
<td>2. Reactor Mode Switch – Shutdown Position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1(c),2(c) 2</td>
<td>SR 3.3.2.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.2.1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.2.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.2.1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.2.1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) 2</td>
<td>SR 3.3.2.1.8</td>
<td></td>
</tr>
</tbody>
</table>

(a) THERMAL POWER > [70]% RTP.

(b) THERMAL POWER > [35]% RTP and ≤ 70% RTP.

(c) With THERMAL POWER ≤ [10]% RTP.

(d) Reactor mode switch in the shutdown position.
3.3 INSTRUMENTATION

3.3.3.1 Post Accident Monitoring (PAM) Instrumentation

LCO 3.3.3.1 The PAM instrumentation for each Function in Table 3.3.3.1-1 shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more Functions with one required channel inoperable.</td>
<td>A.1 Restore required channel to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
<td>B.1 Initiate action in accordance with Specification 5.6.8.</td>
<td>Immediately</td>
</tr>
<tr>
<td>C. Not applicable to [hydrogen monitor] channels.</td>
<td>C.1 Restore one required channel to OPERABLE status.</td>
<td>7 days</td>
</tr>
</tbody>
</table>

NOTES

1. LCO 3.0.4 is not applicable.
2. Separate Condition entry is allowed for each Function.
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Two [required hydrogen monitor] channels inoperable.</td>
<td>D.1 Restore one [required hydrogen monitor] channel to OPERABLE status.</td>
<td>72 hours</td>
</tr>
<tr>
<td>E. Required Action and associated Completion Time of Condition C or D not met.</td>
<td>E.1 Enter the Condition referenced in Table 3.3.3.1-1 for the channel.</td>
<td>Immediately</td>
</tr>
<tr>
<td>F. As required by Required Action E.1 and referenced in Table 3.3.3.1-1.</td>
<td>F.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>G. As required by Required Action E.1 and referenced in Table 3.3.3.1-1.</td>
<td>G.1 Initiate action in accordance with Specification 5.6.8.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

These SRs apply to each Function in Table 3.3.3.1-1.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.3.1.1 Perform CHANNEL CHECK.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.3.3.1.2 Perform CHANNEL CALIBRATION.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
Post Accident Monitoring Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>REQUIRED CHANNELS</th>
<th>CONDITIONS REFERENCED FROM REQUIRED ACTION E.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reactor Steam Dome Pressure</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>2. Reactor Vessel Water Level</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>3. Suppression Pool Water Level</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>4. Drywell Pressure</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>5. Primary Containment Area Radiation</td>
<td>2</td>
<td>F [g]</td>
</tr>
<tr>
<td>6. Drywell Sump Level</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>7. Drywell Drain Sump Level</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>8. PCIV Position</td>
<td>2 per penetration flow path (a)(b)</td>
<td>F</td>
</tr>
<tr>
<td>9. Wide Range Neutron Flux</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>10. Drywell H₂ & O₂ Analyzer</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>11. Containment H₂ & O₂ Analyzer</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>12. Primary Containment Pressure</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>13. Suppression Pool Water Temperature</td>
<td>2(c)</td>
<td>F</td>
</tr>
</tbody>
</table>

(a) Not required for isolation valves whose associated penetration flow path is isolated by at least one closed and de-activated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured.

(b) Only one position indication channel is required for penetration flow paths with only one installed control room indication channel.

(c) Monitoring each [relief valve discharge location].

Reviewer's Note: Table 3.3.3.1-1 shall be amended for each plant as necessary to list:

1. All Regulatory Guide 1.97, Type A instruments, and
2. All Regulatory Guide 1.97, Category 1, non-Type A instruments specified in the plant's Regulatory Guide 1.97, Safety Evaluation Report.
Remote Shutdown System
3.3.3.2

3.3 INSTRUMENTATION

3.3.3.2 Remote Shutdown System

LCO 3.3.3.2 The Remote Shutdown System Functions in Table 3.3.3.2-1 shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

--------------------------------------NOTES--------------------------------------

1. LCO 3.0.4 is not applicable.

2. Separate Condition entry is allowed for each Function.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more required Functions</td>
<td>A.1 Restore required Function to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>inoperable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Required Action and associated</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>Completion Time not met.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.3.2.1</td>
<td>31 days</td>
</tr>
<tr>
<td>Perform CHANNEL CHECK for each required instrumentation channel that is normally energized.</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.3.2.2 Verify each required control circuit and transfer switch is capable of performing the intended functions.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.3.2.3 Perform CHANNEL CALIBRATION for each required instrumentation channel.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
Remote Shutdown System Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION (INSTRUMENT OR CONTROL PARAMETER)</th>
<th>REQUIRED NUMBER OF DIVISIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reactor Pressure Vessel Pressure Control</td>
<td></td>
</tr>
<tr>
<td>a. Reactor Pressure</td>
<td>[1]</td>
</tr>
<tr>
<td>2. Decay Heat Removal</td>
<td></td>
</tr>
<tr>
<td>a. RCIC Flow</td>
<td>[1]</td>
</tr>
<tr>
<td>b. RCIC Controls</td>
<td>[1]</td>
</tr>
<tr>
<td>c. RHR Flow</td>
<td>[1]</td>
</tr>
<tr>
<td>d. RHR Controls</td>
<td>[1]</td>
</tr>
<tr>
<td>3. Reactor Pressure Vessel Inventory Control</td>
<td></td>
</tr>
<tr>
<td>a. RCIC Flow</td>
<td>[1]</td>
</tr>
<tr>
<td>b. RCIC Controls</td>
<td>[1]</td>
</tr>
<tr>
<td>c. RHR Flow</td>
<td>[1]</td>
</tr>
<tr>
<td>d. RHR Controls</td>
<td>[1]</td>
</tr>
</tbody>
</table>

Reviewer's Note: This Table is for illustration purposes only. It does not attempt to encompass every function used at every plant, but does contain the types of functions commonly found.
3.3 INSTRUMENTATION

3.3.4.1 End of Cycle Recirculation Pump Trip (EOC-RPT) Instrumentation

LCO 3.3.4.1 a. Two channels per trip system for each EOC-RPT instrumentation Function listed below shall be OPERABLE:

1. Turbine Stop Valve (TSV) Closure, Trip Oil Pressure—Low; and

2. Turbine Control Valve (TCV) Fast Closure, Trip Oil Pressure—Low.

b. LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)," limits for inoperable EOC-RPT as specified in the COLR are made applicable.

APPLICABILITY: THERMAL POWER ≥ [40]% RTP with any recirculation pump in fast speed.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more required channels inoperable.</td>
<td>A.1 Restore channel to OPERABLE status. OR</td>
<td>72 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.2 --- NOTE --- Not applicable if inoperable channel is the result of an inoperable breaker. Place channel in trip.</td>
<td>72 hours</td>
</tr>
</tbody>
</table>

B. One or more Functions with EOC-RPT trip capability not maintained.

- **B.1** Restore EOC-RPT trip capability.
 2 hours
- **B.2** Apply the MCPR limit for inoperable EOC-RPT as specified in the COLR.
 2 hours

C. Required Action and associated Completion Time not met.

- **C.1** Remove the associated recirculation pump fast speed breaker from service.
 4 hours
- **C.2** Reduce THERMAL POWER to < [40]% RTP.
 4 hours
SURVEILLANCE REQUIREMENTS

When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains EOC-RPT trip capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.4.1.1 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.4.1.2 Calibrate the trip units.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.4.1.3 Perform CHANNEL CALIBRATION. The Allowable Values shall be:</td>
<td>[18] months</td>
</tr>
<tr>
<td>a. TSV Closure, Trip Oil Pressure—Low: (\geq [37]) psig.</td>
<td></td>
</tr>
<tr>
<td>b. TCV Fast Closure, Trip Oil Pressure—Low: (\geq [42]) psig.</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.4.1.4 Perform LuGIC SYSTEM FUNCTIONAL TEST, including breaker actuation.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.4.1.5 Verify TSV Closure, Trip Oil Pressure—Low and TCV Fast Closure, Trip Oil Pressure—Low Functions are not bypassed when THERMAL POWER is (\geq [40] %) RTP.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

(continued)
EOC-RPT Instrumentation

3.3.4.1

SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.4.1.6</td>
<td>NOTE</td>
</tr>
<tr>
<td>Breaker [interruption] time may be assumed from the most recent performance of SR 3.3.4.1.7.</td>
<td>Verify the EOC-RPT SYSTEM RESPONSE TIME is within limits.</td>
</tr>
</tbody>
</table>

| **SR 3.3.4.1.7** | Determine RPT breaker [interruption] time. | 60 months |
3.3 INSTRUMENTATION

3.3.4.2 Anticipated Transient Without Scram Recirculation Pump Trip (ATWS-RPT) Instrumentation

LCO 3.3.4.2 Two channels per trip system for each ATWS-RPT instrumentation Function listed below shall be OPERABLE:

a. Reactor Vessel Water Level—Low Low, Level 2; and
b. Reactor Steam Dome Pressure—High.

APPLICABILITY: MODE 1.

ACTIONS

--- NOTE ---
Separate Condition entry is allowed for each channel.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more channels inoperable.</td>
<td>A.1 Restore channel to OPERABLE status.</td>
<td>14 days</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2 --- NOTE ---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not applicable if inoperable channel is the result of an inoperable breaker.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place channel in trip.</td>
<td>14 days</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. One Function with ATWS-RPT trip capability not maintained.</td>
<td>B.1 Restore ATWS-RPT trip capability.</td>
<td>72 hours</td>
</tr>
<tr>
<td>C. Both Functions with ATWS-RPT trip capability not maintained.</td>
<td>C.1 Restore ATWS-RPT trip capability for one Function.</td>
<td>1 hour</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time not met.</td>
<td>D.1 Remove the associated recirculation pump from service. OR D.2 Be in MODE 2.</td>
<td>6 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains ATWS-RPT trip capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.4.2.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.4.2.2 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.4.2.3 Calibrate the trip units.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.4.2.4 Perform CHANNEL CALIBRATION. The Allowable Values shall be:</td>
<td>[18] months</td>
</tr>
<tr>
<td>a. Reactor Vessel Water Level—Low Low, Level 2: ≥ [-43.8] inches; and</td>
<td></td>
</tr>
<tr>
<td>b. Reactor Steam Dome Pressure—High: ≤ [1102] psig.</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.4.2.5 Perform LOGIC SYSTEM FUNCTIONAL TEST, including breaker actuation.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.3 INSTRUMENTATION

3.3.5.1 Emergency Core Cooling System (ECCS) Instrumentation

LCO 3.3.5.1 The ECCS instrumentation for each Function in Table 3.3.5.1-1 shall be OPERABLE.

APPLICABILITY: According to Table 3.3.5.1-1.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more channels inoperable.</td>
<td>A.1 Enter the Condition referenced in Table 3.3.5.1-1 for the channel.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

B. As required by Required Action A.1 and referenced in Table 3.3.5.1-1.

B.1	1. Only applicable in MODES 1, 2, and 3.	1 hour from discovery of loss of initiation capability for feature(s) in both divisions
	2. Only applicable for Functions 1.a, 1.b, 2.a and 2.b.	(continued)
	---NOTES-----	
	Declare supported feature(s) inoperable when its redundant feature ECCS initiation capability is inoperable.	

NOTE

Separate Condition entry is allowed for each channel.
<table>
<thead>
<tr>
<th>ACTIONS</th>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. (continued)</td>
<td>B.2 -----NOTES-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Only applicable in MODES 1, 2, and 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Only applicable for Functions 3.a and 3.b.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Declare High Pressure Core Spray (HPCS) System inoperable.</td>
<td>1 hour from discovery of loss of HPCS initiation capability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.3</td>
<td>Place channel in trip.</td>
<td>24 hours</td>
</tr>
<tr>
<td></td>
<td>C. As required by Required Action A.1 and referenced in Table 3.3.5.1-1.</td>
<td>C.1 -----NOTES-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Only applicable in MODES 1, 2, and 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Only applicable for Functions 1.c, 1.d, 2.c, and 2.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Declare supported feature(s) inoperable when its redundant feature ECCS initiation capability is inoperable.</td>
<td>1 hour from discovery of loss of initiation capability for feature(s) in both divisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(continued)</td>
<td></td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. (continued)</td>
<td>C.2 Restore channel to OPERABLE status.</td>
<td>24 hours</td>
</tr>
<tr>
<td>D. As required by Required Action A.1 and referenced in Table 3.3.5.1-1.</td>
<td>D.1 Only applicable if HPCS pump suction is not aligned to the suppression pool.</td>
<td>1 hour from discovery of loss of HPCS initiation capability</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.2.1 Place channel in trip.</td>
<td>24 hours</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.2.2 Align the HPCS pump suction to the suppression pool.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
</table>
| E. As required by Required Action A.1 and referenced in Table 3.3.5.1-1. | E.1
1. Only applicable in MODES 1, 2, and 3.
2. Only applicable for Functions 1.e, 1.f, and 2.e.
---NOTES---
Declare supported feature(s) inoperable when its redundant feature ECCS initiation capability is inoperable. AND
E.2 Restore channel to OPERABLE status. | 1 hour from discovery of loss of initiation capability for feature(s) in both divisions
7 days |
| F. As required by Required Action A.1 and referenced in Table 3.3.5.1-1. | F.1
Declare Automatic Depressurization System (ADS) valves inoperable. AND
---NOTES---
Declare Automatic Depressurization System (ADS) valves inoperable. | 1 hour from discovery of loss of ADS initiation capability in both trip systems
(continued) |
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. (continued)</td>
<td>F.2 Place channel in trip.</td>
<td>96 hours from discovery of inoperable channel concurrent with HPCS or reactor core isolation cooling (RCIC) inoperable AND 8 days</td>
</tr>
</tbody>
</table>

G. As required by Required Action A.1 and referenced in Table 3.3.5.1-1.

| G.1 | ONLY APPLICABLE FOR Functions 4.c, 4.e, 4.f, 4.g, 5.c, 5.e, and 5.f. Declare ADS valves inoperable. | 1 hour from discovery of loss of ADS initiation capability in both trip systems AND 8 days |

(continued)
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. (continued)</td>
<td>G.2 Restore channel to OPERABLE status.</td>
<td>96 hours from discovery of inoperable channel concurrent with HPCS or RCIC inoperable AND 8 days</td>
</tr>
</tbody>
</table>

H. Required Action and associated Completion Time of Condition B, C, D, E, F, or G not met.

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.1 Declare associated supported feature(s) inoperable.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

NOTES

1. Refer to Table 3.3.5.1-1 to determine which SRs apply for each ECCS Function.

2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed as follows: (a) for up to 6 hours for Functions 3.c, 3.f, 3.g, and 3.h; and (b) for up to 6 hours for Functions other than 3.c, 3.f, 3.g, and 3.h, provided the associated Function or the redundant Function maintains ECCS initiation capability.

SURVEILLANCE

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.5.1.1 Perform CHANNEL Check.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SR 3.3.5.1.2 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.5.1.3 Calibrate the trip unit.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.5.1.4 Perform CHANNEL CALIBRATION.</td>
<td>92 days</td>
</tr>
<tr>
<td>SR 3.3.5.1.5 Perform CHANNEL CALIBRATION.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.5.1.6 Perform LOGIC SYSTEM FUNCTIONAL TEST.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.5.1.7 Verify the ECCS RESPONSE TIME is within limits.</td>
<td>[18] months on a STAGGERED TEST BASIS</td>
</tr>
</tbody>
</table>

ECCS Instrumentation

3.3.5.1

BWR/6 STS 3.3-40 Rev 1, 04/07/95
Table 3.3.5.1-1 (page 1 of 5)
Emergency Core Cooling System Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS</th>
<th>REQUIRED CHANNELS PER FUNCTION</th>
<th>CONDITIONS REFERENCED FROM REQUIRED ACTION A.1</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Low Pressure Coolant Injection-A (LPCI) and Low Pressure Core Spray (LPCS) Subsystems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Reactor Vessel Water Level—Low Low Low, Level 1</td>
<td>1,2,3, [2](b)</td>
<td>B</td>
<td>SR 3.3.5.1.1</td>
<td>≥ [-15.25]</td>
<td>inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td>[SR 3.3.5.1.3]</td>
<td>SR 3.3.5.1.5</td>
</tr>
<tr>
<td>b. Drywell Pressure—High</td>
<td>1,2,3</td>
<td>[2](b)</td>
<td>B</td>
<td>SR 3.3.5.1.1</td>
<td>≤ [1.44] psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td>[SR 3.3.5.1.3]</td>
<td>SR 3.3.5.1.5</td>
</tr>
<tr>
<td>c. LPCI Pump A Start—Time Delay Relay</td>
<td>1,2,3, [1]</td>
<td>C</td>
<td>SR 3.3.5.1.2</td>
<td>≥ [] seconds</td>
<td>[SR 3.3.5.1.4]</td>
</tr>
<tr>
<td>d. Reactor Steam Dome Pressure—Low (Injection Permissive)</td>
<td>1,2,3</td>
<td>[3]</td>
<td>C</td>
<td>SR 3.3.5.1.1</td>
<td>≤ [452] psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td>and</td>
<td>[SR 3.3.5.1.3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td>SR 3.3.5.1.6</td>
<td>[SR 3.3.5.1.7]</td>
</tr>
<tr>
<td>e. [LPCS Pump Discharge Flow—Low (Bypass)]</td>
<td>1,2,3, [1]</td>
<td>E</td>
<td>SR 3.3.5.1.1</td>
<td>≥ [] gpm</td>
<td>[SR 3.3.5.1.2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td>≤ [] gpm</td>
<td>SR 3.3.5.1.5</td>
</tr>
<tr>
<td>f. [LPCI Pump A Discharge Flow—Low (Bypass)]</td>
<td>1,2,3, [1]</td>
<td>E</td>
<td>SR 3.3.5.1.1</td>
<td>≥ [] gpm</td>
<td>[SR 3.3.5.1.2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td>≤ [] gpm</td>
<td>SR 3.3.5.1.5</td>
</tr>
<tr>
<td>g. Manual Initiation</td>
<td>1,2,3,</td>
<td>[1]</td>
<td>C</td>
<td>SR 3.3.5.1.6</td>
<td>NA</td>
</tr>
</tbody>
</table>

(continued)

(a) When associated subsystem(s) are required to be OPERABLE.
(b) Also required to initiate the associated [Technical Specifications (TS) required functions].
Table 3.3.5.1-1 (page 2 of 5)
Emergency Core Cooling System Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE CONDITIONS</th>
<th>MODES OR OTHER SPECIFIED CHANNELS PER FUNCTION</th>
<th>CONDITIONS REFERENCED FROM REQUIRED ACTION A.1</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. LPCI B and LPCI C Subsystems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Reactor Vessel Water Level - Low Low Low, Level 1</td>
<td>2</td>
<td>B</td>
<td>SR 3.3.5.1.1 ≥ [-152.5] inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4(a), 5(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Drywell Pressure - High</td>
<td>1, 2, 3</td>
<td>2</td>
<td>B</td>
<td>SR 3.3.5.1.1 ≤ [1.44] psig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.7</td>
<td></td>
</tr>
<tr>
<td>c. LPCI Pump B Start - Time Delay Relay</td>
<td>1, 2, 3</td>
<td>[1]</td>
<td>C</td>
<td>SR 3.3.5.1.1 ≥ [] seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2 and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6 ≤ [5.25] seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4(a), 5(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Reactor Steam Dome Pressure - Low (Injection Permissive)</td>
<td>1, 2, 3</td>
<td>[3]</td>
<td>C</td>
<td>SR 3.3.5.1.1 ≥ [452] psig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2 and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6 ≤ [534] psig</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4(a), 5(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. [LPCI Pump B and LPCI Pump C Discharge Flow - Low (Bypass)]</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>E</td>
<td>SR 3.3.5.1.1 ≥ [1] gpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4(a), 5(a)</td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2 and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1 per pump]</td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6</td>
<td></td>
</tr>
<tr>
<td>f. Manual Initiation</td>
<td>1, 2, 3</td>
<td>[1]</td>
<td>C</td>
<td>SR 3.3.5.1.6 NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4(a), 5(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) When associated subsystem(s) are required to be OPERABLE.
(b) Also required to initiate the associated TS required functions.
3. Emergency Core Cooling System Instrumentation

3.3.5.1

Table 3.3.5.1-1 (page 3 of 5)

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS</th>
<th>CONDITIONS REFERENCED FROM SPECIFIED CHANNELS PER REQUIRED FUNCTION</th>
<th>REQUIRED SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. High Pressure Core Spray (HPCS) System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Reactor Vessel Water Level - Low, Level 2</td>
<td>1, 2, 3, 4(a), 5(a)</td>
<td>B</td>
<td>SR 3.3.5.1.1 ≥ [-43.8] inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.7</td>
<td></td>
</tr>
<tr>
<td>b. Drywell Pressure - High</td>
<td>1, 2, 3, 4(b)</td>
<td>B</td>
<td>SR 3.3.5.1.1 ≤ [1.44] psig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.7</td>
<td></td>
</tr>
<tr>
<td>c. Reactor Vessel Water Level - High, Level 8</td>
<td>1, 2, 3, 4(a), 5(a)</td>
<td>C</td>
<td>SR 3.3.5.1.1 ≤ [55.7] inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6</td>
<td></td>
</tr>
<tr>
<td>d. Condensate Storage Tank Level - Low</td>
<td>1, 2, 3, 4(c), 5(c)</td>
<td>D</td>
<td>SR 3.3.5.1.1 ≥ [-3] inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6</td>
<td></td>
</tr>
<tr>
<td>e. Suppression Pool Water Level - High</td>
<td>1, 2, 3, 4(c), 5(c)</td>
<td>D</td>
<td>SR 3.3.5.1.1 ≤ [7.0] inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6</td>
<td></td>
</tr>
<tr>
<td>f. [HPCS Pump Discharge Pressure - High (Bypass)]</td>
<td>1, 2, 3, 4(a), 5(a)</td>
<td>E</td>
<td>SR 3.3.5.1.1 ≥ [] psig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6</td>
<td></td>
</tr>
<tr>
<td>g. [HPCS System Flow Rate - Low (Bypass)]</td>
<td>1, 2, 3, 4(a), 5(a)</td>
<td>E</td>
<td>SR 3.3.5.1.1 ≥ [] gpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.2 ≤ [] gpm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.1.6</td>
<td></td>
</tr>
<tr>
<td>h. Manual Initiation</td>
<td>1, 2, 3, 4(a), 5(a)</td>
<td>C</td>
<td>SR 3.3.5.1.6 NA</td>
<td></td>
</tr>
</tbody>
</table>

(a) When associated subsystem(s) are required to be OPERABLE.

(b) Also required to initiate the associated [TS required functions].

(c) When HPCS is OPERABLE for compliance with LCO 3.5.2, "ECCS - Shutdown," and aligned to the condensate storage tank while tank water level is not within the limit of SR 3.5.2.2.
Table 3.3.5.1-1 (page 4 of 5)
Emergency Core Cooling System Instrumentation

<table>
<thead>
<tr>
<th>Function</th>
<th>Applicable Conditions</th>
<th>Mode(s)</th>
<th>Func. Action</th>
<th>Ref. From</th>
<th>Requirements</th>
<th>Allowable Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Reactor Vessel Water Level – Low Low, Level 1</td>
<td>1,2(d),3(d)</td>
<td>[2]</td>
<td>F</td>
<td>SR 3.3.5.1.1, 3.3.5.1.2, 3.3.5.1.3, 3.3.5.1.5, 3.3.5.1.6</td>
<td></td>
<td>(\geq -152.5) inches</td>
</tr>
<tr>
<td>b. Drywell Pressure – High</td>
<td>1,2(d),3(d)</td>
<td>[2]</td>
<td>F</td>
<td>SR 3.3.5.1.1, 3.3.5.1.2, 3.3.5.1.3, 3.3.5.1.5, 3.3.5.1.6</td>
<td></td>
<td>(\leq 1.44) psig</td>
</tr>
<tr>
<td>c. ADS Initiation Timer</td>
<td>1,2(d),3(d)</td>
<td>[1]</td>
<td>G</td>
<td>SR 3.3.5.1.2, 3.3.5.1.4, 3.3.5.1.6</td>
<td></td>
<td>(\leq 117) seconds</td>
</tr>
<tr>
<td>d. Reactor Vessel Water Level – Low, Level 3 (Confirmatory)</td>
<td>1,2(d),3(d)</td>
<td>[1]</td>
<td>F</td>
<td>SR 3.3.5.1.1, 3.3.5.1.2, 3.3.5.1.3, 3.3.5.1.5, 3.3.5.1.6</td>
<td></td>
<td>(\geq 10.8) inches</td>
</tr>
<tr>
<td>e. LPCS Pump Discharge Pressure – High</td>
<td>1,2(d),3(d)</td>
<td>[2]</td>
<td>G</td>
<td>SR 3.3.5.1.1, 3.3.5.1.2, 3.3.5.1.3, 3.3.5.1.5, 3.3.5.1.6</td>
<td></td>
<td>(\geq 125) psig and (\leq 165) psig</td>
</tr>
<tr>
<td>f. LPCI Pump A Discharge Pressure – High</td>
<td>1,2(d),3(d)</td>
<td>[?]</td>
<td>G</td>
<td>SR 3.3.5.1.1, 3.3.5.1.2, 3.3.5.1.3, 3.3.5.1.5, 3.3.5.1.6</td>
<td></td>
<td>(\geq 115) psig and (\leq 135) psig</td>
</tr>
<tr>
<td>g. [ADS Bypass Timer (High Drywell Pressure)]</td>
<td>1,2(d),3(d)</td>
<td>[2]</td>
<td>G</td>
<td>SR 3.3.5.1.2, 3.3.5.1.4, 3.3.5.1.6</td>
<td></td>
<td>(\leq 9.4) minutes</td>
</tr>
<tr>
<td>h. Manual Initiation</td>
<td>1,2(d),3(d)</td>
<td>[2]</td>
<td>G</td>
<td>SR 3.3.5.1.6</td>
<td></td>
<td>NA</td>
</tr>
</tbody>
</table>

(d) With reactor steam dome pressure > [150] psig.
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS</th>
<th>CONDITIONS REFERENCED FROM SPECIFIED CHANNELS PER REQUIRED SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. ADS Trip System B</td>
<td>1,2(d),3(d)</td>
<td>F</td>
<td>(\geq -152.5) inches SR 3.3.5.1.1</td>
</tr>
<tr>
<td>a. Reactor Vessel Water Level - Low Low Low, Level 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Drywell Pressure - High</td>
<td>1,2(d),3(d)</td>
<td>F</td>
<td>(\leq 1.44) psig SR 3.3.5.1.1</td>
</tr>
<tr>
<td>c. ADS Initiation Timer</td>
<td>1,2(d),3(d)</td>
<td>G</td>
<td>(\leq 117) seconds SR 3.3.5.1.2</td>
</tr>
<tr>
<td>d. Reactor Vessel Water Level - Low, Level 3 (Confirmatory)</td>
<td>1,2(d),3(d)</td>
<td>F</td>
<td>(\geq 10.8) inches SR 3.3.5.1.1</td>
</tr>
<tr>
<td>e. LPCI Pumps B & C Discharge Pressure - High</td>
<td>1,2(d),3(d)</td>
<td>G</td>
<td>(\geq 115) psig SR 3.3.5.1.1 and</td>
</tr>
<tr>
<td>f. [ADS Bypass Timer (High Drywell Pressure)]</td>
<td>1,2(d),3(d)</td>
<td>G</td>
<td>(\leq 9.4) minutes SR 3.3.5.1.2</td>
</tr>
<tr>
<td>g. Manual Initiation</td>
<td>1,2(d),3(d)</td>
<td>G</td>
<td>NA SR 3.3.5.1.6</td>
</tr>
</tbody>
</table>

(d) With reactor steam dome pressure > [150] psig.
3.3 INSTRUMENTATION

3.3.5.2 Reactor Core Isolation Cooling (RCIC) System Instrumentation

LCO 3.3.5.2 The RCIC System instrumentation for each Function in Table 3.3.5.2-1 shall be OPERABLE.

APPLICABILITY: MODE 1, MODES 2 and 3 with reactor steam dome pressure > [150] psig.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more channels inoperable.</td>
<td>A.1 Enter the Condition referenced in Table 3.3.5.2-1 for the channel.</td>
<td>Immediately</td>
</tr>
<tr>
<td>B. As required by Required Action A.1 and referenced in Table 3.3.5.2-1.</td>
<td>B.1 Declare RCIC System inoperable. AND B.2 Place channel in trip.</td>
<td>1 hour from discovery of loss of RCIC initiation capability 24 hours</td>
</tr>
<tr>
<td>C. As required by Required Action A.1 and referenced in Table 3.3.5.2-1.</td>
<td>C.1 Restore channel to OPERABLE status.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. As required by Required Action A.1 and referenced in Table 3.3.5.2-1.</td>
<td>D.1 ----NOTE---- Only applicable if RCIC pump suction is not aligned to the suppression pool. -------------- Declare RCIC System inoperable.</td>
<td>1 hour from discovery of loss of RCIC initiation capability</td>
</tr>
<tr>
<td>AND</td>
<td>D.2.1 Place channel in trip.</td>
<td>24 hours</td>
</tr>
<tr>
<td>OR</td>
<td>D.2.2 Align RCIC pump suction to the suppression pool.</td>
<td>24 hours</td>
</tr>
<tr>
<td>E. Required Action and associated Completion Time of Condition B, C, or D not met.</td>
<td>E.1 Declare RCIC System inoperable.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

1. Refer to Table 3.3.5.2-1 to determine which SRs apply for each RCIC Function.

2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed as follows: (a) for up to 6 hours for Functions 2 and 5; and (b) for up to 6 hours for Functions 1, 3, and 4 provided the associated Function maintains RCIC initiation capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.5.2.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SR 3.3.5.2.2 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.5.2.3 Calibrate the trip units.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.5.2.4 Perform CHANNEL CALIBRATION.</td>
<td>18 months</td>
</tr>
<tr>
<td>SR 3.3.5.2.5 Perform LOGIC SYSTEM FUNCTIONAL TEST.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
Table 3.3.5.2-1 (page 1 of 1)
Reactor Core Isolation Cooling System Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>REQUIRED CHANNELS PER FUNCTION</th>
<th>CONDITIONS REFERENCED FROM REQUIRED ACTION A.1</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reactor Vessel Water Level - Low, Low, Level 2</td>
<td>[4]</td>
<td>B</td>
<td>SR 3.3.5.2.1</td>
<td>≥ [-43.8] inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.5.2.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.5.2.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.5.2.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.5.2.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.5.2.5</td>
<td></td>
</tr>
<tr>
<td>5. Manual Initiation</td>
<td>[1]</td>
<td>C</td>
<td>SR 3.3.5.2.5</td>
<td>NA</td>
</tr>
</tbody>
</table>
3.3 INSTRUMENTATION

3.3.6.1 Primary Containment Isolation Instrumentation

LCO 3.3.6.1 The primary containment isolation instrumentation for each Function in Table 3.3.6.1-1 shall be OPERABLE.

APPLICABILITY: According to Table 3.3.6.1-1.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more required channels inoperable.</td>
<td>A.1 Place channel in trip.</td>
<td>12 hours for Functions 2.b, 5.c, 5.d, and 5.e AND 24 hours for Functions other than Functions 2.b, 5.c, 5.d, and 5.e</td>
</tr>
<tr>
<td>B. One or more automatic Functions with isolation capability not maintained.</td>
<td>B.1 Restore isolation capability.</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Required Action and associated Completion Time of Condition A or B not met.</td>
<td>C.1 Enter the Condition referenced in Table 3.3.6.1-1 for the channel.</td>
<td>Immediately</td>
</tr>
<tr>
<td>D. As required by Required Action C.1 and referenced in Table 3.3.6.1-1.</td>
<td>D.1 Isolate associated main steam line (MSL).</td>
<td>12 hours</td>
</tr>
<tr>
<td>OR</td>
<td>D.2.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>AND</td>
<td>D.2.2 Be in MODE 4.</td>
<td>36 hours</td>
</tr>
<tr>
<td>E. As required by Required Action C.1 and referenced in Table 3.3.6.1-1.</td>
<td>E.1 Be in MODE 2.</td>
<td>6 hours</td>
</tr>
<tr>
<td>F. As required by Required Action C.1 and referenced in Table 3.3.6.1-1.</td>
<td>F.1 Isolate the affected penetration flow path(s).</td>
<td>1 hour</td>
</tr>
<tr>
<td>G. As required by Required Action C.1 and referenced in Table 3.3.6.1-1.</td>
<td>G.1 Isolate the affected penetration flow path(s).</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

(continued)
Primary Containment Isolation Instrumentation

3.3.6.1

<table>
<thead>
<tr>
<th>ACTIONS (continued)</th>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. As required by Required Action C.1 and referenced in Table 3.3.6.1-1.</td>
<td>H.1 Be in MODE 3.</td>
<td>12 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H.2 Be in MODE 4.</td>
<td>36 hours</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Required Action and associated Completion Time of Condition F or G not met.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. As required by Required Action C.1 and referenced in Table 3.3.6.1-1.</td>
<td>I.1 Declare associated standby liquid control subsystem inoperable.</td>
<td>1 hour</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>I.2 Isolate the Reactor Water Cleanup System.</td>
<td>1 hour</td>
<td></td>
</tr>
<tr>
<td>J. As required by Required Action C.1 and referenced in Table 3.3.6.1-1.</td>
<td>J.1 Initiate action to restore channel to OPERABLE status.</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>J.2 Initiate action to isolate the Residual Heat Removal (RHR) Shutdown Cooling System.</td>
<td>Immediately</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. As required by Required Action C.1 and referenced in Table 3.3.6.1-1.</td>
<td>K.1 Isolate the affected penetration flow path(s).</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.2.1 Suspend CORE ALTERATIONS.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

AND

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.2.2 Suspend movement of irradiated fuel assemblies in the [primary and secondary containment].</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

AND

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.2.3 Initiate action to suspend operations with a potential for draining the reactor vessel.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

1. Refer to Table 3.3.6.1-1 to determine which SRs apply for each Primary Containment Isolation Function.

2. When a channel is placed in an inoperable status solely for performance of required surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains isolation capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.6.1.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SR 3.3.6.1.2 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.1.3 Calibrate the trip unit.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.1.4 Perform CHANNEL CALIBRATION.</td>
<td>92 days</td>
</tr>
<tr>
<td>SR 3.3.6.1.5 Perform CHANNEL CALIBRATION.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.6.1.6 Perform LOGIC SYSTEM FUNCTIONAL TEST.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.6.1.7</td>
<td>[18] months on a STAGGERED TEST BASIS</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Radiation detectors may be excluded.</td>
<td></td>
</tr>
<tr>
<td>Verify the ISOLATION SYSTEM RESPONSE TIME is within limits.</td>
<td></td>
</tr>
</tbody>
</table>

Reviewer's Note: This SR is applied only to Functions of Table 3.3.6.1-1 with required response times not corresponding to DG start time.
Table 3.3.6.1-1 (page 1 of 6)
Primary Containment Isolation Instrumentation

<table>
<thead>
<tr>
<th>Function</th>
<th>Applicable Conditions</th>
<th>Specified</th>
<th>Required Channels Per Trip</th>
<th>Conditions Referenced From</th>
<th>Surveillance</th>
<th>Allowable Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Main Steam Line Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Reactor Vessel Water Level - Low Low Low, Level 1</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>D</td>
<td>SR 3.3.6.1.1 ≥ -152.5 inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Main Steam Line Pressure - Low</td>
<td>1</td>
<td>[2]</td>
<td>E</td>
<td>SR 3.3.6.1.1 ≥ 837 psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Main Steam Line Flow - High</td>
<td>1, 2, 3</td>
<td>[2] per MSL</td>
<td>D</td>
<td>SR 3.3.6.1.1 ≤ 176.5 psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Condenser Vacuum - Low</td>
<td>1, 2(a), 3(a)</td>
<td>[2]</td>
<td>D</td>
<td>SR 3.3.6.1.1 ≥ 8.7 inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
<td></td>
<td>Hg vacuum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Main Steam Tunnel Temperature - High</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>D</td>
<td>SR 3.3.6.1.1 $\leq 191^\circ$F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Main Steam Tunnel Differential Temperature - High</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>D</td>
<td>SR 3.3.6.1.1 $\leq 104^\circ$F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Manual Initiation</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>G</td>
<td>SR 3.3.6.1.6 NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Primary Containment Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Reactor Vessel Water Level - Low Low, Level 2</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>H</td>
<td>SR 3.3.6.1.1 ≥ -43.8 inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) With any turbine [stop valve] not closed.
Primary Containment Isolation Instrumentation

3.3.6.1

<table>
<thead>
<tr>
<th>APPLICABLE NODES OR MACHINES</th>
<th>REQUIRED CHANNELS FROM SPECIFIED CONDITIONS PER TRIP</th>
<th>REQUIRED ACTION</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Primary Containment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Drywell Pressure – High</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>H</td>
<td>SR 3.3.6.1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤ (1.43) psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
</tr>
<tr>
<td>c. Reactor Vessel Water</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
</tr>
<tr>
<td>Level – Low Low, Low, Level 1 and 2 (ECCS)</td>
<td></td>
<td></td>
<td></td>
<td>≥ [-152.5] inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
</tr>
<tr>
<td>d. Drywell Pressure – High</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
</tr>
<tr>
<td>(ECCS Divisions 1 and 2)</td>
<td></td>
<td></td>
<td></td>
<td>≤ (1.44) psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
</tr>
<tr>
<td>e. Reactor Vessel Water</td>
<td>1, 2, 3</td>
<td>[4]</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
</tr>
<tr>
<td>Level – Low Low, Level 2 (HPCS)</td>
<td></td>
<td></td>
<td></td>
<td>≥ [-43.8] inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
</tr>
<tr>
<td>f. Drywell Pressure – High</td>
<td>1, 2, 3</td>
<td>[4]</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
</tr>
<tr>
<td>(HPCS)</td>
<td></td>
<td></td>
<td></td>
<td>≤ (1.44) psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
</tr>
<tr>
<td>g. Containment and Drywell</td>
<td>1, 2, 3</td>
<td>[2]</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
</tr>
<tr>
<td>Ventilation Exhaust</td>
<td></td>
<td></td>
<td></td>
<td>≤ [4.0] mR/hr</td>
</tr>
<tr>
<td>Radiation–High</td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.1.7</td>
</tr>
</tbody>
</table>

(continued)

(b) During CORE ALTERATIONS, movement of irradiated fuel assemblies in [primary or secondary containment], or operations with a potential for draining the reactor vessel.
Primary Containment Isolation Instrumentation 3.3.6.1

Table 3.3.6.1-1 (page 3 of 6)
Primary Containment Isolation Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE CONDITIONS</th>
<th>MODES OR OTHER SPECIFIED CONDITONS PER TRIP</th>
<th>REQUIRED CHANNELS FROM SPECIFIED SYSTEM</th>
<th>CONDITIONS REFERENCED FROM REQUIRED ACTION C.1</th>
<th>SURVEILLANCE ALLOWABLE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Primary Containment Isolation (continued)</td>
<td>([b])</td>
<td>[2] K</td>
<td>SR 3.3.6.1.2</td>
<td>SR 3.3.6.1.5</td>
<td>SR 3.3.6.1.6</td>
<td>≤ [4.0] mR/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Manual Initiation</td>
<td>1,2,3</td>
<td>[2] G</td>
<td>SR 3.3.6.1.6</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Reactor Core Isolation Cooling (RCIC) System Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. RCIC Steam Line Flow—High</td>
<td>1,2,3</td>
<td>[1] F</td>
<td>SR 3.3.6.1.1</td>
<td>≥ [64] inches water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. RCIC Steam Line Flow Time Delay</td>
<td>[1,2,3]</td>
<td>[1] F</td>
<td>SR 3.3.6.1.2</td>
<td>≥ [3] seconds and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤ [7] seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. RCIC Steam Supply Line Pressure—Low</td>
<td>1,2,3</td>
<td>[1] F</td>
<td>SR 3.3.6.1.1</td>
<td>≥ [53] psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. RCIC Turbine Exhaust Diaphragm Pressure—High</td>
<td>1,2,3</td>
<td>[2] F</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [20] psig</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. RCIC Equipment Room Ambient Temperature—High</td>
<td>1,2,3</td>
<td>[1] F</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [191]°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. RCIC Equipment Room Differential Temperature—High</td>
<td>1,2,3</td>
<td>[1] F</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [128]°F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) During CORE ALTERATIONS, movement of irradiated fuel assemblies in (primary or secondary containment), or operations with a potential for draining the reactor vessel.
Table 3.3.6.1-1

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS</th>
<th>CONDITIONS REFERENCED FROM REQUIRED CHANNELS PER TRIP SYSTEM</th>
<th>REQUIRED SURVEILLANCE ACTION C.1</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. RCIC System Isolation (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Main Steam Line Tunnel Ambient Temperature - High</td>
<td>1, 2, 3</td>
<td>1</td>
<td>F</td>
<td>SR 3.3.6.1.1, 3.3.6.1.2, 3.3.6.1.5, 3.3.6.1.6</td>
</tr>
<tr>
<td>h. Main Steam Line Tunnel Differential Temperature - High</td>
<td>1, 2, 3</td>
<td>1</td>
<td>F</td>
<td>SR 3.3.6.1.1, 3.3.6.1.2, 3.3.6.1.5, 3.3.6.1.6</td>
</tr>
<tr>
<td>i. Main Steam Line Tunnel Temperature Timer</td>
<td>1, 2, 3</td>
<td>1</td>
<td>F</td>
<td>SR 3.3.6.1.2, 3.3.6.1.4, 3.3.6.1.6</td>
</tr>
<tr>
<td>j. RHR Equipment Room Ambient Temperature - High</td>
<td>1, 2, 3</td>
<td>1 per room</td>
<td>F</td>
<td>SR 3.3.6.1.1, 3.3.6.1.2, 3.3.6.1.5, 3.3.6.1.6</td>
</tr>
<tr>
<td>k. RHR Equipment Room Differential Temperature - High</td>
<td>1, 2, 3</td>
<td>1 per room</td>
<td>F</td>
<td>SR 3.3.6.1.1, 3.3.6.1.2, 3.3.6.1.5, 3.3.6.1.6</td>
</tr>
<tr>
<td>l. RCIC/RHR Steam Line Flow - High</td>
<td>1, 2, 3</td>
<td>1</td>
<td>F</td>
<td>SR 3.3.6.1.1, 3.3.6.1.2, 3.3.6.1.3, 3.3.6.1.5, 3.3.6.1.6, 3.3.6.1.7</td>
</tr>
<tr>
<td>m. Drywell Pressure - High</td>
<td>1, 2, 3</td>
<td>1</td>
<td>F</td>
<td>SR 3.3.6.1.1, 3.3.6.1.2, 3.3.6.1.3, 3.3.6.1.5, 3.3.6.1.6, 3.3.6.1.7</td>
</tr>
<tr>
<td>n. Manual Initiation</td>
<td>1, 2, 3</td>
<td>2</td>
<td>G</td>
<td>SR 3.3.6.1.6</td>
</tr>
<tr>
<td>4. Reactor Water Cleanup (RWCU) System Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Differential Flow - High</td>
<td>1, 2, 3</td>
<td>1</td>
<td>F</td>
<td>SR 3.3.6.1.1, 3.3.6.1.2, 3.3.6.1.5, 3.3.6.1.6, 3.3.6.1.7</td>
</tr>
<tr>
<td>b. Differential Flow - Timer</td>
<td>1, 2, 3</td>
<td>1</td>
<td>F</td>
<td>SR 3.3.6.1.2, 3.3.6.1.4, 3.3.6.1.6</td>
</tr>
</tbody>
</table>

(continued)
APPLICABLE CONDITIONS

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>REQUIRED CHANNELS</th>
<th>CONDITIONS REFERENCED</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. RUCU Heat Exchanger Equipment Room Temperature - High</td>
<td>1,2,3</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [126]°F</td>
</tr>
<tr>
<td>d. RUCU Heat Exchanger Equipment Room Differential Temperature - High</td>
<td>1,2,3</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [66]°F</td>
</tr>
<tr>
<td>e. RUCU Pump Rooms Temperature - High</td>
<td>1,2,3</td>
<td>[1]</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [176]°F</td>
</tr>
<tr>
<td>f. RUCU Pump Rooms Differential Temperature - High</td>
<td>1,2,3</td>
<td>[1]</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [118]°F</td>
</tr>
<tr>
<td>g. RUCU Valve Nest Room Temperature - High</td>
<td>1,2,3</td>
<td>[1]</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [141]°F</td>
</tr>
<tr>
<td>h. RUCU Valve Nest Room Differential Temperature - High</td>
<td>1,2,3</td>
<td>[1]</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [73]°F</td>
</tr>
<tr>
<td>i. Main Steam Line Tunnel Ambient Temperature - High</td>
<td>1,2,3</td>
<td>[1]</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [191]°F</td>
</tr>
<tr>
<td>j. Main Steam Line Tunnel Differential Temperature - High</td>
<td>1,2,3</td>
<td>[1]</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [104]°F</td>
</tr>
<tr>
<td>k. Reactor Vessel Water Level - Low Low, Level 2</td>
<td>1,2,3</td>
<td>[2]</td>
<td>SR 3.3.6.1.1</td>
<td>≥ [-43.8] inches</td>
</tr>
<tr>
<td>l. Standby Liquid Control System Initiation</td>
<td>1,2</td>
<td>[1]</td>
<td>I</td>
<td>SR 3.3.6.1.6</td>
</tr>
<tr>
<td>m. Manual Initiation</td>
<td>1,2,3</td>
<td>[2]</td>
<td>G</td>
<td>SR 3.3.6.1.6</td>
</tr>
</tbody>
</table>
Table 3.3.6.1-1 (page 6 of 6)

Primary Containment Isolation Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE CONDITIONS</th>
<th>MODES OR OTHER SPECIFIED CHANNELS PER TRIP SYSTEM</th>
<th>REQUIREMENTS FROM</th>
<th>CONDITIONS REFERENCED</th>
<th>REQUIRED ACTION C.1</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Shutdown Cooling System Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. RHR Equipment Room Ambient Temperature - High</td>
<td>2,3 [1 per room]</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [171]°F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. RHR Equipment Room Differential Temperature - High</td>
<td>2,3 [1 per room]</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [102]°F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Reactor Steam Dome Pressure - High</td>
<td>1,2,3 [2]</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [150] psig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Drywell Pressure - High</td>
<td>1,2,3 [2]</td>
<td>F</td>
<td>SR 3.3.6.1.1</td>
<td>≤ [143] psig</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Only one trip system required in MODES 4 and 5 with RHR Shutdown Cooling System integrity maintained.
3.3 INSTRUMENTATION

3.3.6.2 Secondary Containment Isolation Instrumentation

LCO 3.3.6.2 The secondary containment isolation instrumentation for each Function in Table 3.3.6.2-1 shall be OPERABLE.

APPLICABILITY: According to Table 3.3.6.2-1.

ACTIONS

---NOTE--- Separate Condition entry is allowed for each channel.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more channels inoperable.</td>
<td>A.1 Place channel in trip.</td>
<td>12 hours for Function 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 hours for Functions other than Function 2</td>
</tr>
<tr>
<td>B. One or more automatic Functions with secondary containment isolation capability not maintained.</td>
<td>B.1 Restore secondary containment isolation capability.</td>
<td>1 hour</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time of Condition A or B not met.</td>
<td>C.1.1 Isolate the associated penetration flow path(s).</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. (continued)</td>
<td>C.1.2 Declare associated secondary containment isolation valves inoperable.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.2.1 Place the associated standby gas treatment (SGT) subsystem(s) in operation.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.2.2 Declare associated SGT subsystem inoperable.</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

NOTES

1. Refer to Table 3.3.6.2-1 to determine which SRs apply for each Secondary Containment Isolation Function.

2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains secondary containment isolation capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.6.2.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.6.2.2 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.2.3 Calibrate the trip unit.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.2.4 Perform CHANNEL CALIBRATION.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.6.2.5 Perform LOGIC SYSTEM FUNCTIONAL TEST.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.6.2.6 Radiation detectors may be excluded.</td>
<td>[18] months on a STAGGERED TEST BASIS</td>
</tr>
<tr>
<td>Verify the ISOLATION SYSTEM RESPONSE TIME is within limits.</td>
<td></td>
</tr>
<tr>
<td>Reviewer's Note: This SR is applied only to Functions of Table 3.3.6.2-1 with required response times not corresponding to DG start time.</td>
<td></td>
</tr>
</tbody>
</table>
Secondary Containment Isolation Instrumentation

Table 3.3.6.2-1 (page 1 of 1)
Secondary Containment Isolation Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE MODES AND OTHER SPECIFIED CONDITIONS</th>
<th>REQUIRED CHANNELS PER TRIP SYSTEM</th>
<th>SURVEILLANCE SYSTEM REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reactor Vessel Water Level — Low Low, Level 2</td>
<td>1,2,3,[(a)]</td>
<td>[2]</td>
<td>SR 3.3.6.2.1</td>
<td>≤ [-43.8] inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(SR 3.3.6.2.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(SR 3.3.6.2.6)</td>
<td></td>
</tr>
<tr>
<td>2. Drywell Pressure — High</td>
<td>1,2,3</td>
<td>[2]</td>
<td>SR 3.3.6.2.1</td>
<td>≤ [1.43] psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(SR 3.3.6.2.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(SR 3.3.6.2.6)</td>
<td></td>
</tr>
<tr>
<td>3. Fuel Handling Area Ventilation Exhaust Radiation — High High</td>
<td>1,2,3, [(a),(b)]</td>
<td>[2]</td>
<td>SR 3.3.6.2.1</td>
<td>≤ [4.0] mR/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(SR 3.3.6.2.6)</td>
<td></td>
</tr>
<tr>
<td>4. Fuel Handling Area Pool Sweep Exhaust Radiation — High High</td>
<td>1,2,3, [(a),(b)]</td>
<td>[2]</td>
<td>SR 3.3.6.2.1</td>
<td>≤ [35] mR/hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(SR 3.3.6.2.6)</td>
<td></td>
</tr>
<tr>
<td>5. Manual Initiation</td>
<td>1,2,3, [(a),(b)]</td>
<td>[1 per group]</td>
<td>SR 3.3.6.2.5</td>
<td>NA</td>
</tr>
</tbody>
</table>

(a) During operations with a potential for draining the reactor vessel.

(b) During ECORE ALTERATIONS, and during movement of irradiated fuel assemblies in the [primary or secondary containment].
3.3 INSTRUMENTATION

3.3.6.3 Residual Heat Removal (RHR) Containment Spray System Instrumentation

LCO 3.3.6.3 The RHR Containment Spray System instrumentation for each Function in Table 3.3.6.3-1 shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more channels inoperable.</td>
<td>A.1 Enter the Condition referenced in Table 3.3.6.3-1 for the channel.</td>
<td>Immediately</td>
</tr>
<tr>
<td>B. As required by Required Action A.1 and referenced in Table 3.3.6.3-1.</td>
<td>B.1 Declare associated RHR containment spray subsystem inoperable. AND B.2 Place channel in trip.</td>
<td>1 hour from discovery of loss of RHR containment spray initiation capability in both trip systems 24 hours</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. As required by Required Action A.1 and referenced in Table 3.3.6.3-1.</td>
<td>C.1 Only applicable for Functions 2 and 4. Declare associated RHR containment spray subsystem inoperable.</td>
<td>1 hour from discovery of loss of RHR containment spray initiation capability in both trip systems AND C.2 Restore channel to OPERABLE status.</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time of Condition B or C not met.</td>
<td>D.1 Declare associated RHR containment spray subsystem inoperable.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

NOTES-----------------------------------

1. Refer to Table 3.3.6.3-1 to determine which SRs apply for each RHR Containment Spray System Function.

2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains RHR containment spray initiation capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.6.3.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SR 3.3.6.3.2 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.3.3 Calibrate the trip unit.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.3.4 Perform CHANNEL CALIBRATION.</td>
<td>92 days</td>
</tr>
<tr>
<td>SR 3.3.6.3.5 Perform CHANNEL CALIBRATION.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.6.3.6 Perform LOGIC SYSTEM FUNCTIONAL TEST.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
Table 3.3.6.3-1 (page 1 of 1)
RHR Containment Spray System Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>REQUIRED CHANNELS PER TRIP SYSTEM</th>
<th>CONDITIONS REFERENCED FROM</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.3.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.3.6</td>
<td></td>
</tr>
<tr>
<td>2. Containment Pressure - High</td>
<td>[1]</td>
<td>C</td>
<td>SR 3.3.6.3.1</td>
<td>≤ [8.34] psig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.3.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.3.6</td>
<td></td>
</tr>
<tr>
<td>Low Low, Level 1</td>
<td></td>
<td></td>
<td>SR 3.3.6.3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.3.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.3.4]</td>
<td>and ≤ [11.44] minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.3.6</td>
<td></td>
</tr>
</tbody>
</table>
3.3 INSTRUMENTATION

3.3.6.4 Suppression Pool Makeup (SPMU) System Instrumentation

LCO 3.3.6.4 The SPMU system instrumentation for each function in Table 3.3.6.4-1 shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

---NOTE---
Separate Condition entry is allowed for each channel.
---NOTE---

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more channels inoperable.</td>
<td>A.1 Enter the Condition referenced in Table 3.3.6.4-1 for the channel.</td>
<td>Immediately</td>
</tr>
<tr>
<td>B. As required by Required Action A.1 and referenced in Table 3.3.6.4-1.</td>
<td>B.1 Declare associated SPMU subsystem inoperable.</td>
<td>1 hour from discovery of loss of SPMU initiation capability in both trip systems</td>
</tr>
<tr>
<td>AND</td>
<td>B.2 Place channel in trip.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. As required by Required Action A.1 and referenced in Table 3.3.6.4-1.</td>
<td>C.1 Only applicable for Functions 3 and 6. Declare associated SPMU subsystem inoperable.</td>
<td>1 hour from discovery of loss of SPMU initiation capability in both trip systems</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.2 Restore channel to OPERABLE status.</td>
<td>24 hours</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time of Condition B or C not met.</td>
<td>D.1 Declare associated SPMU subsystem inoperable.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

---NOTES---

1. Refer to Table 3.3.6.4-1 to determine which SRs apply for each SPMU Function.

2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains SPMU initiation capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.6.4.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SR 3.3.6.4.2 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.4.3 Calibrate the trip unit.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.4.4 Perform CHANNEL CALIBRATION.</td>
<td>92 days</td>
</tr>
<tr>
<td>SR 3.3.6.4.5 Perform CHANNEL CALIBRATION.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.6.4.6 Perform LOGIC SYSTEM FUNCTIONAL TEST.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
Table 3.3.6.4-1

Suppression Pool Makeup System Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>REQUIRED CHANNELS PER TRIP SYSTEM</th>
<th>CONDITIONS REFERENCED FROM REQUIRED ACTION A.1</th>
<th>SURVEILLANCE REQUIREMENTS</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Drywell Pressure—High</td>
<td>[2]</td>
<td>B</td>
<td>SR 3.3.6.4.1 ≤ (1.44) psig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.4.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.6</td>
<td></td>
</tr>
<tr>
<td>2. Reactor Vessel Water Level—Low Low Low, Level 1</td>
<td>[2]</td>
<td>B</td>
<td>SR 3.3.6.4.1 ≥ [-152.5] inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.4.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.4.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.6</td>
<td></td>
</tr>
<tr>
<td>4. Drywell Pressure—High</td>
<td>[2]</td>
<td>B</td>
<td>SR 3.3.6.4.1 ≤ (1.43) psig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.4.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.6</td>
<td></td>
</tr>
<tr>
<td>5. Reactor Vessel Water Level—Low Low, Level 2</td>
<td>[2]</td>
<td>B</td>
<td>SR 3.3.6.4.1 ≥ [-43.8] inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.4.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.6</td>
<td></td>
</tr>
<tr>
<td>6. Timer</td>
<td>[1]</td>
<td>C</td>
<td>SR 3.3.6.4.2 ≤ (29.5) minutes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[SR 3.3.6.4.4]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SR 3.3.6.4.6</td>
<td></td>
</tr>
</tbody>
</table>
3.3 INSTRUMENTATION

3.3.6.5 Relief and Low-Low Set (LLS) Instrumentation

LCO 3.3.6.5 Two relief and LLS instrumentation trip systems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

<table>
<thead>
<tr>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>A. One trip system inoperable.</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
</tr>
<tr>
<td>OR Two trip systems inoperable.</td>
</tr>
</tbody>
</table>

BWR/6 STS 3.3-74 Rev 1, 04/07/95
SURVEILLANCE REQUIREMENTS

--- NOTE ---

When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours, provided the associated Function maintains LLS or relief initiation capability, as applicable.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.6.5.1 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.5.2 Calibrate the trip unit.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.6.5.3 Perform CHANNEL CALIBRATION. The Allowable Values shall be:</td>
<td>[18] months</td>
</tr>
<tr>
<td>a. Relief Function</td>
<td></td>
</tr>
<tr>
<td>Low: 1103 ± 15 psig</td>
<td></td>
</tr>
<tr>
<td>Medium: 1113 ± 15 psig</td>
<td></td>
</tr>
<tr>
<td>High: 1123 ± 15 psig</td>
<td></td>
</tr>
<tr>
<td>b. LLS Function</td>
<td></td>
</tr>
<tr>
<td>Low open: 1033 ± 15 psig</td>
<td></td>
</tr>
<tr>
<td>close: 926 ± 15 psig</td>
<td></td>
</tr>
<tr>
<td>Medium open: 1073 ± 15 psig</td>
<td></td>
</tr>
<tr>
<td>close: 936 ± 15 psig</td>
<td></td>
</tr>
<tr>
<td>High open: 1113 ± 15 psig</td>
<td></td>
</tr>
<tr>
<td>close: 946 ± 15 psig</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.6.5.4 Perform LOGIC SYSTEM FUNCTIONAL TEST.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.3 INSTRUMENTATION

3.3.7.1 [Control Room Fresh Air (CRFA)] System Instrumentation

LCO 3.3.7.1 The [CRFA] System instrumentation for each Function in Table 3.3.7.1-1 shall be OPERABLE.

APPLICABILITY: According to Table 3.3.7.1-1.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more required channels inoperable.</td>
<td>A.1 Enter the Condition referenced in Table 3.3.7.1-1 for the channel.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. As required by Required Action A.1 and referenced in Table 3.3.7.1-1.</td>
<td>B.1 Declare associated [CRFA] subsystem inoperable.</td>
<td>1 hour from discovery of loss of [CRFA] initiation capability in both trip systems</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Place channel in trip.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. As required by Required Action A.1 and referenced in Table 3.3.7.1-1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Declare associated [CRFA] subsystem inoperable.</td>
</tr>
</tbody>
</table>

AND

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.2 Place channel in trip.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hour from discovery of loss of [CRFA] initiation capability in both trip systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. As required by Required Action A.1 and referenced in Table 3.3.7.1-1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1 Declare associated [CRFA] subsystem inoperable.</td>
</tr>
</tbody>
</table>

AND

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2 Place channel in trip.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Required Action and associated Completion Time of Condition B, C, or D not met.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1 ---------------NOTE---------------</td>
</tr>
<tr>
<td>Place in toxic gas protection mode if automatic transfer to toxic gas protection mode is inoperable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.2 Place the associated [CRFA] subsystem in the [isolation] mode of operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hour</td>
</tr>
</tbody>
</table>
[CRFA] System Instrumentation

3.3.7.1

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. (continued)</td>
<td>E.2 Declare associated [CRFA] subsystem inoperable.</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

NOTES

1. Refer to Table 3.3.7.1-1 to determine which SRs apply for each Function.

2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains [CRFA] initiation capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.7.1.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SR 3.3.7.1.2 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>[92] days</td>
</tr>
<tr>
<td>[SR 3.3.7.1.3 Calibrate the trip units.</td>
<td>[92] days</td>
</tr>
<tr>
<td>SR 3.3.7.1.4 Perform CHANNEL CALIBRATION.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.7.1.5 Perform LOGIC SYSTEM FUNCTIONAL TEST.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

BWR/6 STS 3.3-78 Rev 1, 04/07/95
Table 3.3.7.1-1 (page 1 of 1)
[Control Room Fresh Air] System Instrumentation

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>APPLICABLE CONDITIONS</th>
<th>MODES OR OTHER SPECIFIED CONDITONS</th>
<th>REQUIRED CHANNELS FROM REFERENCE</th>
<th>CONDITONS REQUIRED PER TRIP SYSTEM</th>
<th>SURVEILLANCE REQUIREMENTS ACTION A.1</th>
<th>ALLOWABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reactor Vessel Water Level - Low, Low, Level 2 ([a])</td>
<td>1,2,3, ([2])</td>
<td>B</td>
<td>SR 3.3.7.1.1</td>
<td>≥ [-43.8] inches</td>
<td>SR 3.3.7.1.2</td>
<td>[SR 3.3.7.1.3]</td>
</tr>
<tr>
<td>2. Drywell Pressure - High</td>
<td>1,2,3 ([2])</td>
<td>C</td>
<td>SR 3.3.7.1.1</td>
<td>≤ [1.43] psig</td>
<td>SR 3.3.7.1.2</td>
<td>[SR 3.3.7.1.3]</td>
</tr>
<tr>
<td>3. Control Room Ventilation Radiation Monitors ([a], [b])</td>
<td>1,2,3, ([2])</td>
<td>D</td>
<td>SR 3.3.7.1.1</td>
<td>≤ [5] mR/hr</td>
<td>SR 3.3.7.1.2</td>
<td>SR 3.3.7.1.4</td>
</tr>
</tbody>
</table>

(a) During operations with a potential for draining the reactor vessel.
(b) During [CORE ALTERATIONS, and during] movement of irradiated fuel assemblies in the [primary or secondary containment].
3.3 INSTRUMENTATION

3.3.8.1 Loss of Power (LOP) Instrumentation

LCO 3.3.8.1 The LOP instrumentation for each Function in Table 3.3.8.1-1 shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3,
When the associated diesel generator (DG) is required to be OPERABLE by LCO 3.8.2, "AC Sources—Shutdown."

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more channels inoperable.</td>
<td>A.1 Place channel in trip.</td>
<td>1 hour</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Declare associated DG inoperable.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

NOTE

Separate Condition entry is allowed for each channel.
SURVEILLANCE REQUIREMENTS

1. Refer to Table 3.3.8.1-1 to determine which SRs apply for each LOP Function.

2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 2 hours provided the associated Function maintains DG initiation capability.

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.8.1.1 Perform CHANNEL CHECK.</td>
<td>12 hours</td>
</tr>
<tr>
<td>SR 3.3.8.1.2 Perform CHANNEL FUNCTIONAL TEST.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.3.8.1.3 Perform CHANNEL CALIBRATION.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.8.1.4 Perform LOGIC SYSTEM FUNCTIONAL TEST.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
Table 3.3.8.1-1

Loss of Power Instrumentation

<table>
<thead>
<tr>
<th>Function</th>
<th>Required Channels</th>
<th>Surveillance Requirements</th>
<th>Allowable Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Divisions 1 and 2 - 4.16 kV Emergency Bus Undervoltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Loss of Voltage - 4.16 kV basis</td>
<td>[4]</td>
<td>[SR 3.3.8.1.1]</td>
<td>≥ 2621 V and ≤ 2912 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.4</td>
<td></td>
</tr>
<tr>
<td>b. Loss of Voltage - Time Delay</td>
<td>[4]</td>
<td>[SR 3.3.8.1.2]</td>
<td>≥ 0.4 seconds and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.3</td>
<td>≤ 1.0 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.4</td>
<td></td>
</tr>
<tr>
<td>c. Degraded Voltage - 4.16 kV basis</td>
<td>[4]</td>
<td>[SR 3.3.8.1.1]</td>
<td>≥ 3744 V and ≤ 3837.6 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.4</td>
<td></td>
</tr>
<tr>
<td>d. Degraded Voltage - Time Delay</td>
<td>[4]</td>
<td>[SR 3.3.8.1.2]</td>
<td>≥ 8.5 seconds and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.3</td>
<td>≤ 9.5 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.4</td>
<td></td>
</tr>
<tr>
<td>2. Division 3 - 4.16 kV Emergency Bus Undervoltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Loss of Voltage - 4.16 kV basis</td>
<td>[4]</td>
<td>[SR 3.3.8.1.1]</td>
<td>≥ 2984 V and ≤ 3106 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.4</td>
<td></td>
</tr>
<tr>
<td>b. Loss of Voltage - Time Delay</td>
<td>[4]</td>
<td>[SR 3.3.8.1.2]</td>
<td>≥ 2.0 seconds and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.3</td>
<td>≤ 2.5 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.4</td>
<td></td>
</tr>
<tr>
<td>c. Degraded Voltage - 4.16 kV basis</td>
<td>[4]</td>
<td>[SR 3.3.8.1.1]</td>
<td>≥ 3558.5 V and ≤ 3763.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.4</td>
<td></td>
</tr>
<tr>
<td>d. Degraded Voltage - Time Delay, No LOCA</td>
<td>[4]</td>
<td>[SR 3.3.8.1.2]</td>
<td>≥ 4.5 minutes and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.3</td>
<td>≤ 5.5 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.4</td>
<td></td>
</tr>
<tr>
<td>e. Degraded Voltage - Time Delay, LOCA</td>
<td>[4]</td>
<td>[SR 3.3.8.1.2]</td>
<td>≥ 3.6 seconds and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.3</td>
<td>≤ 4.4 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR 3.3.8.1.4</td>
<td></td>
</tr>
</tbody>
</table>
3.3 INSTRUMENTATION

3.3.8.2 Reactor Protection System (RPS) Electric Power Monitoring

LCO 3.3.8.2 Two RPS electric power monitoring assemblies shall be OPERABLE for each inservice RPS motor generator set or alternate power supply.

APPLICABILITY: MODES 1, 2, and 3, MODES 4 and 5 [with any control rod withdrawn from a core cell containing one or more fuel assemblies].

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or both inservice power supplies with one electric power monitoring assembly inoperable.</td>
<td>A.1 Remove associated inservice power supply(s) from service.</td>
<td>72 hours</td>
</tr>
<tr>
<td>B. One or both inservice power supplies with both electric power monitoring assemblies inoperable.</td>
<td>B.1 Remove associated inservice power supply(s) from service.</td>
<td>1 hour</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time of Condition A or B not met in MODE 1, 2, or 3.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Required Action and associated Completion Time of Condition A or B not met in MODE 4 or 5 [with any control rod withdrawn from a core cell containing one or more fuel assemblies].</td>
<td>D.1 Initiate action to fully insert all insertable control rods in core cells containing one or more fuel assemblies. AND D.2.1 Initiate action to restore one electric power monitoring assembly to OPERABLE status for in-service power supply(s) supplying required instrumentation.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.2.2 Initiate action to isolate the Residual Heat Removal Shutdown Cooling System.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.3.8.2.1</td>
<td>184 days</td>
</tr>
</tbody>
</table>

NOTE

Only required to be performed prior to entering MODE 2 or 3 from MODE 4, when in MODE 4 for ≥ 24 hours.

Perform CHANNEL FUNCTIONAL TEST.
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.3.8.2.2 Perform CHANNEL CALIBRATION. The Allowable Values shall be:</td>
<td></td>
</tr>
<tr>
<td>a. Overvoltage</td>
<td></td>
</tr>
<tr>
<td>Bus A ≤ [132.9] V</td>
<td></td>
</tr>
<tr>
<td>Bus B ≤ [133.0] V</td>
<td></td>
</tr>
<tr>
<td>b. Undervoltage</td>
<td></td>
</tr>
<tr>
<td>Bus A ≥ [115.0] V</td>
<td></td>
</tr>
<tr>
<td>Bus B ≥ [115.9] V</td>
<td></td>
</tr>
<tr>
<td>c. Underfrequency (with time delay set to [zero])</td>
<td></td>
</tr>
<tr>
<td>Bus A ≥ [57] Hz</td>
<td></td>
</tr>
<tr>
<td>Bus B ≥ [57] Hz</td>
<td></td>
</tr>
<tr>
<td>SR 3.3.8.2.3 Perform a system functional test.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.1 Recirculation Loops Operating

LCO 3.4.1 Two recirculation loops with matched flows shall be in operation,

OR

One recirculation loop may be in operation provided the following limits are applied when the associated LCO is applicable:

a. LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," single loop operation limits [specified in the COLR];

b. LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)," single loop operation limits [specified in the COLR]; and

c. LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," Function 2.b (Average Power Range Monitors Flow Biased Simulated Thermal Power—High), Allowable Value of Table 3.3.1.1-1 is reset for single loop operation.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A* Requirements of the LCO not met.</td>
<td>A.1 Satisfy the requirements of the LCO.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

* Pending resolution of stability issue.

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Required Action and associated Completion</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>Time of Condition A not met.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR No recirculation loops in operation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.1.1</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

NOTE

Not required to be performed until 24 hours after both recirculation loops are in operation.

Verify recirculation loop jet pump flow mismatch with both recirculation loops in operation is.

a. \(\leq [10\%] \) of rated core flow when operating at \(< [70\%] \) of rated core flow; and

b. \(\leq [5\%] \) of rated core flow when operating at \(\geq [70\%] \) of rated core flow.
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.2 Flow Control Valves (FCVs)

LCO 3.4.2 A recirculation loop FCV shall be OPERABLE in each operating recirculation loop.

APPLICABILITY: MODES 1 and 2.

ACTIONS

--- NOTE ---
Separate Condition entry is allowed for each FCV.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or two required FCVs inoperable.</td>
<td>A.1 Lock up the FCV.</td>
<td>4 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.2.1 Verify each FCV fails "as is" on loss of hydraulic pressure at the hydraulic unit.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.2.2</td>
<td>Verify average rate of each FCV movement is:</td>
</tr>
<tr>
<td></td>
<td>a. $\leq [11]%$ of stroke per second for opening; and</td>
</tr>
<tr>
<td></td>
<td>b. $\leq [11]%$ of stroke per second for closing.</td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.3 Jet Pumps

LCO 3.4.3 All jet pumps shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more jet pumps inoperable.</td>
<td>A.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.3.1</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

1. Not required to be performed until 4 hours after associated recirculation loop is in operation.

2. Not required to be performed until 24 hours after > 25% RTP.

Verify at least two of the following criteria (a, b, and c) are satisfied for each operating recirculation loop:

a. Recirculation loop drive flow versus flow control valve position differs by ≤ 10% from established patterns.

b. Recirculation loop drive flow versus total core flow differs by ≤ 10% from established patterns.

c. Each jet pump diffuser to lower plenum differential pressure differs by ≤ 20% from established patterns, or each jet pump flow differs by ≤ 10% from established patterns.

Reviewer’s Note: An acceptable option to these criteria for jet pump OPERABILITY can be found in the BWR/4 ITS, NUREG-1433.
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.4 Safety/Relief Valves (S/RVs)

LCO 3.4.4 The safety function of [seven] S/RVs shall be OPERABLE, AND

The relief function of [seven] additional S/RVs shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One [required] S/RV inoperable.</td>
<td>A.1 Restore [required] S/RV to OPERABLE status.</td>
<td>14 days</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Two] or more [required] S/RVs inoperable.</td>
<td>B.2 Be in MODE 4.</td>
<td>36 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.4.1 Verify the safety function lift setpoints of the [required] S/RVs are as follows:</td>
<td>[In accordance with the Inservice Testing Program or [18] months]</td>
</tr>
<tr>
<td>Number of S/RVs</td>
<td>Setpoint (psig)</td>
</tr>
<tr>
<td>[8]</td>
<td>[1165 ± 34.9]</td>
</tr>
<tr>
<td>[6]</td>
<td>[1180 ± 35.4]</td>
</tr>
<tr>
<td>[6]</td>
<td>[1190 ± 35.7]</td>
</tr>
<tr>
<td>Following testing, lift settings shall be within ± 1%.</td>
<td></td>
</tr>
<tr>
<td>SR 3.4.4.2 Valve actuation may be excluded.</td>
<td>[18] months</td>
</tr>
<tr>
<td>Verify each [required] relief function S/RV actuates on an actual or simulated automatic initiation signal.</td>
<td></td>
</tr>
<tr>
<td>SR 3.4.4.3 Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test.</td>
<td>[18] months on a STAGGERED TEST BASIS for each valve solenoid</td>
</tr>
<tr>
<td>Verify each [required] S/RV opens when manually actuated.</td>
<td></td>
</tr>
</tbody>
</table>
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.5 RCS Operational LEAKAGE

LCO 3.4.5 RCS operational LEAKAGE shall be limited to:

a. No pressure boundary LEAKAGE;

b. \(\leq 5 \text{ gpm unidentified LEAKAGE} \); [and]

c. \(\leq [30] \text{ gpm total LEAKAGE averaged over the previous 24 hour period} \); [and]

d. \(\leq 2 \text{ gpm increase in unidentified LEAKAGE within the previous [4] hour period in MODE 1} \).

APPLICABILITY: MODES 1, 2, and 3.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Unidentified LEAKAGE not within limit. OR Total LEAKAGE not within limit.</td>
<td>A.1 Reduce LEAKAGE to within limits.</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

B. Unidentified LEAKAGE increase not within limit. **OR**

 | B.1 Reduced LEAKAGE to within limit. | 4 hours |

(continued)
RCS Operational LEAKAGE
3.4.5

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. (continued)</td>
<td>B.2 Verify source of unidentified LEAKAGE increase is not service sensitive type 304 or type 316 austenitic stainless steel.</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Required Action and associated Completion Time of Condition A or B not met.</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR Pressure boundary LEAKAGE exists.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.5.1 Verify RCS unidentified and total LEAKAGE and unidentified LEAKAGE increase are within limits.</td>
<td>8 hours</td>
</tr>
</tbody>
</table>
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.6 RCS Pressure Isolation Valve (PIV) Leakage

LCO 3.4.6 The leakage from each RCS PIV shall be within limit.

APPLICABILITY: MODES 1 and 2, MODE 3, except valves in the residual heat removal (RHR) shutdown cooling flow path when in, or during the transition to or from, the shutdown cooling mode of operation.

ACTIONS

--

1. Separate Condition entry is allowed for each flow path.

2. Enter applicable Conditions and Required Actions for systems made inoperable by PIVs.

--

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more flow paths with leakage from one or more RCS PIVs not within limit.</td>
<td>Each valve used to satisfy Required Action A.1 and Required Action A.2 shall have been verified to meet SR 3.4.6.1 and be in the reactor coolant pressure boundary [or the high pressure portion of the system].</td>
<td>(continued)</td>
</tr>
</tbody>
</table>

BWR/6 STS 3.4-11 Rev 1, 04/07/95
RCS PIV Leakage

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.1 Isolate the high pressure portion of the affected system from the low pressure portion by use of one closed manual, deactivated automatic, or check valve. AND A.2 Isolate the high pressure portion of the affected system from the low pressure portion by use of a second closed manual, deactivated automatic, or check valve.</td>
<td>4 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not required to be performed in MODE 3.</td>
<td>[In accordance with Inservice Testing Program or [18] months]</td>
</tr>
</tbody>
</table>

Verify equivalent leakage of each RCS PIV is \(\leq 0.5 \text{ gpm per nominal inch of valve size} \) up to a maximum of 5 gpm, at an RCS pressure \(\geq [1040] \text{ psig} \) and \(\leq [1060] \text{ psig} \).
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.7 RCS Leakage Detection Instrumentation

LCO 3.4.7 The following RCS leakage detection instrumentation shall be OPERABLE:

a. Drywell floor drain sump monitoring system; [and]

b. One channel of either drywell atmospheric particulate or atmospheric gaseous monitoring system; [and]

c. Drywell air cooler condensate flow rate monitoring system.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Drywell floor drain sump monitoring system inoperable.</td>
<td>--------------NOTE-------------LCO 3.0.4 is not applicable. A.1 Restore drywell floor drain sump monitoring system to OPERABLE status.</td>
<td>30 days</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Required drywell atmospheric monitoring system inoperable.</td>
<td>B.1 Analyze grab samples of drywell atmosphere.</td>
<td>Once per 12 hours</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Restore required drywell atmospheric monitoring system to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>C. Drywell air cooler condensate flow rate monitoring system inoperable.</td>
<td>C.1 Perform SR 3.4.7.1.</td>
<td>Once per 8 hours</td>
</tr>
<tr>
<td>D. Required drywell atmospheric monitoring system inoperable.</td>
<td>D.1 Restore required drywell atmospheric monitoring system to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drywell air cooler condensate flow rate monitoring system inoperable.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

- LCO 3.0.4 is not applicable.
- Not applicable when the required drywell atmospheric monitoring system is inoperable.
- LCO 3.0.4 is not applicable.
- (continued)
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. (continued)</td>
<td>D.2 Restore drywell air cooler condensate flow rate monitoring system to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>E. Required Action and associated Completion Time of Condition A, B, [C, or D] not met.</td>
<td>E.1 Be in MODE 3. AND E.2 Be in MODE 4.</td>
<td>12 hours, 36 hours</td>
</tr>
<tr>
<td>F. All required leakage detection systems inoperable.</td>
<td>F.1 Enter LCO 3.0.3.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.7.1</td>
<td>Perform CHANNEL CHECK of required drywell atmospheric monitoring system.</td>
</tr>
<tr>
<td>SR 3.4.7.2</td>
<td>Perform CHANNEL FUNCTIONAL TEST of required leakage detection instrumentation.</td>
</tr>
<tr>
<td>SR 3.4.7.3</td>
<td>Perform CHANNEL CALIBRATION of required leakage detection instrumentation.</td>
</tr>
</tbody>
</table>
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.8 RCS Specific Activity

LCO 3.4.8 The specific activity of the reactor coolant shall be limited to DOSE EQUIVALENT I-131 specific activity $\Delta [0.2] \mu Ci/gm$.

APPLICABILITY: MODE 1, MODES 2 and 3 with any main steam line not isolated.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Reactor coolant specific activity $> [0.2] \mu Ci/gm$ and $\leq 4.0 \mu Ci/gm$ DOSE EQUIVALENT I-131.</td>
<td>--------------NOTE--------------LCO 3.0.4 is not applicable.</td>
<td>Once per 4 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 hours</td>
</tr>
<tr>
<td>A.1 Determine DOSE EQUIVALENT I-131.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.2 Restore DOSE EQUIVALENT I-131 to within limits.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor coolant Specific activity $> [4.0] \mu Ci/gm$ DOSE EQUIVALENT I-131.</td>
<td>B.1 Determine DOSE EQUIVALENT I-131.</td>
<td>Once per 4 hours</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td>12 hours</td>
</tr>
<tr>
<td>B.2.1 Isolate all main steam lines.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
RCS Specific Activity

3.4.8

<table>
<thead>
<tr>
<th>ACTIONS</th>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. (continued)</td>
<td>B.2.2.1 Be in MODE 3.</td>
<td>12 hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2.2.2 Be in MODE 4.</td>
<td>36 hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>SR 3.4.8.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.9 Residual Heat Removal (RHR) Shutdown Cooling System—Hot Shutdown

LCO 3.4.9 Two RHR shutdown cooling subsystems shall be OPERABLE, and, with no recirculation pump in operation, at least one RHR shutdown cooling subsystem shall be in operation.

-------------------------------NOTES-------------------------------
1. Both RHR shutdown cooling subsystems and recirculation pumps may be removed from operation for up to 2 hours per 8 hour period.
2. One RHR shutdown cooling subsystem may be inoperable for up to 2 hours for performance of Surveillance.

APPLICABILITY: MODE 3 with reactor steam dome pressure < [the RHR cut in permissive pressure].

ACTIONS

-------------------------------NOTES-------------------------------
1. LCO 3.0.4 is not applicable.
2. Separate Condition entry is allowed for each RHR shutdown cooling subsystem.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or two RHR shutdown cooling subsystems inoperable.</td>
<td>A.1 Initiate action to restore RHR shutdown cooling subsystem to OPERABLE status.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(continued)</td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.2 Verify an alternate method of decay heat removal is available for each inoperable RHR shutdown cooling subsystem.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.3 Be in MODE 4.</td>
<td>24 hours</td>
</tr>
<tr>
<td>B. No RHR shutdown cooling subsystem in operation.</td>
<td>B.1 Initiate action to restore one RHR shutdown cooling subsystem or one recirculation pump to operation.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No recirculation pump in operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Verify reactor coolant circulation by an alternate method.</td>
<td>1 hour from discovery of no reactor coolant circulation</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td>Once per 12 hours thereafter</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.3 Monitor reactor coolant temperature and pressure.</td>
<td>Once per hour</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.9.1</td>
<td></td>
</tr>
<tr>
<td>NOTE</td>
<td>12 hours</td>
</tr>
<tr>
<td>Not required to be met until 2 hours after reactor steam dome pressure is (<) [the RHR cut in permissive pressure].</td>
<td></td>
</tr>
<tr>
<td>Verify one RHR shutdown cooling subsystem or recirculation pump is operating.</td>
<td></td>
</tr>
</tbody>
</table>
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.10 Residual Heat Removal (RHR) Shutdown Cooling System—Cold Shutdown

LCO 3.4.10 Two RHR shutdown cooling subsystems shall be OPERABLE, and, with no recirculation pump in operation, at least one RHR shutdown cooling subsystem shall be in operation.

NOTES
1. Both RHR shutdown cooling subsystems and recirculation pumps may be removed from operation for up to 2 hours per 8 hour period.
2. One RHR shutdown cooling subsystem may be inoperable for up to 2 hours for the performance of Surveillances.

APPLICABILITY: MODE 4.

ACTIONS

Separate Condition entry is allowed for each RHR shutdown cooling subsystem.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or two RHR shutdown cooling subsystems inoperable.</td>
<td>A.1 Verify an alternate method of decay heat removal is available for each inoperable RHR shutdown cooling subsystem.</td>
<td>1 hour AND Once per 24 hours thereafter</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. No RHR shutdown cooling subsystem in operation. AND No recirculation pump in operation.</td>
<td>B.1 Verify reactor coolant circulating by an alternate method.</td>
<td>1 hour from discovery of no reactor coolant circulation AND Once per 12 hours thereafter</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Monitor reactor coolant temperature and pressure.</td>
<td>Once per hour</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.10.1 Verify one RHR shutdown cooling subsystem or recirculation pump is operating.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
RCS P/T Limits

3.4.11 RCS Pressure and Temperature (P/T) Limits

LCO 3.4.11

RCS pressure, RCS temperature, RCS heatup and cooldown rates, and the recirculation pump starting temperature requirements shall be maintained within the limits specified in the PTLR.

APPLICABILITY: At all times.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. NOTE_- Required Action A.2 shall be completed if this Condition is entered. Requirements of the LCO not met in MODES 1, 2, and 3.</td>
<td>A.1 Restore parameter(s) to within limits. AND A.2 Determine RCS is acceptable for continued operation.</td>
<td>30 minutes AND 72 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours AND 36 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. ---------NOTE--------- Required Action C.2 shall be completed if this Condition is entered. -------------------</td>
<td>C.1 Initiate action to restore parameter(s) to within limits. AND C.2 Determine RCS is acceptable for operation.</td>
<td>Immediately Prior to entering MODE 2 or 3</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.11.1 ----------------NOTE---------------- Only required to be performed during RCS heatup and cooldown operations, and RCS inservice leak and hydrostatic testing. ------------------- Verify RCS pressure, RCS temperature, and RCS heatup and cooldown rates are within the limits specified in the PTLR.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>SR 3.4.11.2 Verify RCS pressure and RCS temperature are within the criticality limits specified in the PTLR.</td>
<td>Once within 15 minutes prior to control rod withdrawal for the purpose of achieving criticality</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
</table>
| **SR 3.4.11.3**
ONLY required to be met in MODES 1, 2, 3, and 4 [with reactor steam dome pressure ≥ 25 psig].
Verify the difference between the bottom head coolant temperature and the reactor pressure vessel (RPV) coolant temperature is within the limits specified in the PTLR. | Once within 15 minutes prior to each startup of a recirculation pump |
| **SR 3.4.11.4**
ONLY required to be met in MODES 1, 2, 3, and 4.
Verify the difference between the reactor coolant temperature in the recirculation loop to be started and the RPV coolant temperature is within the limits specified in the PTLR. | Once within 15 minutes prior to each startup of a recirculation pump |
| **SR 3.4.11.5**
ONLY required to be performed when tensioning the reactor vessel head bolting studs.
Verify reactor vessel flange and head flange temperatures are within the limits specified in the PTLR. | 30 minutes |
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.11.6 Not required to be performed until 30 minutes after RCS</td>
<td></td>
</tr>
<tr>
<td>temperature ≤ 80°F in MODE 4.</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Verify reactor vessel flange and head flange temperatures are within the</td>
<td></td>
</tr>
<tr>
<td>limits specified in the PTLR.</td>
<td></td>
</tr>
<tr>
<td>SR 3.4.11.7 Not required to be performed until 12 hours after RCS</td>
<td></td>
</tr>
<tr>
<td>temperature ≤ 100°F in MODE 4.</td>
<td>12 hours</td>
</tr>
<tr>
<td>Verify reactor vessel flange and head flange temperatures are within the</td>
<td></td>
</tr>
<tr>
<td>limits specified in the PTLR.</td>
<td></td>
</tr>
</tbody>
</table>
3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.12 Reactor Steam Dome Pressure

LCO 3.4.12 The reactor steam dome pressure shall be ≤ [1045] psig.

APPLICABILITY: MODES 1 and 2.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Reactor steam dome pressure not within limit.</td>
<td>A.1 Restore reactor steam dome pressure to within limit.</td>
<td>15 minutes</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.4.12.1 Verify reactor steam dome pressure is ≤ [1045] psig.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM

3.5.1 ECCS—Operating

LCO 3.5.1 Each ECCS injection/spray subsystem and the Automatic Depressurization System (ADS) function of [eight] safety/relief valves shall be OPERABLE.

APPLICABILITY: MODE 1, MODES 2 and 3, except ADS valves are not required to be OPERABLE with reactor steam dome pressure ≤ [150] psig.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One low pressure ECCS injection/spray subsystem inoperable.</td>
<td>A.1 Restore low pressure ECCS injection/spray subsystem to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>B. High Pressure Core Spray (HPCS) System inoperable.</td>
<td>B.1 Verify by administrative means RCIC System is OPERABLE when RCIC is required to be OPERABLE.</td>
<td>1 hour</td>
</tr>
<tr>
<td>AND</td>
<td>B.2 Restore HPCS System to OPERABLE status.</td>
<td>14 days</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Two ECCS injection subsystems inoperable. OR One ECCS injection and one ECCS spray subsystem inoperable.</td>
<td>C.1 Restore one ECCS injection/spray subsystem to OPERABLE status.</td>
<td>72 hours</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time of Condition A, B, or C not met.</td>
<td>D.1 Be in MODE 3. AND D.2 Be in MODE 4.</td>
<td>12 hours AND 36 hours</td>
</tr>
<tr>
<td>E. One ADS valve inoperable.</td>
<td>E.1 Restore ADS valve to OPERABLE status.</td>
<td>14 days</td>
</tr>
<tr>
<td>F. One ADS valve inoperable. AND One low pressure ECCS injection/spray subsystem inoperable.</td>
<td>F.1 Restore ADS valve to OPERABLE status. OR F.2 Restore low pressure ECCS injection/spray subsystem to OPERABLE status.</td>
<td>72 hours AND 72 hours</td>
</tr>
<tr>
<td>G. Two or more ADS valves inoperable. OR</td>
<td>G.1 Be in MODE 3. AND</td>
<td>12 hours AND (continued)</td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. (continued)</td>
<td>G.2 Reduce reactor steam dome pressure to (\leq [150]) psig.</td>
<td>36 hours</td>
</tr>
</tbody>
</table>

H. HPCS and low pressure core spray (LPCS) inoperable.

OR

Three or more ECCS injection/spray subsystems inoperable.

OR

HPCS System and one or more ADS valves inoperable.

OR

Two or more ECCS injection/spray subsystems and one or more ADS valves inoperable.

H.1 Enter LCO 3.0.3. | Immediately |
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.5.1.1</td>
<td>Verify, for each ECCS injection/spray subsystem, the piping is filled with water from the pump discharge valve to the injection valve.</td>
</tr>
<tr>
<td>SR 3.5.1.2</td>
<td>Low pressure coolant injection (LPCI) subsystems may be considered OPERABLE during alignment and operation for decay heat removal with reactor steam dome pressure less than [the residual heat removal cut in permissive pressure] in MODE 3, if capable of being manually realigned and not otherwise inoperable.</td>
</tr>
<tr>
<td>SR 3.5.1.3</td>
<td>Verify each ECCS injection/spray subsystem manual, power operated, and automatic valve in the flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position.</td>
</tr>
<tr>
<td>SR 3.5.1.3</td>
<td>Verify ADS [air receiver] pressure is (\geq [150]) psig.</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>FLOW RATE</th>
<th>SYSTEM HEAD CORRESPONDING TO A REACTOR PRESSURE OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPCS</td>
<td>≥ [7115] gpm</td>
<td>≥ [290] psig</td>
</tr>
<tr>
<td>LPCI</td>
<td>≥ [7450] gpm</td>
<td>≥ [125] psig</td>
</tr>
<tr>
<td>HPCS</td>
<td>≥ [7115] gpm</td>
<td>≥ [445] psig</td>
</tr>
</tbody>
</table>

SR 3.5.1.4

Verify each ECCS pump develops the specified flow rate [against a system head corresponding to the specified reactor pressure].

FREQUENCY

In accordance with the Inservice Testing Program or 92 days

NOTE

Vessel injection/spray may be excluded.

SR 3.5.1.5

Verify each ECCS injection/spray subsystem actuates on an actual or simulated automatic initiation signal.

[18] months

SR 3.5.1.6

Verify the ADS actuates on an actual or simulated automatic initiation signal.

[18] months

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.5.1.7</td>
<td>[18] months on a STAGGERED TEST BASIS for each valve solenoid</td>
</tr>
</tbody>
</table>

NOTE

Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test.

Verify each ADS valve opens when manually actuated.
3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM

3.5.2 ECCS—Shutdown

LCO 3.5.2 Two ECCS injection/spray subsystems shall be OPERABLE.

APPLICABILITY: MODE 4, MODE 5 except with the upper containment [cavity to dryer] pool [gate] removed and water level ≥ [22 ft 8 inches] over the top of the reactor pressure vessel flange.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One required ECCS injection/spray subsystem inoperable.</td>
<td>A.1 Restore required ECCS injection/spray subsystem to OPERABLE status.</td>
<td>4 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
<td>B.1 Initiate action to suspend operations with a potential for draining the reactor vessel (OPDRVs).</td>
<td>Immediately</td>
</tr>
<tr>
<td>C. Two required ECCS injection/spray subsystems inoperable.</td>
<td>C.1 Initiate action to suspend OPDRVs.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>C.2 Restore one ECCS injection/spray subsystem to OPERABLE status.</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Required Action C.2 and associated Completion Time not met.</td>
<td>D.1 Initiate action to restore [secondary containment] to OPERABLE status.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>D.2 Initiate action to restore one standby gas treatment subsystem to OPERABLE status.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>D.3 Initiate action to restore isolation capability in each required [secondary containment] penetration flow path not isolated.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.5.2.1 Verify, for each required low pressure ECCS injection/spray subsystem, the suppression pool water level is (\geq [12.67 \text{ ft}]).</td>
<td>12 hours</td>
</tr>
<tr>
<td>SURVEILLANCE REQUIREMENTS (continued)</td>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>SR 3.5.2.2 Verify, for the required High Pressure Core Spray (HPCS) System, the:</td>
<td></td>
</tr>
<tr>
<td>a. Suppression pool water level is ≥ [12.67 ft]; or</td>
<td></td>
</tr>
<tr>
<td>b. Condensate storage tank water level is ≥ [18 ft].</td>
<td></td>
</tr>
<tr>
<td>SR 3.5.2.3 Verify, for each required ECCS injection/spray subsystem, the piping is filled with water from the pump discharge valve to the injection valve.</td>
<td></td>
</tr>
<tr>
<td>SR 3.5.2.4 -----NOTE----- One low pressure coolant injection (LPCI) subsystem may be considered OPERABLE during alignment and operation for decay heat removal, if capable of being manually realigned and not otherwise inoperable.</td>
<td></td>
</tr>
<tr>
<td>Verify each required ECCS injection/spray subsystem manual, power operated, and automatic valve in the flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position.</td>
<td></td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
</tr>
<tr>
<td>SURVEILLANCE REQUIREMENTS (continued)</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>In accordance with the Inservice Testing Program or 92 days</td>
</tr>
<tr>
<td>SR 3.5.2.5 Verify each required ECCS pump develops the specified flow rate [against a system head corresponding to the specified reactor pressure].</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[SYSTEM HEAD CORRESPONDING TO A REACTOR SYSTEM FLOW RATE PRESSURE OF]</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>FLOW RATE</td>
</tr>
<tr>
<td>LPCS</td>
<td>≥ [7115] gpm</td>
</tr>
<tr>
<td>LPCI</td>
<td>≥ [7450] gpm</td>
</tr>
<tr>
<td>HPCS</td>
<td>≥ [7115] gpm</td>
</tr>
<tr>
<td>SR 3.5.2.6 Verify each required ECCS injection/spray subsystem actuates on an actual or simulated automatic initiation signal.</td>
<td>[18] months</td>
</tr>
<tr>
<td>NOTE</td>
<td></td>
</tr>
</tbody>
</table>

Vessel injection/spray may be excluded.
3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM

3.5.3 RCIC System

LCO 3.5.3 The RCIC System shall be OPERABLE.

APPLICABILITY: MODE 1, MODES 2 and 3 with reactor steam dome pressure > [150] psig.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. RCIC System inoperable.</td>
<td>A.1 Verify by administrative means High Pressure Core Spray System is OPERABLE.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2 Restore RCIC System to OPERABLE status.</td>
<td>14 days</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Reduce reactor steam dome pressure to ≤ [150] psig.</td>
<td>36 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.5.3.1 Verify the RCIC System piping is filled with water from the pump discharge valve to the injection valve.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.5.3.2 Verify each RCIC System manual, power operated, and automatic valve in the flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.5.3.3 Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test. Verify, with [RCIC steam supply pressure] ≤ [1045] psig and ≥ [945] psig, the RCIC pump can develop a flow rate ≥ [800] gpm [against a system head corresponding to reactor pressure].</td>
<td>92 days</td>
</tr>
<tr>
<td>SR 3.5.3.4 Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test. Verify, with [RCIC steam supply pressure] ≤ [165] psig, the RCIC pump can develop a flow rate ≥ [800] gpm [against a system head corresponding to reactor pressure].</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.5.3.5</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

----------NOTE----------
Vessel injection may be excluded.

Verify the RCIC System actuates on an actual or simulated automatic initiation signal.
3.6 CONTAINMENT SYSTEMS

3.6.1.1 Primary Containment

LCO 3.6.1.1 Primary containment shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Primary containment inoperable.</td>
<td>A.1 Restore primary containment to OPERABLE status.</td>
<td>1 hour</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.1.1 Perform required visual examinations and leakage rate testing except for primary containment air lock testing, in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions. The leakage rate acceptance criterion is $\leq 1.0 \text{ L}{\text{a}}$. However, during the first unit startup following testing performed in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions, the leakage rate acceptance criteria are $< 0.6 \text{ L}{\text{a}}$ for the Type B and Type C tests, and $< 0.75 \text{ L}_{\text{a}}$ for the Type A test.</td>
<td>-----NOTE----- SR 3.0.2 is not applicable</td>
</tr>
<tr>
<td>SR 3.6.1.1.2 Verify primary containment structural integrity in accordance with the Primary Containment Tendon Surveillance Program.</td>
<td>In accordance with the Primary Containment Tendon Surveillance Program</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.1.2 Primary Containment Air Locks

LCO 3.6.1.2 [Two] primary containment air locks shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

1. Entry and exit is permissible to perform repairs of the affected air lock components.

2. Separate Condition entry is allowed for each air lock.

3. Enter applicable Conditions and Required Actions of LCO 3.6.1.1, "Primary Containment," when air lock leakage results in exceeding overall containment leakage rate acceptance criteria.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more primary containment air locks with one primary containment air lock door inoperable.</td>
<td>1. Required Actions A.1, A.2, and A.3 are not applicable if both doors in the same air lock are inoperable and Condition C is entered. 2. Entry and exit is permissible for 7 days under administrative controls [if both air locks are inoperable].</td>
<td>(continued)</td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.1 Verify the OPERABLE door is closed in the affected air lock.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2 Lock the OPERABLE door closed in the affected air lock.</td>
<td>24 hours</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-------NOTE-------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air lock doors in high radiation areas may be verified locked closed by administrative means.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verify the OPERABLE door is locked closed in the affected air lock.</td>
<td>Once per 31 days</td>
</tr>
</tbody>
</table>

B. One or more primary containment air locks with primary containment air lock interlock mechanism inoperable.

	---------NOTES---------	
	1. Required Actions B.1, B.2, and B.3 are not applicable if both doors in the same air lock are inoperable and Condition C is entered.	
	2. Entry into and exit from containment is permissible under the control of a dedicated individual.	

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. (continued)</td>
<td>B.1 Verify an OPERABLE door is closed in the affected air lock.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Lock an OPERABLE door closed in the affected air lock.</td>
<td>24 hours</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.3 -----NOTE-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air lock doors in high radiation areas may be verified locked closed by administrative means.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verify an OPERABLE door is locked closed in the affected air lock.</td>
<td>Once per 31 days</td>
</tr>
<tr>
<td>C. One or more primary containment air locks inoperable for reasons other than Condition A or B.</td>
<td>C.1 Initiate action to evaluate primary containment overall leakage rate per LCO 3.6.1.1, using current air lock test results.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.2 Verify a door is closed in the affected air lock.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td>(continued)</td>
</tr>
<tr>
<td>CONDITION</td>
<td>REQUIRED ACTION</td>
<td>COMPLETION TIME</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>C. (continued)</td>
<td>C.3 Restore air lock to OPERABLE status.</td>
<td>24 hours</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time not met.</td>
<td>D.1 Be in MODE 3. AND D.2 Be in MODE 4.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.2.1</td>
<td>------------------------</td>
</tr>
<tr>
<td>1. An inoperable air lock door does not invalidate the previous successful performance of the overall air lock leakage test.</td>
<td></td>
</tr>
<tr>
<td>2. Results shall be evaluated against acceptance criteria of SR 3.6.1.1.1 in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions.</td>
<td></td>
</tr>
<tr>
<td>Perform required primary containment air lock leakage rate testing in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions.</td>
<td>NOTE: SR 3.0.2 is not applicable</td>
</tr>
<tr>
<td>The acceptance criteria for air lock testing are:</td>
<td></td>
</tr>
<tr>
<td>a. Overall air lock leakage rate is (\leq [2 \text{ scfh}]) when tested at (\geq P_a).</td>
<td></td>
</tr>
<tr>
<td>b. For each door, leakage rate is (\leq [2 \text{ scfh}]) when the gap between the door seals is pressurized to (\geq [1.0 \ P_a]).</td>
<td></td>
</tr>
<tr>
<td>SR 3.6.1.2.2 Verify primary containment air lock seal air flask pressure is (\geq [90] \text{ psig}).</td>
<td>7 days</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.2.3</td>
<td>184 days</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td>Only required to be performed upon entry or exit through the primary containment air lock.</td>
<td></td>
</tr>
<tr>
<td>Verify only one door in the primary containment air lock can be opened at a time.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SR 3.6.1.2.4</th>
<th>[18] months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify, from an initial pressure of [90] psig, the primary containment air lock seal pneumatic system pressure does not decay at a rate equivalent to > [2] psig for a period of [48] hours.</td>
<td></td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.1.3 Primary Containment Isolation Valves (PCIVs)

LCO 3.6.1.3 Each PCIV shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3,
When associated instrumentation is required to be OPERABLE per LCO 3.3.6.1, "Primary Containment Isolation Instrumentation."

ACTIONS

---NOTES---
1. Penetration flow paths [except for [] inch purge valve penetration flow paths] may be unisolated intermittently under administrative controls.
2. Separate Condition entry is allowed for each penetration flow path.
3. Enter applicable Conditions and Required Actions for systems made inoperable by PCIVs.
4. Enter applicable Conditions and Required Actions of LCO 3.6.1.1, "Primary Containment," when PCIV leakage results in exceeding overall containment leakage rate acceptance criteria in MODES 1, 2, and 3.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. --------NOTE-------- Only applicable to penetration flow paths with two PCIVs.</td>
<td>A.1 Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured.</td>
<td>4 hours except for main steam line AND 8 hours for main steam line</td>
</tr>
<tr>
<td>One or more penetration flow paths with one PCIV inoperable [except for purge valve or secondary containment bypass leakage not within limit].</td>
<td></td>
<td>(continued)</td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.2 [NOTE] Isolation devices in high radiation areas may be verified by use of administrative means. [NOTE] Verify the affected penetration flow path is isolated.</td>
<td>Once per 31 days for isolation devices outside primary containment, drywell, and steam tunnel AND Prior to entering MODE 2 or 3 from MODE 4, if not performed within the previous 92 days, for isolation devices inside primary containment, drywell, or steam tunnel</td>
</tr>
</tbody>
</table>
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. ---NOTE-----
Only applicable to penetration flow paths with two PCIVs.

One or more penetration flow paths with two PCIVs inoperable [except for purge valve leakage not within limit].</td>
<td>B.1 Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, or blind flange.</td>
<td>1 hour</td>
</tr>
<tr>
<td>C. ---NOTE-----
Only applicable to penetration flow paths with only one PCIV.

One or more penetration flow paths with one PCIV inoperable.</td>
<td>C.1 Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, or blind flange. AND C.2 ---NOTE-----
Isolation devices in high radiation areas may be verified by use of administrative means.

Verify the affected penetration flow path is isolated.</td>
<td>[4] hours
Once per 31 days</td>
</tr>
<tr>
<td>D. Secondary containment bypass leakage rate not within limit.</td>
<td>D.1 Restore leakage rate to within limit.</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. One or more penetration flow paths with one or more containment purge valves not within purge valve leakage limits.</td>
<td>E.1 Isolate the affected penetration flow path by use of at least one [closed and de-activated automatic valve, closed manual valve, or blind flange].</td>
<td>24 hours</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.2</td>
<td>Isolation devices in high radiation areas may be verified by use of administrative means.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verify the affected penetration flow path is isolated.</td>
<td>Once per 31 days for isolation devices outside containment</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3</td>
<td>Perform SR 3.6.1.3.6 for the resilient seal purge valves closed to comply with Required Action E.1.</td>
<td>Once per 92 days</td>
</tr>
</tbody>
</table>

Prior to entering MODE 2 or 3 from MODE 4 if not performed within the previous 92 days for isolation devices inside containment
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Required Action and associated Completion Time of Condition A, B, C, D, or E not met in MODE 1, 2, or 3.</td>
<td>F.1 Be in MODE 3. AND F.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

| G. Required Action and associated Completion Time of Condition A, B, C, D, or E not met for PCIV(s) required to be OPERABLE during movement of irradiated fuel assemblies in the [primary or secondary containment]. | G.1 -----------NOTE----------- LCO 3.0.3 is not applicable. Suspend movement of irradiated fuel assemblies in [primary and secondary containment]. | Immediately |

| H. Required Action and associated Completion Time of Condition A, B, C, D, or E not met for PCIV(s) required to be OPERABLE during CORE ALTERATIONS. | H.1 Suspend CORE ALTERATIONS. | Immediately |

| I. Required Action and associated Completion Time of Condition A, B, C, D, or E not met for PCIV(s) required to be OPERABLE during MODE 4 or 5 or during operations with a potential for draining the reactor vessel (OPDRVs). | I.1 Initiate action to suspend OPDRVs. OR I.2 Initiate action to restore valve(s) to OPERABLE status. | Immediately Immediately |
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.3.1</td>
<td> Only required to be met in MODES 1, 2, and 3.
Verify each [] inch primary containment purge valve is sealed closed except for one purge valve in a penetration flow path while in Condition E of this LCO.</td>
</tr>
<tr>
<td>SR 3.6.1.3.2</td>
<td> 1. Only required to be met in MODES 1, 2, and 3. 2. Not required to be met when the [20] inch primary containment purge valves are open for pressure control, ALARA or air quality considerations for personnel entry, or Surveillances that require the valves to be open, provided the drywell [purge supply and exhaust] lines are isolated.</td>
</tr>
</tbody>
</table>

Verify each [20] inch primary containment purge valve is closed.

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.3.3</td>
<td>31 days</td>
</tr>
<tr>
<td>1. Valves and blind flanges in high radiation areas may be verified by use of administrative means.</td>
<td></td>
</tr>
<tr>
<td>2. Not required to be met for PCIVs that are open under administrative controls.</td>
<td></td>
</tr>
<tr>
<td>Verify each primary containment isolation manual valve and blind flange that is located outside primary containment, drywell, and steam tunnel and is required to be closed during accident conditions is closed.</td>
<td></td>
</tr>
<tr>
<td>SR 3.6.1.3.4</td>
<td>Prior to entering MODE 2 or 3 from MODE 4, if not performed within the previous 92 days</td>
</tr>
<tr>
<td>1. Valves and blind flanges in high radiation areas may be verified by use of administrative means.</td>
<td></td>
</tr>
<tr>
<td>2. Not required to be met for PCIVs that are open under administrative controls.</td>
<td></td>
</tr>
<tr>
<td>Verify each primary containment isolation manual valve and blind flange that is located inside primary containment, drywell, or steam tunnel and is required to be closed during accident conditions is closed.</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.3.5 Verify the isolation time of each power operated and each automatic PCIV[, except MSIVs,] is within limits.</td>
<td>In accordance with the Inservice Testing Program or 92 days</td>
</tr>
<tr>
<td>SR 3.6.1.3.6 Only required to be met in MODES 1, 2, and 3. Perform leakage rate testing for each primary containment purge valve with resilient seals.</td>
<td>184 days AND Once within 92 days after opening the valve</td>
</tr>
<tr>
<td>SR 3.6.1.3.7 Verify the isolation time of each MSIV is $\geq [3]$ seconds and $\leq [5]$ seconds.</td>
<td>In accordance with the Inservice Testing Program or 18 months</td>
</tr>
<tr>
<td>SR 3.6.1.3.8 Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>FREQUENCY</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>SR 3.6.1.3.9</td>
</tr>
<tr>
<td>[1. Only required to be met in MODES 1, 2, and 3.]</td>
</tr>
<tr>
<td>2. Results shall be evaluated against acceptance criteria of SR 3.6.1.1 in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions.</td>
</tr>
<tr>
<td>Verify the combined leakage rate for all secondary containment bypass leakage paths is $\leq [L_a]$ when pressurized to $\geq [psig]$.</td>
</tr>
<tr>
<td>SR 3.6.1.3.10</td>
</tr>
<tr>
<td>Verify leakage rate through all four main steam lines is $\leq [100]$ scfh when tested at $\geq [11.5]$ psig.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(continued)</td>
</tr>
</tbody>
</table>

BWR/6 STS 3.6-17 Rev 1, 04/07/95
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.3.11</td>
<td>NOTES------</td>
</tr>
<tr>
<td>1. Only required to be met in MODES 1, 2, and 3.</td>
<td></td>
</tr>
<tr>
<td>2. Results shall be evaluated against acceptance criteria of SR 3.6.1.1.1 in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions.</td>
<td></td>
</tr>
</tbody>
</table>

Verify combined leakage rate of [1 gpm times the total number of PCIVs] through hydrostatically tested lines that penetrate the primary containment is not exceeded when these isolation valves are tested at \(\geq 1.1 \text{ Pa} \).

<table>
<thead>
<tr>
<th>SR 3.6.1.3.12</th>
<th>NOTE----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only required to be met in MODES 1, 2, and 3.</td>
<td></td>
</tr>
</tbody>
</table>

Verify each [] inch primary containment purge valve is blocked to restrict the valve from opening \(> [50]\% \).

<table>
<thead>
<tr>
<th>SR 3.6.1.3.12</th>
<th>[18] months</th>
</tr>
</thead>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.1.4 Primary Containment Pressure

LCO 3.6.1.4 Primary containment [to secondary containment differential] pressure shall be \([-0.1 \text{ psid} \leq \text{pressure} \leq 1.0 \text{ psid}]\).

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Primary containment [to secondary containment differential] pressure not within limits.</td>
<td>A.1 Restore primary containment [to secondary containment differential] pressure to within limits.</td>
<td>1 hour</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.4.1 Verify primary containment [to secondary containment differential] pressure is within limits.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

BWR/6 STS 3.6-19 Rev 1, 04/07/95
3.6 CONTAINMENT SYSTEMS

3.6.1.5 Primary Containment Air Temperature

LCO 3.6.1.5 Primary containment average air temperature shall be \(\leq [95]^{\circ}\)F.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Primary containment average air temperature not within limit.</td>
<td>A.1 Restore primary containment average air temperature to within limit.</td>
<td>8 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours AND 36 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.5.1 Verify primary containment average air temperature is within limit.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.1.6 Low-Low Set (LLS) Valves

LCO 3.6.1.6 The LLS function of [six] safety/relief valves shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One LLS valve inoperable.</td>
<td>A.1 Restore LLS valve to OPERABLE status.</td>
<td>14 days</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
<tr>
<td>OR Two or more LLS valves inoperable.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.6.1 Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test. Verify each LLS valve opens when manually actuated.</td>
<td>[18] months [on a STAGGERED TEST BASIS for each valve solenoid]</td>
</tr>
<tr>
<td>SR 3.6.1.6.2 Valuation actuation may be excluded. Verify the LLS System actuates on an actual or simulated automatic initiation signal.</td>
<td>18 months</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.1.7 Residual Heat Removal (RHR) Containment Spray System

LCO 3.6.1.7 Two RHR containment spray subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One RHR containment spray subsystem inoperable.</td>
<td>A.1 Restore RHR containment spray subsystem to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>B. Two RHR containment spray subsystems inoperable.</td>
<td>B.1 Restore one RHR containment spray subsystem to OPERABLE status.</td>
<td>8 hours</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours AND 36 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.7.1</td>
<td>31 days</td>
</tr>
</tbody>
</table>

RHR containment spray subsystems may be considered OPERABLE during alignment and operation for decay heat removal when below [the RHR cut in permissive pressure in MODE 3] if capable of being manually realigned and not otherwise inoperable.

Verify each RHR containment spray subsystem manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position.

SR 3.6.1.7.2

Verify each RHR pump develops a flow rate of \(\geq 5650 \) gpm on recirculation flow through the associated heat exchanger to the suppression pool.

In accordance with the Inservice Testing Program or 92 days

SR 3.6.1.7.3

Verify each RHR containment spray subsystem automatic valve in the flow path actuates to its correct position on an actual or simulated automatic initiation signal.

18 months

SR 3.6.1.7.4

Verify each spray nozzle is unobstructed.

At first refueling AND 10 years

BWR/6 STS 3.6-24 Rev 1, 04/07/95
3.6 CONTAINMENT SYSTEMS

3.6.1.8 Penetration Valve Leakage Control System (PVLCS)

LCO 3.6.1.8 [Two] PVLCS subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One PVLCS subsystem inoperable.</td>
<td>A.1 Restore PVLCS subsystems to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>B. [Two] PVLCS subsystems inoperable.</td>
<td>B.1 Restore one PVLCS subsystem to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours AND 36 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.8.1</td>
<td>Verify air pressure in each subsystem is ≥ [101] psig.</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>SR 3.6.1.8.2 Perform a system functional test of each PVLCS subsystem.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

PVLCS
3.6.1.8

BWR/6 STS 3.6-26 Rev 1, 04/07/95
3.6 CONTAINMENT SYSTEMS

3.6.1.9 Main Steam Isolation Valve (MSIV) Leakage Control System (LCS)

LCO 3.6.1.9 Two MSIV LCS subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One MSIV LCS subsystem inoperable.</td>
<td>A.1 Restore MSIV LCS subsystem to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>B. Two MSIV LCS subsystems inoperable.</td>
<td>B.1 Restore one MSIV LCS subsystem to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.9.1</td>
<td>Operate each MSIV LCS blower ≥ [15] minutes.</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.1.9.2 Verify electrical continuity of each inboard MSIV LCS subsystem heater element circuitry.</td>
<td></td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.6.1.9.3 Perform a system functional test of each MSIV LCS subsystem.</td>
<td></td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.2.1 Suppression Pool Average Temperature

LCO 3.6.2.1 Suppression pool average temperature shall be:

a. \(\leq [95] ^\circ F \) when any OPERABLE intermediate range monitor (IRM) channel is \(> [25/40] \) divisions of full scale on Range 7 and no testing that adds heat to the suppression pool is being performed;

b. \(\leq [105] ^\circ F \) when any OPERABLE IRM channel is \(> [25/40] \) divisions of full scale on Range 7 and testing that adds heat to the suppression pool is being performed; and

c. \(\leq [110] ^\circ F \) when all OPERABLE IRM channels are \(\leq [25/40] \) divisions of full scale on Range 7.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Suppression pool average temperature (> [95] ^\circ F) but (\leq [110] ^\circ F). AND Any OPERABLE IRM channel (> [25/40]) divisions of full scale on Range 7. AND Not performing testing that adds heat to the suppression pool.</td>
<td>A.1 Verify suppression pool average temperature is (\leq [110] ^\circ F). A.2 Restore suppression pool average temperature to (\leq [95] ^\circ F).</td>
<td>Once per hour 24 hours</td>
</tr>
</tbody>
</table>

* (continued)*)
Suppression Pool Average Temperature

3.6.2.1

<table>
<thead>
<tr>
<th>ACTIONS (continued)</th>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
<td>B.1 Reduce THERMAL POWER until all OPERABLE IRM channels are (\leq [25/40] \text{ divisions of full scale on Range 7.})</td>
<td>12 hours</td>
<td></td>
</tr>
<tr>
<td>C. Suppression pool average temperature (> [105]^{\circ} \text{F.}) AND Any OPERABLE IRM channel (> [25/40] \text{ divisions of full scale on Range 7.}) AND Performing testing that adds heat to the suppression pool.</td>
<td>C.1 Suspend all testing that adds heat to the suppression pool.</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>D. Suppression pool average temperature (> [110]^{\circ} \text{F but} \leq [120]^{\circ} \text{F.}) AND</td>
<td>D.1 Place the reactor mode switch in the shutdown position.</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.2 Verify suppression pool average temperature is (\leq [120]^{\circ} \text{F.}) AND</td>
<td>Once per 30 minutes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.3 Be in MODE 4.</td>
<td>36 hours</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Suppression pool average temperature > [120]°F.</td>
<td>E.1 Depressurize the reactor vessel to < [200] psig. AND E.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.2.1.1 Verify suppression pool average temperature is within the applicable limits.</td>
<td>24 hours AND 5 minutes when performing testing that adds heat to the suppression pool</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.2.2 Suppression Pool Water Level

LCO 3.6.2.2 Suppression pool water level shall be \[\geq [18 \text{ ft} \ 4.5 \text{ inches}] \] and \[\leq [18 \text{ ft} \ 9.75 \text{ inches}] \]

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Suppression pool water level not within limits.</td>
<td>A.1 Restore suppression pool water level to within limits.</td>
<td>2 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Be in MODE 4.</td>
<td>36 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.2.2.1 Verify suppression pool water level is within limits.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.2.3 Residual Heat Removal (RHR) Suppression Pool Cooling

LCO 3.6.2.3 Two RHR suppression pool cooling subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One RHR suppression pool cooling subsystem inoperable.</td>
<td>A.1 Restore RHR suppression pool cooling subsystem to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met. OR Two RHR suppression pool cooling subsystems inoperable.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.2.3.1 Verify each RHR suppression pool cooling subsystem manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position or can be aligned to the correct position.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.6.2.3.2 Verify each RHR pump develops a flow rate ≥ 7450 gpm through the associated heat exchanger while operating in the suppression pool cooling mode.</td>
<td>In accordance with the Inservice Testing Program or 92 days</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.2.4 Suppression Pool Makeup (SPMU) System

LCO 3.6.2.4 Two SPMU subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Upper containment pool water level not within limit.</td>
<td>A.1 Restore upper containment pool water level to within limit.</td>
<td>4 hours</td>
</tr>
<tr>
<td>B. Upper containment pool water temperature not within limit.</td>
<td>B.1 Restore upper containment pool water temperature to within limit.</td>
<td>24 hours</td>
</tr>
<tr>
<td>C. One SPMU subsystem inoperable for reasons other than Condition A or B.</td>
<td>C.1 Restore SPMU subsystem to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time not met.</td>
<td>D.1 Be in MODE 3. AND D.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SR 3.6.2.4.1</th>
<th>Verify upper containment pool water level is $\geq [23 \text{ ft } 3 \text{ inches}]$ above the pool bottom.</th>
<th>24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.2.4.2</td>
<td>Verify upper containment pool water temperature is $\leq [125]^{\circ}\text{F}$.</td>
<td>24 hours</td>
</tr>
<tr>
<td>SR 3.6.2.4.3</td>
<td>Verify each SPMU subsystem manual, power operated, and automatic valve that is not locked, sealed, or otherwise secured in position is in the correct position.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.6.2.4.4</td>
<td>Verify all upper containment pool gates are in the stored position or are otherwise removed from the upper containment pool.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.6.2.4.5</td>
<td>NOTE</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

Verify each SPMU subsystem automatic valve actuates to the correct position on an actual or simulated automatic initiation signal.
3.6 CONTAINMENT SYSTEMS

3.6.3.1 Primary Containment Hydrogen Recombiners (if permanently installed)

LCO 3.6.3.1 Two primary containment hydrogen recombiners shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

TABLE

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One primary containment hydrogen recombiner inoperable.</td>
<td>A.1 ---------------NOTE------------- LCO 3.0.4 is not applicable. --------------- Restore primary containment hydrogen recombiner to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>B. Two primary containment hydrogen recombiners inoperable.</td>
<td>B.1 Verify by administrative means that the hydrogen control function is maintained. AND B.2 Restore one primary containment hydrogen recombiner to OPERABLE status.</td>
<td>1 hour AND One per 12 hours thereafter 7 days</td>
</tr>
</tbody>
</table>

(continued)
Primary Containment Hydrogen Recombiners
3.6.3.1

ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.3.1.1 Perform a system functional test for each primary containment hydrogen recombiner.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.6.3.1.2 Visually examine each primary containment hydrogen recombiner enclosure and verify there is no evidence of abnormal conditions.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.6.3.1.3 Perform a resistance to ground test for each heater phase.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.3.2 Primary Containment and Drywell Hydrogen Ignitors

LCO 3.6.3.2
Two divisions of primary containment and drywell hydrogen ignitors shall be OPERABLE, each with > 90% of the associated ignitor assemblies OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One primary containment and drywell hydrogen ignitor division inoperable.</td>
</tr>
<tr>
<td>B. Two primary containment and drywell hydrogen ignitor divisions inoperable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUIRED ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 --------------NOTE----------------</td>
</tr>
<tr>
<td>LCO 3.0.4 is not applicable.</td>
</tr>
<tr>
<td>Restore primary containment and drywell hydrogen ignitor division to OPERABLE status.</td>
</tr>
<tr>
<td>B.1 Verify by administrative means that the hydrogen control function is maintained.</td>
</tr>
<tr>
<td>B.2 Restore one primary containment and drywell hydrogen ignitor division to OPERABLE status.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 days</td>
</tr>
<tr>
<td>1 hour AND</td>
</tr>
<tr>
<td>Once per 12 hours thereafter</td>
</tr>
<tr>
<td>7 days</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.3.2.1</td>
<td></td>
</tr>
<tr>
<td>Energize each primary containment and drywell hydrogen ignitor division and perform current versus voltage measurements to verify required ignitors in service.</td>
<td>184 days</td>
</tr>
</tbody>
</table>

NOTE

Not required to be performed until 92 days after discovery of four or more ignitors in the division inoperable.

Energize each primary containment and drywell hydrogen ignitor division and perform current versus voltage measurements to verify required ignitors in service. 92 days

SR 3.6.3.2.3

Verify each required ignitor in inaccessible areas develops sufficient current draw for a $\geq [1700]^\circ F$ surface temperature. [18] months

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.3.2.4 Verify each required ignitor in accessible areas develops a surface temperature of $\geq [1700]^\circ F.$</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.3.3 [Drywell Purge System]

LCO 3.6.3.3 Two [drywell purge] subsystems shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One [drywell purge] subsystem inoperable.</td>
<td>A.1 -------NOTE-------- LCO 3.0.4 is not applicable.</td>
<td>30 days</td>
</tr>
<tr>
<td></td>
<td>Restore [drywell purge] subsystem to OPERABLE status.</td>
<td></td>
</tr>
<tr>
<td>B. Two [drywell purge] subsystems inoperable.</td>
<td>B.1 Verify by administrative means that the hydrogen control function is maintained.</td>
<td>1 hour AND</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Restore one [drywell purge] subsystem to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.3.3.1 Operate each [drywell purge] subsystem for ≥ [15] minutes.</td>
<td>92 days</td>
</tr>
<tr>
<td>SR 3.6.3.3.2 Verify each [drywell purge] subsystem flow rate is ≥ [500] scfm.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.4.1 [Secondary Containment]

LCO 3.6.4.1 The [secondary containment] shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3,
During movement of irradiated fuel assemblies in the [primary or secondary containment],
During CORE ALTERATIONS,
During operations with a potential for draining the reactor vessel (OPDRVs).

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. [Secondary containment] inoperable [in MODE 1, 2, or 3].</td>
<td>A.1 Restore [secondary containment] to OPERABLE status.</td>
<td>4 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time [of Condition A] not met.</td>
<td>B.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Be in MODE 4.</td>
<td>36 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. [Secondary containment] inoperable during movement of irradiated fuel assemblies in the primary or secondary containment, during CORE ALTERATIONS, or during OPDRVs.</td>
<td>C.1 Suspend movement of irradiated fuel assemblies in the primary and secondary containment.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.2 Suspend CORE ALTERATIONS.</td>
<td></td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.3 Initiate action to suspend OPDRVs.</td>
<td></td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.4.1.1 Verify [secondary containment] vacuum is ≥ [0.25] inch of vacuum water gauge.</td>
<td>24 hours</td>
</tr>
<tr>
<td>SR 3.6.4.1.2 Verify all [secondary containment] equipment hatches are closed and sealed.</td>
<td>31 days</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.4.1.3 Verify each [secondary containment] access door is closed, except when the access opening is being used for entry and exit[, then at least one door shall be closed].</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.6.4.1.4 Verify each standby gas treatment (SGT) subsystem will draw down the [secondary containment] to $\geq [0.25]$ inch of vacuum water gauge in $\leq [120]$ seconds.</td>
<td>[18] months on a STAGGERED TEST BASIS</td>
</tr>
<tr>
<td>SR 3.6.4.1.5 Verify each SGT subsystem can maintain $\geq [0.266]$ inch of vacuum water gauge in the [secondary containment] for 1 hour at a flow rate $\leq [4000]$ cfm.</td>
<td>[18] months on a STAGGERED TEST BASIS</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.4.2 Secondary Containment Isolation Valves (SCIVs)

LCO 3.6.4.2 Each SCIV shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3,
During movement of irradiated fuel assemblies in the [primary or secondary containment],
During CORE ALTERATIONS,
During operations with a potential for draining the reactor vessel (OPDRVs).

ACTIONS

----------------------------------NOTES----------------------------------

1. Penetration flow paths may be unisolated intermittently under administrative controls.

2. Separate Condition entry is allowed for each penetration flow path.

3. Enter applicable Conditions and Required Actions for systems made inoperable by SCIVs.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more penetration flow paths with one SCIV inoperable.</td>
<td>A.1 Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, or blind flange. AND</td>
<td>8 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.2 -------NOTE-------- Isolation devices in high radiation areas may be verified by use of administrative means.</td>
<td>Once per 31 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verify the affected penetration flow path is isolated.</td>
</tr>
<tr>
<td>B. -------NOTE-------- Only applicable to penetration flow paths with two isolation valves.</td>
<td>B.1 Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, or blind flange.</td>
<td>4 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One or more penetration flow paths with two SCIVs inoperable.</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time of Condition A or B not met in MODE 1, 2, or 3.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
<tr>
<td>CONDITION</td>
<td>REQUIRED ACTION</td>
<td>COMPLETION TIME</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| D. Required Action and associated Completion Time of Condition A or B not met during movement of irradiated fuel assemblies in the [primary or secondary containment] during CORE ALTERATIONS, or during OPDRVs. | D.1 -----------NOTE----------
LCO 3.0.3 is not applicable.

Suspend movement of irradiated fuel assemblies in the [primary and secondary containment]. | Immediately |
| AND | | |
| D.2 Suspend CORE ALTERATIONS. | | Immediately |
| AND | | |
| D.3 Initiate action to suspend OPDRVs. | | Immediately |
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.4.2.1</td>
<td></td>
</tr>
<tr>
<td>NOT ________________________________ NOTES ________________________________</td>
<td></td>
</tr>
<tr>
<td>1. Valves and blind flanges in high radiation areas may be verified by use of administrative controls.</td>
<td></td>
</tr>
<tr>
<td>2. Not required to be met for SCIVs that are open under administrative means.</td>
<td></td>
</tr>
<tr>
<td>Verify each secondary containment isolation manual valve and blind flange that is required to be closed during accident conditions is closed.</td>
<td></td>
</tr>
<tr>
<td>SR 3.6.4.2.2</td>
<td></td>
</tr>
<tr>
<td>Verify the isolation time of each power operated and each automatic SCIV is within limits.</td>
<td></td>
</tr>
<tr>
<td>SR 3.6.4.2.3</td>
<td></td>
</tr>
<tr>
<td>Verify each automatic SCIV actuates to the isolation position on an actual or simulated automatic isolation signal.</td>
<td></td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.4.3 Standby Gas Treatment (SGT) System

LCO 3.6.4.3 Two SGT subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3, During movement of irradiated fuel assemblies in the [primary or secondary containment], During CORE ALTERATIONS, During operations with a potential for draining the reactor vessel (OPDRVs).

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One SGT subsystem inoperable.</td>
<td>A.1 Restore SGT subsystem to OPERABLE status.</td>
<td>7 days</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met in MODE 1, 2, or 3.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time of Condition A not met during movement of irradiated fuel assemblies in the [primary or secondary containment], during CORE ALTERATIONS, or during OPDRVs.</td>
<td>-----------NOTE----------- LCO 3.0.3 is not applicable. -----------</td>
<td>Immediately</td>
</tr>
<tr>
<td>C.1 Place OPERABLE SGT subsystem in operation. OR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
SGT System 3.6.4.3

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. (continued)</td>
<td>C.2.1 Suspend movement of irradiated fuel assemblies in the [primary and secondary containment].</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.2.2 Suspend CORE ALTERATIONS.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.2.3 Initiate action to suspend OPDRVs.</td>
<td>Immediately</td>
</tr>
<tr>
<td>D. Two SGT subsystems inoperable in MODE 1, 2, or 3.</td>
<td>D.1 Enter LCO 3.0.3</td>
<td>Immediately</td>
</tr>
<tr>
<td>E. Two SGT subsystems inoperable during movement of irradiated fuel assemblies in the [primary or secondary containment], during CORE ALTERATIONS, or during OPDRVs.</td>
<td>E.1 Suspend movement of irradiated fuel assemblies in the [primary and secondary containment].</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. (continued)</td>
<td>E.2 Suspend CORE ALTERATIONS.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>E.3 Initiate action to suspend OPDRVs.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.4.3.1 Operate each SGT subsystem for ≥ [10] continuous hours [with heaters operating].</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.6.4.3.2 Perform required SGT filter testing in accordance with the Ventilation Filter Testing Program (VFTP).</td>
<td>In accordance with the VFTP</td>
</tr>
<tr>
<td>SR 3.6.4.3.3 Verify each SGT subsystem actuates on an actual or simulated initiation signal.</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.6.4.3.4 Verify each SGT filter cooler bypass damper can be opened and the fan started.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.5.1 Drywell

LCO 3.6.5.1 The drywell shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Drywell inoperable.</td>
<td>A.1 Restore drywell to OPERABLE status.</td>
<td>1 hour</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.1.1 Verify bypass leakage is less than or equal to the bypass leakage limit. However, during the first unit startup following bypass leakage testing performed in accordance with this SR, the acceptance criterion is (\leq 10%) of the drywell bypass leakage limit.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.1.2</td>
<td>Visually inspect the exposed accessible interior and exterior surfaces of the drywell.</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.5.2 Drywell Air Lock

LCO 3.6.5.2 The drywell air lock shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

1. Entry and exit is permissible to perform repairs of the affected air lock components.

2. Enter applicable Conditions and Required Actions of LCO 3.6.5.1, "Drywell," when air lock leakage results in exceeding overall drywell bypass leakage rate acceptance criteria.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One drywell air lock door inoperable.</td>
<td>------------------NOTES------------------</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>1. Required Actions A.1, A.2, and A.3 are not applicable if both doors in the air lock are inoperable and Condition C is entered.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Entry and exit is permissible for 7 days under administrative controls.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.1 Verify the OPERABLE door is closed. AND</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.2 Lock the OPERABLE door closed.</td>
<td>24 hours</td>
</tr>
<tr>
<td></td>
<td>A.3 Verify by administrative means the OPERABLE door is locked closed.</td>
<td>Once per 31 days</td>
</tr>
<tr>
<td>B. Drywell air lock interlock mechanism inoperable.</td>
<td>NOTES</td>
<td>B.1 Verify an OPERABLE door is closed.</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td>B.2 Lock an OPERABLE door closed.</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td>B.3 Verify by administrative means an OPERABLE door is locked closed.</td>
</tr>
</tbody>
</table>

1. Required Actions B.1, B.2, and B.3 are not applicable if both doors in the air lock are inoperable and Condition C is entered.

2. Entry and exit is permissible under the control of a dedicated individual.

BWR/6 STS 3.6-57

Rev 1, 04/07/95
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Drywell air lock inoperable for reasons other than Condition A or B.</td>
<td>C.1 Initiate action to evaluate drywell overall leakage rate per LCO 3.6.5.1, "Drywell," using current air lock test results.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.2 Verify a door is closed.</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C.3 Restore air lock to OPERABLE status.</td>
<td>24 hours</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time not met.</td>
<td>D.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.2 Be in MODE 4.</td>
<td>36 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.2.1</td>
<td></td>
</tr>
<tr>
<td>NOTE Only required to be performed once after each closing.</td>
<td></td>
</tr>
<tr>
<td>Verify seal leakage rate is (\leq [200]) scfh</td>
<td>72 hours</td>
</tr>
<tr>
<td>when the gap between the door seals is pressurized to (\geq [11.5]) psig.</td>
<td></td>
</tr>
<tr>
<td>SR 3.6.5.2.2</td>
<td></td>
</tr>
<tr>
<td>Verify drywell air lock seal air flask pressure is (\geq [90]) psig.</td>
<td>7 days</td>
</tr>
<tr>
<td>SR 3.6.5.2.3</td>
<td></td>
</tr>
<tr>
<td>NOTE Only required to be performed upon entry into drywell.</td>
<td></td>
</tr>
<tr>
<td>Verify only one door in the drywell air lock can be opened at a time.</td>
<td>18 months</td>
</tr>
<tr>
<td>SR 3.6.5.2.4</td>
<td></td>
</tr>
<tr>
<td>NOTE An inoperable air lock door does not invalidate the previous successful</td>
<td></td>
</tr>
<tr>
<td>performance of the overall air lock leakage test.</td>
<td></td>
</tr>
<tr>
<td>Verify overall drywell air lock leakage rate is (\leq [200]) scfh by</td>
<td></td>
</tr>
<tr>
<td>performing an overall air lock leakage test at (\geq [11.5]) psig.</td>
<td></td>
</tr>
<tr>
<td>18 months</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.2.5</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

Verify, from an initial pressure of [90] psig, the drywell air lock seal pneumatic system pressure does not decay at a rate equivalent to > [30] psig for a period of [10] days.
3.6 CONTAINMENT SYSTEMS

3.6.5.3 Drywell Is0lation Valve[s]

LCO 3.6.5.3 Each drywell isolation valve [except for Drywell Vacuum Relief System valves] shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

1. Penetration flow paths may be unisolated intermittently under administrative controls.

2. Separate Condition entry is allowed for each penetration flow path.

3. Enter applicable Conditions and Required Actions for systems made inoperable by drywell isolation valves.

4. Enter applicable Conditions and Required Actions of LCO 3.6.5.1, "Drywell," when drywell isolation valve leakage results in exceeding overall drywell bypass leakage rate acceptance criteria.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more penetration flow paths with one drywell isolation valve inoperable.</td>
<td>A.1 Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured.</td>
<td>8 hours</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.2 Isolation devices in high radiation areas may be verified by use of administrative means. Verify the affected penetration flow path is isolated.</td>
<td>Prior to entering MODE 2 or 3 from MODE 4, if not performed within the previous 92 days</td>
</tr>
<tr>
<td>B. Only applicable to penetration flow paths with two isolation valves.</td>
<td>B.1 Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured.</td>
<td>4 hours</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.3.1 Verify each [] inch drywell purge isolation valve is sealed closed.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.6.5.3.2 Verify each [20] inch drywell purge isolation valve is closed.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.6.5.3.3 Verify each drywell isolation manual valve and blind flange that is required to be closed during accident conditions is closed.</td>
<td>Prior to entering MODE 2 or 3 from MODE 4, if not performed in the previous 92 days</td>
</tr>
</tbody>
</table>

NOTE: Not required to be met when the drywell purge supply or exhaust valves are open for pressure control, ALARA or air quality considerations for personnel entry, or surveillances that require the valves to be open [provided the [20] inch containment [purge system supply and exhaust] lines are isolated].

NOTE: Not required to be met for drywell isolation valves that are open under administrative controls.
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.3.4 Verify the isolation time of each power operated and each automatic drywell isolation valve is within limits.</td>
<td>In accordance with the Inservice Testing Program or 92 days</td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.6.5.3.5 Verify each automatic drywell isolation valve actuates to the isolation position on an actual or simulated isolation signal.</td>
<td></td>
<td>[18] months</td>
</tr>
<tr>
<td>SR 3.6.5.3.6 Verify each [] inch drywell purge isolation valve is blocked to restrict the valve from opening > [50]%</td>
<td></td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.5.4 Drywell Pressure

LCO 3.6.5.4 Drywell-to-primary containment differential pressure shall be \[\geq -0.26 \text{ psid and} \leq 2.0 \text{ psid} \].

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Drywell-to-primary containment differential pressure not within limits.</td>
<td>A.1 Restore drywell-to-primary containment differential pressure to within limits.</td>
<td>1 hour</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.4.1 Verify drywell-to-primary containment differential pressure is within limits.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
3.6 CONTAINMENT SYSTEMS

3.6.5.5 Drywell Air Temperature

LCO 3.6.5.5 Drywell average air temperature shall be \(\leq 135^\circ\text{F} \).

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Drywell average air temperature not within limit.</td>
<td>A.1 Restore drywell average air temperature to within limit.</td>
<td>8 hours</td>
</tr>
</tbody>
</table>

B. Required Action and associated Completion Time not met.

AND		
B.1 Be in MODE 3.		12 hours
B.2 Be in MODE 4.		36 hours

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.5.1 Verify drywell average air temperature is within limit.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

BWR/6 STS 3.6-66 Rev 1, 04/07/95
3.6 CONTAINMENT SYSTEMS

3.6.5.6 Drywell Vacuum Relief System

LCO 3.6.5.6 [Two] drywell post-LOCA and [two] drywell purge vacuum relief subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

---NOTE-----------------------------------
Enter applicable Conditions and Required Actions of LCO 3.6.5.1, "Drywell," when inoperable drywell purge vacuum relief subsystem(s) results in exceeding overall drywell bypass leakage rate acceptance criteria.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. ---NOTE------------------- Separate Condition entry is allowed for each vacuum relief subsystem.</td>
<td>A.1 Close the subsystem.</td>
<td>4 hours</td>
</tr>
<tr>
<td>One or more vacuum relief subsystems not closed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. One or [two] drywell post-LOCA vacuum relief subsystems inoperable for reasons other than Condition A.</td>
<td>B.1 Restore drywell post-LOCA vacuum relief subsystem(s) to OPERABLE status.</td>
<td>30 days</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. One drywell purge vacuum relief subsystem inoperable for reasons other than Condition A.</td>
<td>C.1 Restore drywell purge vacuum relief subsystem to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>D. [Two] drywell purge vacuum relief subsystems inoperable for reasons other than Condition A.</td>
<td>D.1 Restore one drywell purge vacuum relief subsystem to OPERABLE status.</td>
<td>72 hours</td>
</tr>
<tr>
<td>E. [Two] drywell post-LOCA vacuum relief subsystems inoperable for reasons other than Condition A.</td>
<td>E.1 Restore one drywell post-LOCA vacuum relief or drywell purge vacuum relief subsystem to OPERABLE status.</td>
<td>72 hours</td>
</tr>
<tr>
<td>AND</td>
<td>One drywell purge vacuum relief subsystem inoperable for reasons other than Condition A.</td>
<td></td>
</tr>
<tr>
<td>F. Required Action and associated Completion Time of Condition A, B, C, D, or E not met.</td>
<td>F.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td>AND</td>
<td>F.2 Be in MODE 4.</td>
<td>36 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. [Two] drywell purge vacuum relief subsystems inoperable for reasons other than Condition A. AND One or [two] drywell post-LOCA vacuum relief subsystems inoperable for reasons other than Condition A.</td>
<td>G.1 Be in MODE 3. AND G.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.6.1</td>
<td></td>
</tr>
<tr>
<td>-----NOTES-----</td>
<td></td>
</tr>
<tr>
<td>1. Not required to be met for drywell purge vacuum relief breakers open during Surveillances.</td>
<td></td>
</tr>
<tr>
<td>2. Not required to be met for vacuum breakers open when performing their intended function.</td>
<td></td>
</tr>
<tr>
<td>Verify each vacuum breaker and its associated isolation valve is closed.</td>
<td>7 days</td>
</tr>
<tr>
<td>SR 3.6.5.6.2</td>
<td>Perform a functional test of each vacuum breaker and its associated isolation valve.</td>
</tr>
</tbody>
</table>

(continued)
Drywell Vacuum Relief System
3.6.5.6

SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.6.5.6.3</td>
<td>Verify the opening setpoint of each vacuum breaker is ≤ [1.0] psid.</td>
</tr>
</tbody>
</table>
3.7 PLANT SYSTEMS

3.7.1 [Standby Service Water (SSW)] System and [Ultimate Heat Sink (UHS)]

LCO 3.7.1 Division 1 and 2 [SSW] subsystems and [UHS] shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more cooling towers with one cooling tower fan inoperable.</td>
<td>A.1 Restore cooling tower fan(s) to OPERABLE status.</td>
<td>7 days</td>
</tr>
</tbody>
</table>

(continued)
Actions (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. One [SSW] subsystem inoperable [for reasons other than Condition A].</td>
<td>B.1 NOTES
1. Enter applicable Conditions and Required Actions of LCO 3.8.1, "AC Sources—Operating," for diesel generator made inoperable by [SSW].

2. Enter applicable Conditions and Required Actions of LCO 3.4.9, "Residual Heat Removal (RHR) Shutdown Cooling System—Hot Shutdown," for [RHR shutdown cooling] made inoperable by [SSW].

Restore [SSW] subsystem to OPERABLE status.</td>
<td>72 hours</td>
</tr>
</tbody>
</table>
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Required Action and associated Completion Time of Condition A or B not met.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both [SSW] subsystems inoperable [for reasons other than Condition A]. OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[UHS] inoperable for reasons other than Condition A.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.7.1.1 Verify the water level of each [UHS] cooling tower basin is ≥ [7.25] ft.</td>
<td>24 hours</td>
</tr>
<tr>
<td>SR 3.7.1.2 Verify the water level [in each SSW pump well of the intake structure] is ≥ [] ft.</td>
<td>24 hours</td>
</tr>
<tr>
<td>SR 3.7.1.3 Verify the average water temperature of [UHS] is ≤ []°F.</td>
<td>24 hours</td>
</tr>
<tr>
<td>SURVEILLANCE REQUIREMENTS (continued)</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SR 3.7.1.4 Operate each [SSW] cooling tower fan for (\geq) [15] minutes.</td>
<td>31 days</td>
</tr>
</tbody>
</table>
| **SR 3.7.1.5**

Isolation of flow to individual components does not render [SSW] System inoperable.

Verify each [SSW] subsystem manual, power operated, and automatic valve in the flow path servicing safety related systems or components, that is not locked, sealed, or otherwise secured in position, is in the correct position. | 31 days |
| **SR 3.7.1.6** Verify each [SSW] subsystem actuates on an actual or simulated initiation signal. | [18] months |
3.7 PLANT SYSTEMS

3.7.2 High Pressure Core Spray (HPCS) Service Water System (SWS)

LCO 3.7.2 The HPCS SWS shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. HPCS SWS inoperable.</td>
<td>A.1 Declare HPCS System inoperable.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.7.2.1 Verify water level of the [a standby service water] cooling tower basin is $\geq [7.25]$ ft.</td>
<td>24 hours</td>
</tr>
<tr>
<td>SR 3.7.2.2 ----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Isolation of flow to individual components does not render [HPCS SWS] System inoperable.</td>
<td>31 days</td>
</tr>
<tr>
<td>Verify each HPCS SWS manual, power operated, and automatic valve in the flow path [servicing safety related systems or components], that is not locked, sealed, or otherwise secured in position, is in the correct position.</td>
<td>(continued)</td>
</tr>
<tr>
<td>SURVEILLANCE REQUIREMENTS (continued)</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>SR 3.7.2.3 Verify the HPCS SWS actuates on an actual or simulated initiation signal.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>
3.7 PLANT SYSTEM

3.7.3 [Control Room Fresh Air (CRFA)] System

LCO 3.7.3 Two [CRFA] subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3,
During movement of irradiated fuel assemblies in the [primary or secondary containment],
During CORE ALTERATIONS,
During operations with a potential for draining the reactor vessel (OPDRVs).

<table>
<thead>
<tr>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION</td>
</tr>
<tr>
<td>A. One [CRFA] subsystem inoperable.</td>
</tr>
<tr>
<td>B. Required Action and Associated Completion Time of Condition A not met in MODE 1, 2, or 3.</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Required Action and associated Completion Time of Condition A not met during movement of irradiated fuel assemblies in the primary or secondary containment, during CORE ALTERATIONS, or during OPDRVs.</td>
<td>---NOTE--- LCO 3.0.3 is not applicable.</td>
<td>Immed Immediately</td>
</tr>
<tr>
<td>C.1</td>
<td>---NOTE--- Place in toxic gas protection mode if automatic transfer to toxic gas protection mode is inoperable.</td>
<td>Immed Immediately</td>
</tr>
<tr>
<td>OR</td>
<td>C.2.1 Suspend movement of irradiated fuel assemblies in the primary and secondary containment.</td>
<td>Immed Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>C.2.2 Suspend CORE ALTERATIONS.</td>
<td>Immed Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>C.2.3 Initiate action to suspend OPDRVs.</td>
<td>Immed Immediately</td>
</tr>
<tr>
<td>D. Two [CRFA] subsystems inoperable in MODE 1, 2, or 3.</td>
<td>D.1 Enter LCO 3.0.3.</td>
<td>Immed Immediately</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Two [CRFA] subsystems inoperable during movement of irradiated fuel assemblies in the [primary or secondary containment], during CORE ALTERATIONS, or during OPDRVs.</td>
<td>--NOTE--LCO 3.0.3 is not applicable.</td>
<td>Immediately</td>
</tr>
<tr>
<td>E.1</td>
<td>Suspend movement of irradiated fuel assemblies in the [primary and secondary containment].</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>E.2</td>
<td>Suspend CORE ALTERATIONS.</td>
</tr>
<tr>
<td>AND</td>
<td>E.3</td>
<td>Initiate action to suspend OPDRVs.</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.7.3.1</td>
<td>Operate each [CRFA] subsystem for [≥ 10 continuous hours with the heaters operating] or ([for systems without heaters] ≥ 15 minutes].</td>
</tr>
<tr>
<td>SR 3.7.3.2</td>
<td>Perform required [CRFA] filter testing in accordance with the [Ventilation Filter Testing Program (VFTP)].</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>SR 3.7.3.3 Verify each [CRFA] subsystem actuates on an actual or simulated initiation signal.</td>
</tr>
<tr>
<td>SR 3.7.3.4 Verify each [CRFA] subsystem can maintain a positive pressure of $\geq [\]$ inches water gauge relative to [adjacent buildings] during the [isolation] mode of operation at a flow rate of $\leq [\]$ cfm.</td>
</tr>
</tbody>
</table>
3.7 PLANT SYSTEMS

3.7.4 [Control Room Air Conditioning (AC)] System

LCO 3.7.4 Two [control room AC] subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3,
During movement of irradiated fuel assemblies in the [primary or secondary containment],
During CORE ALTERATIONS,
During operations with a potential for draining the reactor vessel (OPDRVs).

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One [control room AC] subsystem inoperable.</td>
<td>A.1 Restore [control room AC] subsystem to OPERABLE status.</td>
<td>30 days</td>
</tr>
<tr>
<td>B. Required Action and Associated Completion Time of Condition A not met in MODE 1, 2, or 3.</td>
<td>B.1 Be in MODE 3. AND B.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
</table>
| C. Required Action and associated Completion Time of Condition A not met during movement of irradiated fuel assemblies in the [primary or secondary containment], during CORE ALTERATIONS, or during OPDRVs. | ---------NOTE---------
| LCO 3.0.3 is not applicable. | ----------------- | |
| C.1 Place OPERABLE [control room AC] subsystem in operation. | Immediately | |
| OR | | |
| C.2.1 Suspend movement of irradiated fuel assemblies in the [primary and secondary containment]. | Immediately | |
| AND | | |
| C.2.2 Suspend CORE ALTERATIONS. | Immediately | |
| AND | | |
| C.2.3 Initiate action to suspend OPDRVs. | Immediately | |
| D. Two [control room AC] subsystems inoperable in MODE 1, 2, or 3. | D.1 Enter LCO 3.0.3. | Immediately |

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Two [control room AC] subsystems inoperable during movement of irradiated fuel assemblies in the [primary or secondary containment], during CORE ALTERATIONS, or during OPDRVs.</td>
<td>E.1 Suspend movement of irradiated fuel assemblies in the [primary and secondary containment].</td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td>E.2 Suspend CORE ALTERATIONS.</td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td>E.3 Initiate action to suspend OPDRVs.</td>
<td></td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.7.4.1 Verify each [control room AC] subsystem has the capability to remove the assumed heat load.</td>
<td>[18] months</td>
</tr>
</tbody>
</table>

BWR/6 STS 3.7-13 Rev 1, 04/07/95
3.7 PLANT SYSTEMS

3.7.5 Main Condenser Offgas

LCO 3.7.5 The gross gamma activity rate of the noble gases measured at [the offgas recombiner effluent] shall be ≤ [380] mCi/second [after decay of 30 minutes].

APPLICABILITY: MODE 1, MODES 2 and 3 with any [main steam line not isolated and] steam jet air ejector (SJAE) in operation.

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Gross gamma activity rate of the noble gases not within limit.</td>
<td>A.1 Restore gross gamma activity rate of the noble gases to within limit.</td>
<td>72 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Isolate all main steam lines.</td>
<td>12 hours</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.2 Isolate SJAE.</td>
<td>12 hours</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.3.1 Be in MODE 3.</td>
<td>12 hours</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.3.2 Be in MODE 4.</td>
<td>36 hours</td>
</tr>
<tr>
<td>SURVEILLANCE REQUIREMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>FREQUENCY</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>SR 3.7.5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>NOTE</td>
<td>31 days</td>
<td></td>
</tr>
<tr>
<td>Not required to be performed until 31 days after any [main steam line not isolated and] SJAE in operation.</td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td>Verify the gross gamma activity rate of the noble gases is $\leq [380]$ mCi/second [after decay of 30 minutes].</td>
<td>Once within 4 hours after a $\geq 50%$ increase in the nominal steady state fission gas release after factoring out increases due to changes in THERMAL POWER level</td>
<td></td>
</tr>
</tbody>
</table>
3.7 PLANT SYSTEMS

3.7.6 Main Turbine Bypass System

LCO 3.7.6 The Main Turbine Bypass System shall be OPERABLE.

OR

LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)," limits for an inoperable Main Turbine Bypass System, as specified in the [COLR], are made applicable.

APPLICABILITY: THERMAL POWER ≥ 25% RTP.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. [Requirements of the LCO not met or Main Turbine Bypass System inoperable.]</td>
<td>A.1 [Satisfy the requirements of the LCO or restore Main Turbine Bypass System to OPERABLE status.]</td>
<td>2 hours</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time not met.</td>
<td>B.1 Reduce THERMAL POWER to < 25% RTP.</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.7.6.1 Verify one complete cycle of each main turbine bypass valve.</td>
<td>31 days</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.7.6.2 Perform a system functional test.</td>
<td>[18] months</td>
<td></td>
</tr>
<tr>
<td>SR 3.7.6.3 Verify the TURBINE BYPASS SYSTEM RESPONSE TIME is within limits.</td>
<td>[18] months</td>
<td></td>
</tr>
</tbody>
</table>
3.7 PLANT SYSTEMS

3.7.7 Fuel Pool Water Level

LCO 3.7.7 The fuel pool water level shall be $\geq [23]$ ft over the top of irradiated fuel assemblies seated in the spent fuel storage pool and upper containment fuel storage pool racks.

APPLICABILITY: During movement of irradiated fuel assemblies in the associated fuel storage pool.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Fuel pool water level not within limit</td>
<td>A.1 ---NOTE---LCO 3.0.3 is not applicable. ---NOTE---</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>Suspend movement of irradiated fuel assemblies in the associated fuel storage pool(s).</td>
<td></td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.7.7.1</td>
<td>7 days</td>
</tr>
<tr>
<td>Verify the fuel pool water level is $\geq [23]$ ft over the top of irradiated fuel assemblies seated in the storage racks.</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL POWER SYSTEMS

3.8.1 AC Sources—Operating

LCO 3.8.1 The following AC electrical power sources shall be OPERABLE:

- a. Two qualified circuits between the offsite transmission network and the onsite Class 1E AC Electric Power Distribution System;
- b. Three diesel generators (DGs); and
- c. Three automatic sequencers.

APPLICABILITY: MODES 1, 2, and 3.

NOTE

[Division 3] AC electrical power sources are not required to be OPERABLE when High Pressure Core Spray System [2C Standby Service Water System] is inoperable.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One [required] offsite circuit inoperable.</td>
<td>A.1 Perform SR 3.8.1.1 for OPERABLE [required] offsite circuit.</td>
<td>1 hour AND Once per 8 hours thereafter</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.2 Declare required feature(s) with no offsite power available inoperable when the redundant required feature(s) are inoperable.</td>
<td>24 hours from discovery of no offsite power to one division concurrent with inoperability of redundant required feature(s).</td>
</tr>
<tr>
<td></td>
<td>A.3 Restore [required] offsite circuit to OPERABLE status.</td>
<td>72 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AND 24 hours from discovery of two divisions with no offsite power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AND 6 days from discovery of failure to meet LCO</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. One [required] DG inoperable.</td>
<td>B.1 Perform SR 3.8.1.1 for OPERABLE [required] offsite circuit(s).</td>
<td>1 hour AND Once per 8 hours thereafter</td>
</tr>
<tr>
<td></td>
<td>AND B.2 Declare required feature(s), supported by the inoperable DG, inoperable when the redundant required feature(s) are inoperable.</td>
<td>4 hours from discovery of Condition B concurrent with inoperability of redundant feature(s)</td>
</tr>
<tr>
<td></td>
<td>AND B.3.1 Determine OPERABLE DG(s) are not inoperable due to common cause failure. OR B.3.2 Perform SR 3.8.1.2 for OPERABLE DG(s).</td>
<td>[24] hours</td>
</tr>
<tr>
<td></td>
<td>AND B.4 Restore required DG to OPERABLE status.</td>
<td>72 hours AND 6 days from discovery of failure to meet LCO</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Two [required] offsite circuits inoperable.</td>
<td>C.1 Declare required feature(s) inoperable when the redundant required feature(s) are inoperable.</td>
<td>12 hours from discovery of Condition C concurrent with inoperability of redundant required feature(s)</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.2 Restore one [required] offsite circuit to OPERABLE status.</td>
<td></td>
<td>24 hours</td>
</tr>
<tr>
<td>D. One [required] offsite circuit inoperable.</td>
<td>---------NOTE---------- Enter applicable Conditions and Required Actions of LCO 3.8.9, "Distribution Systems—Operating," when Condition D is entered with no AC power source to any [division].</td>
<td></td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One [required] DG inoperable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.1</td>
<td>Restore [required] offsite circuit to OPERABLE status.</td>
<td>12 hours</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.2</td>
<td>Restore [required] DG to OPERABLE status.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Two [required] DGs inoperable.</td>
<td>E.1 Restore one [required] DG to OPERABLE status.</td>
<td>2 hours OR 24 hours if Division 3 DG is inoperable</td>
</tr>
<tr>
<td>F. One [required] [automatic load sequencer] inoperable.</td>
<td>[REVIEWER'S NOTE] This Condition may be deleted if the unit design is such that any sequencer failure mode will only affect the ability of the associated DG to power its respective safety loads following a loss of offsite power independent of, or coincident with, a Design Basis Event. F.1 Restore [required] [automatic load sequencer] to OPERABLE status.</td>
<td>[12] hours</td>
</tr>
<tr>
<td>G. Required Action and Associated Completion Time of Condition A, B, C, D, [or] E[, or F] not met.</td>
<td>G.1 Be in MODE 3. AND G.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
<tr>
<td>H. Three or more [required] AC sources inoperable.</td>
<td>H.1 Enter LCO 3.0.3.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

AC Sources—Operating 3.8.1
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.1</td>
<td>Verify correct breaker alignment and indicated power availability for each [required] offsite circuit.</td>
</tr>
</tbody>
</table>

SR 3.8.1.2

---NOTES---

1. Performance of SR 3.8.1.7 satisfies this SR.

2. All DG starts may be preceded by an engine prelube period and followed by a warmup period prior to loading.

3. A modified DG start involving idling and gradual acceleration to synchronous speed may be used for this SR as recommended by the manufacturer. When modified start procedures are not used, the time, voltage, and frequency tolerances of SR 3.8.1.7 must be met.

Verify each DG starts from standby conditions and achieves steady state voltage $\geq [3744]$ V and $\leq [4576]$ V and frequency $\geq [58.8]$ Hz and $\leq [61.2]$ Hz.

As specified in Table 3.8.1-1

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>SR 3.8.1.3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SR 3.8.1.4</td>
</tr>
<tr>
<td>SR 3.8.1.5</td>
</tr>
<tr>
<td>SR 3.8.1.6</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.7</td>
<td>184 days</td>
</tr>
</tbody>
</table>

NOTE

All DG starts may be preceded by an engine prelube period.

Verify each DG starts from standby condition and achieves, in \(\leq [10] \) seconds, voltage \(\geq [3744] \) V and \(\leq [4576] \) V and frequency \(\geq [58.8] \) Hz and \(\leq [61.2] \) Hz.

SR 3.8.1.8

NOTE

This Surveillance shall not be performed in MODE 1 or 2. However, credit may be taken for unplanned events that satisfy this SR.

[18 months]
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.9</td>
<td>[18 months]</td>
</tr>
</tbody>
</table>

NOTES-------------------

1. This Surveillance shall not be performed in MODE 1 or 2. However, credit may be taken for unplanned events that satisfy this SR.

2. If performed with DG synchronized with offsite power, it shall be performed at a power factor \(\leq 0.9 \).

Verify each DG rejects a load greater than or equal to its associated single largest post-accident load for [Division 1 and \(\geq [550] \text{ kW} \) for Division 2] DGs and \(\geq [2180] \text{ kW} \) for [Division 3] DG, and:

a. Following load rejection, the frequency is \(\leq [69] \text{ Hz} \);

b. Within [3] seconds following load rejection, the voltage is \(\geq [3744] \text{ V} \) and \(\leq [4576] \text{ V} \); and

c. Within [3] seconds following load rejection, the frequency is \(\geq [58.8] \text{ Hz} \) and \(\leq [61.2] \text{ Hz} \).
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.10</td>
<td>[18 months]</td>
</tr>
<tr>
<td>[NOTE] This Surveillance shall not be performed in MODE 1 or 2. However, credit may be taken for unplanned events that satisfy this SR.</td>
<td></td>
</tr>
<tr>
<td>Verify each DG operating at a power factor (\leq [0.9]) does not trip and voltage is maintained (\leq [5000]) V during and following a load rejection of a load (\geq [5450]) kW and (\leq [5740]) kW for [Division 1 and 2] DGs and (\geq [3300]) kW and (\leq [3500]) kW for [Division 3] DG.</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.11</td>
<td>[18 months]</td>
</tr>
<tr>
<td>1. All DG starts may be preceded by an engine prelude period.</td>
<td></td>
</tr>
<tr>
<td>2. This Surveillance shall not be performed in MODE 1, 2, or 3. However, credit may be taken for unplanned events that satisfy this SR.</td>
<td></td>
</tr>
</tbody>
</table>

Verify on an actual or simulated loss of offsite power signal:

- De-energization of emergency buses;
- Load shedding from emergency buses; and
- DG auto-starts from standby condition and:
 - energizes permanently connected loads in $\leq [10]$ seconds,
 - energizes auto-connected shutdown loads through [automatic load sequencer],
 - maintains steady state voltage $\geq [3744]$ V and $\leq [4576]$ V,
 - maintains steady state frequency $\geq [58.8]$ Hz and $\leq [61.2]$ Hz, and
 - supplies permanently connected and auto-connected shutdown loads for $\geq [5]$ minutes.

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.12</td>
<td>[18 months]</td>
</tr>
<tr>
<td>-----------------------------NOTES-----------------------------</td>
<td></td>
</tr>
<tr>
<td>1. All DG starts may be preceded by an engine prelube period.</td>
<td></td>
</tr>
<tr>
<td>2. This Surveillance shall not be performed in MODE 1 or 2. However, credit may be taken for unplanned events that satisfy this SR.</td>
<td></td>
</tr>
<tr>
<td>Verify on an actual or simulated Emergency Core Cooling System (ECCS) initiation signal each DG auto-starts from standby condition and:</td>
<td></td>
</tr>
<tr>
<td>a. In $\leq [10]$ seconds after auto-start and during tests, achieves voltage $\geq [3744]$ V and $\leq [4576]$ V;</td>
<td></td>
</tr>
<tr>
<td>b. In $\leq [10]$ seconds after auto-start and during tests, achieves frequency $\geq [58.8]$ Hz and $\leq [61.2]$ Hz;</td>
<td></td>
</tr>
<tr>
<td>c. Operates for $\geq [5]$ minutes;</td>
<td></td>
</tr>
<tr>
<td>d. Permanently connected loads remain energized from the offsite power system; and</td>
<td></td>
</tr>
<tr>
<td>e. Emergency loads are energized [or auto-connected through the automatic load sequencer] to from the offsite power system.</td>
<td></td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.13</td>
<td>[18 months]</td>
</tr>
</tbody>
</table>

This Surveillance shall not be performed in MODE 1, 2, or 3. However, credit may be taken for unplanned events that satisfy this SR.

Verify each DG's automatic trips are bypassed on [actual or simulated loss of voltage signal on the emergency bus concurrent with an actual or simulated ECCS initiation signal] except:

- a. Engine overspeed; [and]
- b. Generator differential current;
- c. Low lube oil pressure;
- d. High crankcase pressure; and
- e. Start failure relay.

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>SR 3.8.1.14</td>
</tr>
</tbody>
</table>

1. Momentary transients outside the load and power factor ranges do not invalidate this test.

2. This Surveillance shall not be performed in MODE 1 or 2. However, credit may be taken for unplanned events that satisfy this SR.

Verify each DG operating at a power factor
\(\leq [0.9] \) for Division 1 and 2 DGs, and
\(\leq [0.9] \) for Division 3 DG, operates for
\(\geq 24 \) hours:

- For \(\geq 2 \) hours loaded, \(\geq [5450] \) kW and \(\leq [5740] \) kW for Division 1 and 2 DGs, \(\geq [3630] \) kW and \(\leq [3830] \) kW for Division 3 DG; and

- For the remaining hours of the test loaded \(\geq [3744] \) kW and \(\leq [4576] \) kW for Division 1 and 2 DGs, and \(\geq [3300] \) kW and \(\leq [3500] \) kW for Division 3 DG.

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.15----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1. This Surveillance shall be performed within 5 minutes of shutting down the DG after the DG has operated ≥ [2] hours loaded ≥ [4500] kW and ≤ [5000] kW for [Division 1 and 2] DGs, and ≥ [3300] kW and ≤ [3500] kW for Division 3 DG. Momentary transients outside of load range do not invalidate this test.</td>
<td>[18 months]</td>
</tr>
<tr>
<td>2. All DG starts may be preceded by an engine prelube period.</td>
<td>[18 months]</td>
</tr>
</tbody>
</table>

| **SR 3.8.1.16**----------------------|-----------|
| 1. This Surveillance shall not be performed in MODE 1, 2, or 3. However, credit may be taken for unplanned events that satisfy this SR. | [18 months] |

Verify each DG:

a. Synchronizes with offsite power source while loaded with emergency loads upon a simulated restoration of offsite power;

b. Transfers loads to offsite power source; and

c. Returns to ready-to-load operation.
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.17</td>
<td>[18 months]</td>
</tr>
<tr>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td>This Surveillance shall not be performed in MODE 1, 2, or 3. However, credit may be taken for unplanned events that satisfy this SR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify, with a DG operating in test mode and connected to its bus, an actual or simulated ECCS initiation signal overrides the test mode by:</td>
<td></td>
</tr>
<tr>
<td>a. Returning DG to ready-to-load operation[; and]</td>
<td></td>
</tr>
<tr>
<td>b. Automatically energizing the emergency load from offsite power.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 3.8.1.18</td>
<td>[18 months]</td>
</tr>
<tr>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td>This Surveillance shall not be performed in MODE 1, 2, or 3. However, credit may be taken for unplanned events that satisfy this SR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify interval between each sequenced load block is within ± [10% of design interval] [for each load sequencer timer].</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.19</td>
<td>[18 months]</td>
</tr>
</tbody>
</table>

NOTES

1. All DG starts may be preceded by an engine prelube period.

2. This Surveillance shall not be performed in MODE 1, 2, or 3. However, credit may be taken for unplanned events that satisfy this SR.

Verify, on an actual or simulated loss of offsite power signal in conjunction with an actual or simulated "CCS initiation signal":

a. De-energization of emergency buses;

b. Load shedding from emergency buses; and

b. DG auto-starts from standby condition and:

1. energizes permanently connected loads in \(\leq 10 \) seconds,

2. energizes auto-connected emergency loads through [load sequencer],

3. achieves steady state voltage \(\geq 3744 \text{ V} \) and \(\leq 4576 \text{ V} \),

4. achieves steady state frequency \(\geq 58.8 \text{ Hz} \) and \(\leq 61.2 \text{ Hz} \), and

5. supplies permanently connected and auto-connected emergency loads for \(\geq 5 \) minutes.

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.1.20</td>
<td>10 years</td>
</tr>
</tbody>
</table>

NOTES

- All DG starts may be preceded by an engine prelude period.

Table 3.8.1-1 (page 1 of 1)
Diesel Generator Test Schedule

<table>
<thead>
<tr>
<th>NUMBER OF FAILURES IN LAST 25 VALID TESTS(\text{(a)})</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 3)</td>
<td>31 days</td>
</tr>
<tr>
<td>(\geq 4)</td>
<td>7 days(\text{(b)}) ((\text{but} \geq 24 \text{ hours}))</td>
</tr>
</tbody>
</table>

\(\text{(a)}\) Criteria for determining number of failures and valid tests shall be in accordance with Regulatory Position C.2.1 of Regulatory Guide 1.9, Revision 3, where the number of tests and failures is determined on a per DG basis.

\(\text{(b)}\) This test frequency shall be maintained until seven consecutive failure free starts from standby conditions and load and run tests have been performed. This is consistent with Regulatory Position \([_
\] \), of Regulatory Guide 1.9, Revision 3. If, subsequent to the 7 failure free tests, 1 or more additional failures occur such that there are again 4 or more failures in the last 25 tests, the testing interval shall again be reduced as noted above and maintained until 7 consecutive failure free tests have been performed.

Note: If Revision 3 of Regulatory Guide 1.9 is not approved, the above table will be modified to be consistent with the existing version of Regulatory Guide 1.108, GL 84-15, or other approved version.
3.8 ELECTRICAL POWER SYSTEMS

3.8.2 AC Sources—Shutdown

LCO 3.8.2 The following AC electrical power sources shall be OPERABLE:

a. One qualified circuit between the offsite transmission network and the onsite Class 1E AC electrical power distribution subsystem(s) required by LCO 3.8.10, "Distribution Systems—Shutdown"; and

b. One diesel generator (DG) capable of supplying one division of the Division 1 or 2 onsite Class 1E AC electrical power distribution subsystem(s) required by LCO 3.8.10; and

c. One qualified circuit, other than the circuit in LCO 3.8.2.a, between the offsite transmission and the Division 3 onsite Class 1E electrical power distribution subsystem, or the Division 3 DG capable of supplying the Division 3 onsite Class 1E AC electrical power distribution subsystem when the Division 3 onsite Class 1E electrical power distribution subsystem is required by LCO 3.8.10.

APPLICABILITY: MODES 4 and 5,
During movement of irradiated fuel assemblies in the [primary or secondary] containment.
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. LCO Item a. not met.</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Enter applicable Condition and Required Actions of LCO 3.8.10, with one required division de-energized as a result of Condition A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.1 Declare affected required feature(s) with no offsite power available inoperative.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.1 Suspend CORE ALTERATIONS.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.2 Suspend movement of irradiated fuel assemblies in the [primary and secondary] containment.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.3 Initiate action to suspend operations with a potential for draining the reactor vessel (OPDRVs).</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.4 Initiate action to restore required offsite power circuit to OPERABLE status.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. LCO Item b. not met.</td>
<td>B.1 Suspend CORE ALTERATIONS.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>B.2 Suspend movement of irradiated fuel assemblies in [primary and secondary] containment.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>B.3 Initiate action to suspend OPDRVs.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>B.4 Initiate action to restore required DG to OPERABLE status.</td>
<td>Immediately</td>
</tr>
<tr>
<td>C. LCO Item c. not met.</td>
<td>C.1 Declare HPCS [and 2C Standby Service Water System] inoperable.</td>
<td>[72 hours]</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.2.1</td>
<td>NOTE</td>
</tr>
</tbody>
</table>

The following SRs are not required to be performed: SR 3.8.1.3, SR 3.8.1.9 through SR 3.8.1.11, SR 3.8.1.13 through SR 3.8.1.16, [SR 3.8.1.18], and SR 3.8.1.19.

For AC sources required to be OPERABLE, the SRs of Specification 3.8.1, except SR 3.8.1.8, SR 3.8.1.17, and SR 3.8.1.20, are applicable.

In accordance with applicable SRs
3.8 ELECTRICAL POWER SYSTEMS

3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air

LCO 3.8.3 The stored diesel fuel oil, lube oil, and starting air subsystem shall be within limits for each required diesel generator (DG).

APPLICABILITY: When associated DG is required to be OPERABLE.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more DGs with fuel oil level:</td>
<td>A.1 Restore fuel oil level to within limits.</td>
<td>48 hours</td>
</tr>
<tr>
<td>1. For [DG 11 or 12], < [62,000] gal and ≥ [49,000] gal; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. For [DG 13], < [41,200] gal and ≥ [33,500] gal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. One or more DGs with lube oil inventory:</td>
<td>B.1 Restore lube oil inventory to within limits.</td>
<td>48 hours</td>
</tr>
<tr>
<td>1. For [DG 11 or 12], < [] gal and ≥ [425] gal; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. For [DG 13], < [] gal and ≥ [] gal.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. One or more DGs with stored fuel oil total particulates not within limit.</td>
<td>C.1 Restore fuel oil total particulates to within limit.</td>
<td>7 days</td>
</tr>
<tr>
<td>D. One or more DGs with new fuel oil properties not within limits.</td>
<td>D.1 Restore stored fuel oil properties to within limits.</td>
<td>30 days</td>
</tr>
<tr>
<td>E. One or more DGs with starting air receiver pressure $< [225]$ psig and $\geq [125]$ psig.</td>
<td>E.1 Restore starting air receiver pressure to $\geq [225]$ psig.</td>
<td>48 hours</td>
</tr>
<tr>
<td>F. Required Actions and associated Completion Time not met. OR One or more DGs with diesel fuel oil, lube oil, or starting air subsystem not within limits for reasons other than Condition A, B, C, D, or E.</td>
<td>F.1 Declare associated DG inoperable.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

BWR/6 STS 3.8-25 Rev 1, 04/07/95
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.3.1 Verify each fuel oil storage tank contains:</td>
<td>31 days</td>
</tr>
<tr>
<td>a. ≥ [62,000] gal of fuel for [DGs 11 and 12]; and</td>
<td></td>
</tr>
<tr>
<td>b. ≥ [41,200] gal of fuel for [DG 13].</td>
<td></td>
</tr>
<tr>
<td>SR 3.8.3.2 Verify lube oil inventory is:</td>
<td>31 days</td>
</tr>
<tr>
<td>a. ≥ [] gal for [DGs 11 and 12]; and</td>
<td></td>
</tr>
<tr>
<td>b. ≥ [] gal for [DG 13].</td>
<td></td>
</tr>
<tr>
<td>SR 3.8.3.3 Verify fuel oil properties of new and stored fuel oil are tested in accordance with, and maintained within the limits of, the Diesel Fuel Oil Testing Program.</td>
<td>In accordance with the Diesel Fuel Oil Testing Program</td>
</tr>
<tr>
<td>SR 3.8.3.4 Verify each DG air start receiver pressure is ≥ [225] psig.</td>
<td>31 days</td>
</tr>
<tr>
<td>SR 3.8.3.5 Check for and remove accumulated water from each fuel oil storage tank.</td>
<td>[31] days</td>
</tr>
<tr>
<td>SR 3.8.3.6 For each fuel oil storage tank:</td>
<td>10 years</td>
</tr>
<tr>
<td>a. Drain the fuel oil;</td>
<td></td>
</tr>
<tr>
<td>b. Remove the sediment; and</td>
<td></td>
</tr>
<tr>
<td>c. Clean the tank.</td>
<td></td>
</tr>
</tbody>
</table>
3.8 ELECTRICAL POWER SYSTEMS

3.8.4 DC Sources—Operating

LCO 3.8.4 The [Division 1], [Division 2], and [Division 3] DC electrical power subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. [Division 1 or 2] DC electrical power subsystem inoperable.</td>
<td>A.1 Restore [Division 1 and 2] DC electrical power subsystems to OPERABLE status.</td>
<td>2 hours</td>
</tr>
<tr>
<td>B. [Division 3] DC electrical power subsystem inoperable.</td>
<td>B.1 Declare High Pressure Core Spray System [and 2C Standby Service Water System] inoperable.</td>
<td>Immediately</td>
</tr>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

BWR/6 STS 3.8-27 Rev 1, 04/07/95
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.4.1 Verify battery terminal voltage is ≥ 1.29 V on float charge.</td>
<td>7 days</td>
</tr>
<tr>
<td>SR 3.8.4.2 Verify no visible corrosion at battery terminals and connectors.</td>
<td>92 days</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Verify battery connection resistance is $\leq 1.5 \times 10^{-4}$ ohm for inter-cell connections, $\leq 1.5 \times 10^{-4}$ ohm for inter-rack connections, $\leq 1.5 \times 10^{-4}$ ohm for inter-tier connections, and $\leq 1.5 \times 10^{-4}$ ohm for terminal connections.</td>
<td></td>
</tr>
<tr>
<td>SR 3.8.4.3 Verify battery cells, cell plates, and racks show no visual indication of physical damage or abnormal deterioration.</td>
<td>[12] months</td>
</tr>
<tr>
<td>SR 3.8.4.4 Remove visible corrosion and verify battery cell to cell and terminal connections are clean and tight, and coated with anti-corrosion material.</td>
<td>[12] months</td>
</tr>
<tr>
<td>SR 3.8.4.5 Verify battery connection resistance is $\leq 1.5 \times 10^{-4}$ ohm for inter-cell connections, $\leq 1.5 \times 10^{-4}$ ohm for inter-rack connections, $\leq 1.5 \times 10^{-4}$ ohm for inter-tier connections, and $\leq 1.5 \times 10^{-4}$ ohm for terminal connections.</td>
<td>[12] months</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.4.6</td>
<td>NOTE</td>
</tr>
<tr>
<td>This Surveillance shall not be performed in MODE 1, 2, or 3. However, credit may be taken for unplanned events that satisfy this SR.</td>
<td>[18 months]</td>
</tr>
<tr>
<td>Verify each [required] battery charger supplies $\geq [400]$ amps at $\geq [250/125]$ V for $\geq [8]$ hours.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SR 3.8.4.7</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The modified performance discharge test in SR 3.8.4.8 may be performed in lieu of the service test in SR 3.8.4.7 once per 60 months.</td>
<td></td>
</tr>
<tr>
<td>2. This Surveillance shall not be performed in MODE 1, 2, or 3. However, credit may be taken for unplanned events that satisfy this SR.</td>
<td></td>
</tr>
<tr>
<td>Verify battery capacity is adequate to supply, and maintain in OPERABLE status, the required emergency loads for the design duty cycle when subjected to a battery service test.</td>
<td>[18 months]</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.4.8</td>
<td>60 months</td>
</tr>
<tr>
<td>--- NOTE ---</td>
<td>AND</td>
</tr>
<tr>
<td>This Surveillance shall not be performed in MODE 1, 2, or 3. However, credit may be taken for unplanned events that satisfy this SR.</td>
<td>12 months when battery shows degradation or has reached [85]% of expected life with capacity < 100% of manufacturer's rating</td>
</tr>
<tr>
<td>Verify battery capacity is $\geq [80]%$ of the manufacturer's rating when subjected to a performance discharge test or a modified performance discharge test.</td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td>24 months when battery has reached [85]% of the expected life with capacity $\geq 100%$ of manufacturer's rating</td>
</tr>
</tbody>
</table>
3.8 ELECTRICAL POWER SYSTEMS

3.8.5 DC Sources—Shutdown

LCO 3.8.5 DC electrical power subsystem(s) shall be OPERABLE to support the electrical power distribution subsystem(s) required by LCO 3.8.10, "Distribution Systems—Shutdown."

APPLICABILITY: MODES 4 and 5,
During movement of irradiated fuel assemblies in the [primary or secondary] containment.

<table>
<thead>
<tr>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION</td>
</tr>
<tr>
<td>A. One or more required DC electrical power subsystems inoperable.</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>A.2.1 Suspend CORE ALTERATIONS.</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>A.2.2 Suspend movement of irradiated fuel assemblies in the [primary or secondary] containment.</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>A.2.3 Initiate action to suspend operations with a potential for draining the reactor vessel.</td>
</tr>
<tr>
<td>(continued)</td>
</tr>
<tr>
<td>CONDITION</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>A. (continued)</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE</td>
<td>In accordance with applicable SRs</td>
</tr>
</tbody>
</table>

The following SRs are not required to be performed: SR 3.8.4.6, SR 3.8.4.7, and SR 3.8.4.8.

For DC sources required to be OPERABLE the following SRs are applicable:

- SR 3.8.4.1, SR 3.8.4.4, SR 3.8.4.7
- SR 3.8.4.2, SR 3.8.4.5, SR 3.8.4.8
- SR 3.8.4.3, SR 3.8.4.6
3.8 ELECTRICAL POWER SYSTEMS

3.8.6 Battery Cell Parameters

LCO 3.8.6 Battery cell parameters for the [Division 1, 2, and 3] batteries shall be within the limits of Table 3.8.6-1.

APPLICABILITY: When associated DC electrical power subsystems are required to be OPERABLE.

ACTIONS

NOTE
Separate Condition entry is allowed for each battery.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more batteries with one or more battery cell parameters not within Category A or B limits.</td>
<td>A.1 Verify pilot cell(s) electrolyte level and float voltage meet Table 3.8.6-1 Category C limits. AND A.2 Verify battery cell parameters meet Table 3.8.6-1 Category C limits. AND A.3 Restore battery cell parameters to Category A and B limits of Table 3.8.6-1.</td>
<td>1 hour AND 24 hours AND Once per 7 days thereafter 31 days</td>
</tr>
</tbody>
</table>

(continued)
Battery Cell Parameters

3.8.6

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.6.1 Verify battery cell parameters meet Table 3.8.6-1 Category A limits.</td>
<td>7 days</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>SR 3.8.6.2 Verify battery cell parameters meet Table 3.8.6-1 Category B limits.</td>
</tr>
<tr>
<td>SR 3.8.6.3 Verify average electrolyte temperature of representative cells is ≥ [60]°F.</td>
</tr>
<tr>
<td>PARAMETER</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Electrolyte Level</td>
</tr>
<tr>
<td>Float Voltage</td>
</tr>
<tr>
<td>Specific Gravity (b)(c)</td>
</tr>
</tbody>
</table>

(a) It is acceptable for the electrolyte level to temporarily increase above the specified maximum level during equalizing charges provided it is not overflowing.

(b) Corrected for electrolyte temperature and level. Level correction is not required, however, when battery charging is < [2] amps when on float charge.

(c) A battery charging current of < [2] amps when on float charge is acceptable for meeting specific gravity limits following a battery recharge, for a maximum of [7] days. When charging current is used to satisfy specific gravity requirements, specific gravity of each connected cell shall be measured prior to expiration of the [7] day allowance.
3.8 ELECTRICAL POWER SYSTEMS

3.8.7 Inverters—Operating

LCO 3.8.7

The [Division 1, Division 2, and Division 3] inverters shall be OPERABLE.

- One/two inverters may be disconnected from its/their associated DC bus for \(\leq 24 \) hours to perform an equalizing charge on [its/their] associated [common] battery, provided:

a. The associated AC vital bus[es] [is/are] energized from [its/their] [Class 1E constant voltage transformers] [inverter using internal AC source]; and

b. All other AC vital buses are energized from their associated OPERABLE inverters.

APPLICABILITY: MODES 1, 2, and 3.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. [Division 1 or 2] inverter inoperable.</td>
<td>A.1 Enter applicable Conditions and Required Actions of LCO 3.8.9, "Distribution Systems - Operating" with any AC vital bus de-energized. Restore [Division 1 and 2] inverters to OPERABLE status.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Required Action and associated Completion Time not met.</td>
<td>C.1 Be in MODE 3. AND C.2 Be in MODE 4.</td>
<td>12 hours 36 hours</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.7.1 Verify correct inverter voltage, [frequency,] and alignment to required AC vital buses.</td>
<td>7 days</td>
</tr>
</tbody>
</table>
3.8 ELECTRICAL POWER SYSTEMS

3.8.8 Inverters—Shutdown

LCO 3.8.8

Inverter(s) shall be OPERABLE to support the onsite Class 1E AC vital bus electrical power distribution subsystem(s) required by LCO 3.8.10, "Distribution Systems—Shutdown."

APPLICABILITY:

MODES 4 and 5,

During movement of irradiated fuel assemblies in the [primary or secondary] containment.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more [required] inverters inoperable.</td>
<td>A.1 Declare affected required feature(s) inoperable.</td>
<td>Immediately</td>
</tr>
<tr>
<td>OR</td>
<td>A.2.1 Suspend CORE ALTERATIONS.</td>
<td>Immediately</td>
</tr>
<tr>
<td>A.2.2 Suspend handling of irradiated fuel assemblies in the [primary or secondary] containment.</td>
<td>A.2.3 Initiate action to suspend operations with a potential for draining the reactor vessel.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>(continued)</td>
<td></td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.2.4 Initiate action to restore required inverters to OPERABLE status.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.8.1</td>
<td>7 days</td>
</tr>
</tbody>
</table>

Verify correct inverter voltage, [frequency,] and alignments to [required] AC vital buses.
3.8 ELECTRICAL POWER SYSTEMS

3.8.9 Distribution Systems—Operating

LCO 3.8.9 [Division 1], [Division 2], and [Division 3] AC, DC, [and AC vital bus] electrical power distribution subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

--- NOTE ---

[Division 3] electrical power distribution subsystems are not required to be OPERABLE when High Pressure Core Spray System [and 2C standby service water pump] is inoperable.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One [Division 1 or 2] AC electrical power distribution subsystem inoperable.</td>
<td>A.1 Restore [Division 1 and 2] AC electrical power distribution subsystems to OPERABLE status.</td>
<td>8 hours AND 16 hours from discovery of failure to meet LCO</td>
</tr>
<tr>
<td>B. [Division 1 or 2] AC vital bus inoperable.</td>
<td>B.1 Restore [Division 1 and 2] AC vital bus distribution subsystems to OPERABLE status.</td>
<td>2 hours AND 16 hours from discovery of failure to meet LCO</td>
</tr>
</tbody>
</table>

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. [Division 1 or 2] DC electrical power distribution subsystem inoperable.</td>
<td>C.1 Restore [Division 1 and 2] DC electrical power distribution subsystems to OPERABLE status.</td>
<td>2 hours AND 16 hours from discovery of failure to meet LCO</td>
</tr>
<tr>
<td>D. Required Action and associated Completion Time of Condition A, B, or C not met.</td>
<td>D.1 Be in MODE 3.</td>
<td>12 hours AND D.2 Be in MODE 4.</td>
</tr>
<tr>
<td>E. One or more [Division 3] AC, DC, or AC vital bus electrical power distribution subsystems inoperable.</td>
<td>E.1 Declare High Pressure Core Spray System [and 2C Standby Service Water System] inoperable.</td>
<td>Immediately</td>
</tr>
<tr>
<td>F. Two or more inoperable distribution subsystems that result in a loss of function.</td>
<td>F.1 Enter LCO 3.0.3.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.9.1 Verify correct breaker alignments and voltage to required AC, DC, and AC vital bus electrical power distribution subsystems.</td>
<td>7 days</td>
</tr>
</tbody>
</table>
3.8 ELECTRICAL POWER SYSTEMS

3.8.10 Distribution Systems—Shutdown

LCO 3.8.10 The necessary portions of the Division 1, Division 2, and Division 3 AC, DC, [and AC vital bus] electrical power distribution subsystems shall be OPERABLE to support equipment required to be OPERABLE.

APPLICABILITY: MODES 4 and 5,
During movement of irradiated fuel assemblies in the [primary or secondary] containment.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more required AC, DC, [or AC vital bus] electrical power distribution subsystems inoperable.</td>
<td>A.1 Declare associated supported required feature(s) inoperable. OR A.2.1 Suspend CORE ALTERATIONS. AND A.2.2 Suspend handling of irradiated fuel assemblies in the [primary or secondary] containment. AND</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.3 Initiate action to suspend operations with a potential for draining the reactor vessel.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.4 Initiate actions to restore [required] AC, DC, [and AC vital bus] electrical power distribution subsystems to OPERABLE status.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.5 Declare associated required shutdown cooling subsystem(s) inoperable and not in operation.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.8.10.1</td>
<td>7 days</td>
</tr>
<tr>
<td>Verify correct breaker alignments and voltage to [required] AC, DC, [and AC vital bus] electrical power distribution subsystems.</td>
<td></td>
</tr>
</tbody>
</table>
3.9 REFUELING OPERATIONS

3.9.1 Refueling Equipment Interlocks

LCO 3.9.1 The refueling equipment interlocks shall be OPERABLE.

APPLICABILITY: During in-vessel fuel movement with equipment associated with the interlocks.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more required refueling equipment interlocks inoperable.</td>
<td>A.1 Suspend in-vessel fuel movement with equipment associated with the inoperable interlock(s).</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.9.1.1</td>
<td>Perform CHANNEL FUNCTIONAL TEST on each of the following required refueling equipment interlock inputs:</td>
</tr>
<tr>
<td>a. All-rods-in,</td>
<td></td>
</tr>
<tr>
<td>b. Refuel platform position, and</td>
<td></td>
</tr>
<tr>
<td>c. Refuel platform [main] hoist, fuel loaded.</td>
<td>7 days</td>
</tr>
</tbody>
</table>
3.9 REFUELING OPERATIONS

3.9.2 Refuel Position One-Rod-Out Interlock

LCO 3.9.2 The refuel position one-rod-out interlock shall be OPERABLE.

APPLICABILITY: MODE 5 with the reactor mode switch in the refuel position and any control rod withdrawn.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Refuel position one-rod-out interlock inoperable.</td>
<td>A.1 Suspend control rod withdrawal. AND A.2 Initiate action to fully insert all insertable control rods in core cells containing one or more fuel assemblies.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.9.2.1 Verify reactor mode switch locked in refuel position.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>SURVEILLANCE REQUIREMENTS (continued)</th>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.9.2.2</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>NOTE---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Not required to be performed until 1 hour after any control rod is withdrawn.</td>
<td>Perform CHANNEL FUNCTIONAL TEST.</td>
<td>7 days</td>
</tr>
</tbody>
</table>

3.9 REFUELING OPERATIONS

3.9.3 Control Rod Position

LCO 3.9.3 All control rods shall be fully inserted.

APPLICABILITY: When loading fuel assemblies into the core.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more control rods not fully inserted.</td>
<td>A.1 Suspend loading fuel assemblies into the core.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.9.3.1 Verify all control rods are fully inserted.</td>
<td>12 hours</td>
</tr>
</tbody>
</table>
3.9 REFUELING OPERATIONS

3.9.4 Control Rod Position Indication

LCO 3.9.4 One control rod "full-in" position indication channel for each control rod shall be OPERABLE.

APPLICABILITY: MODE 5.

ACTIONS

NOTE

Separate Condition entry is allowed for each required channel.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more required control rod position indication channels inoperable.</td>
<td>A.1.1 Suspend in-vessel fuel movement.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>A.1.2 Suspend control rod withdrawal.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>A.1.3 Initiate action to fully insert all insertable control rods in core cells containing one or more fuel assemblies.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

OR

(continued)
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.1 Initiate action to fully insert the control rod associated with the inoperable position indicator.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.2 Initiate action to disarm the control rod drive associated with the fully inserted control rod.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.9.4.1 Verify the required channel has no "full-in" indication on each control rod that is not "full-in."</td>
<td>Each time the control rod is withdrawn from the "full-in" position</td>
</tr>
</tbody>
</table>
3.9 REFUELING OPERATIONS

3.9.5 Control Rod OPERABILITY—Refueling

LCO 3.9.5 Each withdrawn control rod shall be OPERABLE.

APPLICABILITY: MODE 5.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more withdrawn control rods inoperable.</td>
<td>A.1 Initiate action to fully insert inoperable withdrawn control rods.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.9.5.1</td>
<td>7 days</td>
</tr>
<tr>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Not required to be performed until 7 days after the control rod is withdrawn.</td>
<td></td>
</tr>
<tr>
<td>Insert each withdrawn control rod at least one notch.</td>
<td></td>
</tr>
<tr>
<td>SR 3.9.5.2</td>
<td>7 days</td>
</tr>
<tr>
<td>Verify each withdrawn control rod scram accumulator pressure is (\geq [1520]) psig.</td>
<td></td>
</tr>
</tbody>
</table>
3.9 REFUELING OPERATIONS

3.9.6 [Reactor Pressure Vessel (RPV)] Water Level[—Irradiated Fuel]

LCO 3.9.6 [RPV] water level shall be ≥ [22 ft 8 inches] above the top of the [RPV flange].

APPLICABILITY: During movement of irradiated fuel assemblies within the [RPV],

During movement of new fuel assemblies or handling of control rods within the [RPV], when irradiated fuel assemblies are seated within the [RPV].

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. [RPV] water level not within limit.</td>
<td>A.1 Suspend movement of fuel assemblies and handling of control rods within the [RPV].</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.9.6.1 Verify [RPV] water level is ≥ [22 ft 8 inches] above the top of the [RPV flange].</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
3.9 REFUELING OPERATIONS

3.9.7 [Reactor Pressure Vessel (RPV)] Water Level—New Fuel or Control Rods

LCO 3.9.7 [RPV] water level shall be ≥ [22 ft 8 inches] above the top of irradiated fuel assemblies seated within the [RPV].

APPLICABILITY: During movement of new fuel assemblies or handling of control rods within the [RPV] when irradiated fuel assemblies are seated within the [RPV].

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. [RPV] water level not within limit.</td>
<td>A.1 Suspend movement of fuel assemblies and handling of control rods within the [RPV].</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.9.7.1 Verify [RPV] water level is ≥ [22 ft 8 inches] above the top of irradiated fuel assemblies seated within the [RPV].</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
3.9 REFUELING OPERATIONS

3.9.8 Residual Heat Removal (RHR)—High Water Level

LCO 3.9.8 One RHR shutdown cooling subsystem shall be OPERABLE and in operation.

-----------------------------------NOTE----------------------------------
The required RHR shutdown cooling subsystem may be removed from operation for up to 2 hours per 8 hour period.

APPLICABILITY: MODE 5 with irradiated fuel in the reactor pressure vessel and with the water level ≥ [22 ft 8 inches] above the top of the [reactor pressure vessel (RPV) flange].

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Required RHR shutdown cooling subsystem inoperable.</td>
<td>A.1 Verify an alternate method of decay heat removal is available.</td>
<td>1 hour AND Once per 24 hours thereafter</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
<td>B.1 Suspend loading irradiated fuel assemblies into the RPV.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. (continued)</td>
<td>B.2 Initiate action to restore [primary or secondary] containment to OPERABLE status. AND B.3 Initiate action to restore one standby gas treatment subsystem to OPERABLE status. AND B.4 Initiate action to restore isolation capability in each required secondary containment penetration flow path not isolated.</td>
<td>Immediately</td>
</tr>
<tr>
<td>C. No RHR shutdown cooling subsystem in operation.</td>
<td>C.1 Verify reactor coolant circulation by an alternate method.</td>
<td>1 hour from discovery of no reactor coolant circulation AND Once per 12 hours thereafter AND C.2 Monitor reactor coolant temperature.</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.9.8.1</td>
<td>12 hours</td>
</tr>
</tbody>
</table>

Verify one RHR shutdown cooling subsystem is operating.
3.9 REFUELING OPERATIONS

3.9.9 Residual Heat Removal (RHR)—Low Water Level

LCO 3.9.9 Two RHR shutdown cooling subsystems shall be OPERABLE, and one RHR shutdown cooling subsystem shall be in operation.

NOTE

The required operating shutdown cooling subsystem may be removed from operation for up to 2 hours per 8 hour period.

APPLICABILITY: MODE 5 with irradiated fuel in the reactor pressure vessel and with the water level < [23] ft above the top of the reactor pressure vessel flange.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or two RHR shutdown cooling subsystems inoperable.</td>
<td>A.1 Verify an alternate method of decay heat removal is available for each inoperable RHR shutdown cooling subsystem.</td>
<td>1 hour AND Once per 24 hours thereafter</td>
</tr>
<tr>
<td>B. Required Action and associated Completion Time of Condition A not met.</td>
<td>B.1 Initiate action to restore [primary or secondary] containment to OPERABLE status.</td>
<td>Immediately</td>
</tr>
<tr>
<td>CONDITION</td>
<td>REQUIRED ACTION</td>
<td>COMPLETION TIME</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>B. (continued)</td>
<td>B.2 Initiate action to restore one standby gas treatment subsystem to OPERABLE status. AND B.3 Initiate action to restore isolation capability in each required secondary containment penetration flow path not isolated.</td>
<td>Immediately AND Immediately</td>
</tr>
<tr>
<td>C. No RHR shutdown cooling subsystem in operation.</td>
<td>C.1 Verify reactor coolant circulation by an alternate method. AND C.2 Monitor reactor coolant temperature.</td>
<td>1 hour from discovery of no reactor coolant circulation AND Once per 12 hours thereafter Once per hour</td>
</tr>
<tr>
<td>SURVEILLANCE REQUIREMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURVEILLANCE</td>
<td>FREQUENCY</td>
<td></td>
</tr>
<tr>
<td>SR 3.9.9.1 Verify one RHR shutdown cooling subsystem is operating.</td>
<td>12 hours</td>
<td></td>
</tr>
</tbody>
</table>

BWR/6 STS 3.9-15 Rev 1, 04/07/95
3.10 SPECIAL OPERATIONS

3.10.1 Inservice Leak and Hydrostatic Testing Operation

LCO 3.10.1 The average reactor coolant temperature specified in Table 1.1-1 for MODE 4 may be changed to "NA," and operation considered not to be in MODE 3; and the requirements of LCO 3.4.10, "Residual Heat Removal (RHR) Shutdown Cooling System—Cold Shutdown," may be suspended, to allow performance of an inservice leak or hydrostatic test provided the following MODE 3 LCOs are met:

a. LCO 3.3.6.2, "Secondary Containment Isolation Instrumentation," [Functions 1, 3, 4, and 5] of Table 3.3.6.2-1;

b. LCO 3.6.4.1, "[Secondary Containment];"

c. LCO 3.6.4.2, "Secondary Containment Isolation Valves (SCIVs)"; and

d. LCO 3.6.4.3, "Standby Gas Treatment (SGT) System."

APPLICABILITY: MODE 4 with average reactor coolant temperature > [200]°F.
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more of the above requirements not met.</td>
<td>A.1 NOTE- Required Actions to be in MODE 4 include reducing average reactor coolant temperature to $\leq [200]^{\circ}\text{F.}$</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter the applicable Condition of the affected LCO.</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.1 Suspend activities that could increase the average reactor coolant temperature or pressure.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.2 Reduce average reactor coolant temperature to $\leq [200]^{\circ}\text{F.}$</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.1.1</td>
<td>According to the applicable SRs</td>
</tr>
<tr>
<td>Perform the applicable SRs for the required MODE 3 LCOs.</td>
<td></td>
</tr>
</tbody>
</table>

Inservice Leak and Hydrostatic Testing Operation

3.10.1

BWR/6 STS 3.10-3 Rev 1, 04/07/95
3.10 SPECIAL OPERATIONS

3.10.2 Reactor Mode Switch Interlock Testing

LCO 3.10.2 The reactor mode switch position specified in Table 1.1-1 (Section 1.1, Definitions) for MODES 3, 4, and 5 may be changed to include the run, startup/hot standby, and refuel position, and operation considered not to be in MODE 1 or 2, to allow testing of instrumentation associated with the reactor mode switch interlock functions, provided:

a. All control rods remain fully inserted in core cells containing one or more fuel assemblies; and

b. No CORE ALTERATIONS are in progress.

APPLICABILITY: MODES 3 and 4 with the reactor mode switch in the run, startup/hot standby, or refuel position, MODE 5 with the reactor mode switch in the run or startup/hot standby position.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more of the above requirements not met.</td>
<td>A.1 Suspend CORE ALTERATIONS except for control rod insertion.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>A.2 Fully insert all insertable control rods in core cells containing one or more fuel assemblies.</td>
<td>1 hour</td>
</tr>
<tr>
<td>AND</td>
<td>(continued)</td>
<td></td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.3.1 Place the reactor mode switch in the shutdown position. OR A.3.2 Only applicable in MODE 5. Place the reactor mode switch in the refuel position.</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.2.1</td>
<td>Verify all control rods are fully inserted in core cells containing one or more fuel assemblies. 12 hours</td>
</tr>
<tr>
<td>SR 3.10.2.2</td>
<td>Verify no CORE ALTERATIONS are in progress. 24 hours</td>
</tr>
</tbody>
</table>
3.10 SPECIAL OPERATIONS

3.10.3 Single Control Rod Withdrawal—Hot Shutdown

LCO 3.10.3 The reactor mode switch position specified in Table 1.1-1 for MODE 3 may be changed to include the refuel position, and operation considered not to be in MODE 2, to allow withdrawal of a single control rod, provided the following requirements are met:

a. LCO 3.9.2, "Refuel Position One-Rod-Out Interlock";

b. LCO 3.9.4, "Control Rod Position Indication";

c. All other control rods are fully inserted; and

d. 1. LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," MODE 5 requirements for Functions [1.a, 1.b, 2.a, 2.d, 8.a, 8.b, 11, and 12] of Table 3.3.1.1-1, and

 LCO 3.9.5, "Control Rod OPERABILITY—Refueling,

 OR

2. All other control rods in a five by five array centered on the control rod being withdrawn are disarmed, and

 LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," MODE 5 requirements, except the single control rod to be withdrawn may be assumed to be the highest worth control rod.

APPLICABILITY: MODE 3 with the reactor mode switch in the refuel position.
Single Control Rod Withdrawal—Hot Shutdown

3.10.3

ACTIONS

NOTE

Separate Condition entry is allowed for each requirement of the LCO.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
</table>
| A. One or more of the above requirements not met. | A.1 \--------NOTES-------\
1. Required Actions to fully insert all insertable control rods include placing the reactor mode switch in the shutdown position.
2. Only applicable if the requirement not met is a required LCO. \---------------------\ | Immediately |
| OR | A.2.1 Initiate action to fully insert all insertable control rods. \---------------------\ | Immediately |
| AND | A.2.2 Place the reactor mode switch in the shutdown position. | 1 hour |
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.3.1 Perform the applicable SRs for the required LCOs.</td>
<td>According to the applicable SRs</td>
</tr>
<tr>
<td>SR 3.10.3.2 NOTE Not required to be met if SR 3.10.3.1 is satisfied for LCO 3.10.3.d.1 requirements.</td>
<td>24 hours</td>
</tr>
<tr>
<td>Verify all control rods, other than the control rod being withdrawn, in a five by five array centered on the control rod being withdrawn, are disarmed.</td>
<td></td>
</tr>
<tr>
<td>SR 3.10.3.3 Verify all control rods, other than the control rod being withdrawn, are fully inserted.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
3.10 SPECIAL OPERATIONS

3.10.4 Single Control Rod Withdrawal—Cold Shutdown

LCO 3.10.4 The reactor mode switch position specified in Table 1.1-1 for MODE 4 may be changed to include the refuel position, and operation considered not to be in MODE 2, to allow withdrawal of a single control rod, and subsequent removal of the associated control rod drive (CRD) if desired, provided the following requirements are met:

a. All other control rods are fully inserted;

b. 1. LCO 3.9.2, "Refuel Position One-Rod-Out Interlock," and
 LCO 3.9.4, "Control Rod Position Indication," OR

 2. A control rod withdrawal block is inserted; and

c. 1. LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation," MODE 5 requirements for Functions [1.a, 1.b, 2.a, 2.d, 8.a, 8.b, 11, and 12] of Table 3.3.1.1-1,
 LCO 3.9.5, "Control Rod OPERABILITY—Refueling," OR

 2. All other control rods in a five by five array centered on the control rod being withdrawn are disarmed, and

 LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," MODE 5 requirements, except the single control rod to be withdrawn may be assumed to be the highest worth control rod.

APPLICABILITY: MODE 4 with the reactor mode switch in the refuel position.
ACTIONS

---NOTE---
Separate Condition entry is allowed for each requirement of the LCO.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
</table>
| A. One or more of the above requirements not met with the affected control rod insertable. | A.1 \-\-\-\-\-NOTES----
1. Required Actions to fully insert all insertable control rods include placing the reactor mode switch in the shutdown position.

2. Only applicable if the requirement not met is a required LCO.

Enter the applicable Condition of the affected LCO. | Immediately |
| OR | A.2.1 Initiate action to fully insert all insertable control rods. | Immediately |
| AND | A.2.2 Place the reactor mode switch in the shutdown position. | 1 hour |

(continued)
ACTIONS (continued)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. One or more of the above requirements not met with the affected control rod not insertable.</td>
<td>B.1 Suspend withdrawal of the control rod and removal of associated CRD. AND B.2.1 Initiate action to fully insert all control rods. OR B.2.2 Initiate action to satisfy the requirements of this LCO.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.4.1</td>
<td>Perform the applicable SRs for the required LCOs.</td>
</tr>
<tr>
<td>SR 3.10.4.2</td>
<td>NOTE Not required to be met if SR 3.10.4.1 is satisfied for LCO 3.10.4.c.1 requirements. Verify all control rods, other than the control rod being withdrawn, in a five by five array centered on the control rod being withdrawn, are disarmed.</td>
</tr>
<tr>
<td>SURVEILLANCE REQUIREMENTS (continued)</td>
<td>SURVEILLANCE</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>SR 3.10.4.3 Verify all control rods, other than the control rod being withdrawn, are fully inserted.</td>
<td></td>
</tr>
<tr>
<td>SR 3.10.4.4 ---NOTE---</td>
<td>Not required to be met if SR 3.10.4.1 is satisfied for LCO 3.10.4.b.1 requirements.</td>
</tr>
<tr>
<td></td>
<td>Verify a control rod withdrawal block is inserted.</td>
</tr>
</tbody>
</table>
3.10 SPECIAL OPERATIONS

3.10.5 Single Control Rod Drive (CRD) Removal—Refueling

LCO 3.10.5

The requirements of LCO 3.3.1.1, "Reactor Protection System (RPS) Instrumentation"; LCO 3.3.8.2, "Reactor Protection System (RPS) Electric Power Monitoring"; LCO 3.9.1, "Refueling Equipment Interlocks"; LCO 3.9.2, "Refuel Position One-Rod-Out Interlock"; LCO 3.9.4, "Control Rod Position Indication"; and LCO 3.9.5, "Control Rod OPERABILITY—Refueling," may be suspended in MODE 5 to allow the removal of a single CRD associated with a control rod withdrawn from a core cell containing one or more fuel assemblies, provided the following requirements are met:

a. All other control rods are fully inserted;

b. All other control rods in a five by five array centered on the withdrawn control rod are disarmed;

c. A control rod withdrawal block is inserted and LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," MODE 5 requirements may be changed to allow the single control rod withdrawn to be assumed to be the highest worth control rod; and

d. No other CORE ALTERATIONS are in progress.

APPLICABILITY: MODE 5 with LCO 3.9.5 not met.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more of the above requirements not met.</td>
<td>A.1 Suspend removal of the CRD mechanism.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.1 Initiate action to fully inset all control rods.</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2.2 Initiate action to satisfy the requirements of this LCO.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.5.1</td>
<td>24 hours</td>
</tr>
<tr>
<td>Verify all controls rods, other than the control rod withdrawn for the removal of the associated CRD, are fully inserted.</td>
<td></td>
</tr>
<tr>
<td>SR 3.10.5.2</td>
<td>24 hours</td>
</tr>
<tr>
<td>Verify all control rods, other than the control rod withdrawn for the removal of the associated CRD, in a five by five array centered on the control rod withdrawn for the removal of the associated CRD, are disarmed.</td>
<td></td>
</tr>
<tr>
<td>SR 3.10.5.3</td>
<td>24 hours</td>
</tr>
<tr>
<td>Verify a control rod withdrawal block is inserted.</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.5.4 Perform SR 3.1.1.1.</td>
<td>According to SR 3.1.1.1</td>
</tr>
<tr>
<td>SR 3.10.5.5 Verify no CORE ALTERATIONS are in progress.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
LCO 3.10.6

The requirements of LCO 3.9.3, "Control Rod Position"; LCO 3.9.4, "Control Rod Position Indication"; and LCO 3.9.5, "Control Rod OPERABILITY—Refueling," may be suspended, and the "full in" position indicators may be bypassed for any number of control rods in MODE 5, to allow withdrawal of these control rods, removal of associated control rod drives (CRDs), or both, provided the following requirements are met:

- **a.** The four fuel assemblies are removed from the core cells associated with each control rod or CRD to be removed;
- **b.** All other control rods in core cells containing one or more fuel assemblies are fully inserted; and
- **c.** Fuel assemblies shall only be loaded in compliance with an approved [spiral] reload sequence.

APPLICABILITY:

MODE 5 with LCO 3.9.3, LCO 3.9.4, or LCO 3.9.5 not met.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more of the above requirements not met.</td>
<td>A.1 Suspend withdrawal of control rods and removal of associated CRDs.</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td>A.2 Suspend loading fuel assemblies</td>
<td>Immediately</td>
</tr>
<tr>
<td>AND</td>
<td></td>
<td>(continued)</td>
</tr>
</tbody>
</table>
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (continued)</td>
<td>A.3.1 Initiate action to fully insert all control rods in core cells containing one or more fuel assemblies. OR A.3.2 Initiate action to satisfy the requirements of this LCO.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.6.1 Verify the four fuel assemblies are removed from core cells associated with each control rod or CRD removed.</td>
<td>24 hours</td>
</tr>
<tr>
<td>SR 3.10.6.2 Verify all other control rods in core cells containing one or more fuel assemblies are fully inserted.</td>
<td>24 hours</td>
</tr>
<tr>
<td>SR 3.10.6.3 NOTE Only required to be met during fuel loading. Verify fuel assemblies being loaded are in compliance with an approved [spiral] reload sequence.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
3.10 SPECIAL OPERATIONS

3.10.7 Control Rod Testing—Operating

LCO 3.10.7 The requirements of LCO 3.1.6, "Rod Pattern Control," may be suspended and control rods bypassed in the Rod Action Control System as allowed by SR 3.3.2.1.8, to allow performance of SDM demonstrations, control rod scram time testing, control rod friction testing, and the Startup Test Program, provided conformance to the approved control rod sequence for the specified test is verified by a second licensed operator or other qualified member of the technical staff.

APPLICABILITY: MODES 1 and 2 with LCO 3.1.6 not met.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Requirements of the LCO not met.</td>
<td>A.1 Suspend performance of the test and exception to</td>
<td>Immediately</td>
</tr>
<tr>
<td></td>
<td>LCO 3.1.6.</td>
<td></td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.7.1 Verify movement of control rods is in compliance with the approved control rod sequence for the specified test by a second licensed operator or other qualified member of the technical staff.</td>
<td>During control rod movement</td>
</tr>
</tbody>
</table>
3.10 SPECIAL OPERATIONS

3.10.8 SHUTDOWN MARGIN (SDM) Test—Refueling

LCO 3.10.8 The reactor mode switch position specified in Table 1.1-1 for MODE 5 may be changed to include the startup/hot standby position, and operation considered not to be in MODE 2, to allow SDM testing, provided the following requirements are met:

a. LCO 3.3.1.1, "Reactor Protection System Instrumentation," MODE 2 requirements for Function 2.a and 2.d of Table 3.3.1.1-1;

b. 1. LCO 3.3.2.1, "Control Rod Block Instrumentation," MODE 2 requirements for Function 1.b of Table 3.3.2.1-1,

OR

2. Conformance to the approved control rod sequence for the SDM test is verified by a second licensed operator or other qualified member of the technical staff;

c. Each withdrawn control rod shall be coupled to the associated CRD;

d. All control rod withdrawals [during out of sequence control rod moves] shall be made in single notch withdrawal mode;

e. No other CORE ALTERATIONS are in progress; and

f. CRD charging water header pressure \geq [1520] psig.

APPLICABILITY: MODE 5 with the reactor mode switch in startup/hot standby position.
ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE Separate Condition entry is allowed for each control rod.</td>
<td>NOTE Inoperable control rods may be bypassed in accordance with SR 3.3.2.1.9, if required, to allow insertion of inoperable control rod and continued operation.</td>
<td></td>
</tr>
<tr>
<td>A. One or more control rods not coupled to its associated CRD.</td>
<td>A.1 Fully insert inoperable control rod.</td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.2 Disarm the associated CRD.</td>
<td>4 hours</td>
</tr>
<tr>
<td>B. One or more of the above requirements not met, for reasons other than Condition A.</td>
<td>B.1 Place the reactor mode switch in the shutdown or refuel position.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.8.1 Perform the MODE 2 applicable SRs for LCO 3.3.1.1, Functions 2.a and 2.d of Table 3.3.1.1-1.</td>
<td>According to the applicable SRs</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.8.2</td>
<td>Note</td>
</tr>
<tr>
<td>Not required to be met if SR 3.10.8.3 satisfied.</td>
<td>According to the applicable SRs</td>
</tr>
<tr>
<td>Perform the MODE 2 applicable SRs for LCO 3.3.2.1, Function 1.b of Table 3.3.2.1-1.</td>
<td></td>
</tr>
<tr>
<td>SR 3.10.8.3</td>
<td>Note</td>
</tr>
<tr>
<td>Not required to be met if SR 3.10.8.2 satisfied.</td>
<td>During control rod movement</td>
</tr>
<tr>
<td>Verify movement of control rods is in compliance with the approved control rod sequence for the SDM test by a second licensed operator or other qualified member of the technical staff.</td>
<td></td>
</tr>
<tr>
<td>SR 3.10.8.4</td>
<td>Verify no other CORE ALTERATIONS are in progress.</td>
</tr>
</tbody>
</table>

(continued)
SURVEILLANCE REQUIREMENTS (continued)

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.8.5</td>
<td>Each time the control rod is withdrawn to "full out" position AND Prior to satisfying LCO 3.10.8.c requirement after work on control rod or CRD System that could affect coupling</td>
</tr>
<tr>
<td>SR 3.10.8.6</td>
<td>7 days</td>
</tr>
</tbody>
</table>

SR 3.10.8.5 Verify each withdrawn control rod does not go to the withdrawn overtravel position.

SR 3.10.8.6 Verify CRD charging water header pressure \(\geq 1520 \text{ psig} \).
3.10 SPECIAL OPERATIONS

3.10.9 Recirculation Loops—Testing

LCO 3.10.9 The requirements of LCO 3.4.1, "Recirculation Loops Operating," may be suspended for ≤ 24 hours to allow:

a. PHYSICS TESTS, provided THERMAL POWER is $\leq [5] \%$ RTP; and

b. Performance of the Startup Test Program.

APPLICABILITY: MODES 1 and 2 with less than two recirculation loops in operation.

ACTIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>REQUIRED ACTION</th>
<th>COMPLETION TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Requirements of LCO 3.4.1 not met for > 24 hours.</td>
<td>A.1 Insert all insertable control rods.</td>
<td>[1] hour</td>
</tr>
<tr>
<td>B. Requirements of the LCO not met for reasons other than Condition A.</td>
<td>B.1 Place the reactor mode switch in the shutdown position.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>
SURVEILLANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>SURVEILLANCE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.9.1</td>
<td>1 hour</td>
</tr>
<tr>
<td>Verify LCO 3.4.1 requirements suspended for ≤ 24 hours.</td>
<td></td>
</tr>
<tr>
<td>SR 3.10.9.2</td>
<td>1 hour</td>
</tr>
<tr>
<td>Verify THERMAL POWER is ≤ [5]% RTP during PHYSICS TESTS.</td>
<td></td>
</tr>
</tbody>
</table>
3.10 Special Operations

3.10.10 Training Startups

LCO 3.10.10 The low pressure coolant injection (LPCI) OPERABILITY requirements specified in LCO 3.5.1, "ECCS—Operating," may be changed to allow one residual heat removal subsystem to be aligned in the shutdown cooling mode for training startups, provided the following requirements are met:

a. All OPERABLE intermediate range monitor (IRM) channels are \(\leq [25/40]\) divisions of full scale on Range 7; and

b. Average reactor coolant temperature is \(< 200^\circ F\).

Applicability: MODE 2 with one LPCI subsystem suction valve closed.

Actions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Required Action</th>
<th>Completion Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. One or more of the above requirements not met.</td>
<td>A.1 Place the reactor mode switch in the shutdown position.</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

Surveillance Requirements

<table>
<thead>
<tr>
<th>Surveillance</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 3.10.10.1 Verify all OPERABLE IRM channels are (\leq [25/40]) divisions of full scale on Range 7.</td>
<td>1 hour</td>
</tr>
<tr>
<td>SR 3.10.10.2 Verify average reactor coolant temperature is (< 200^\circ F).</td>
<td>1 hour</td>
</tr>
</tbody>
</table>
4.0 DESIGN FEATURES

4.1 Site Location [Text location of site location]

4.2 Reactor Core

4.2.1 Fuel Assemblies

The reactor shall contain 800 fuel assemblies. Each assembly shall consist of a matrix of [Zircalloy or ZIRLO] fuel rods with an initial composition of natural or slightly enriched uranium dioxide (UO₂) as fuel material, and water rods. Limited substitutions of zirconium alloy or stainless steel filler rods for fuel rods, in accordance with approved applications of fuel rod configurations, may be used. Fuel assemblies shall be limited to those fuel designs that have been analyzed with applicable NRC staff approved codes and methods and shown by tests or analyses to comply with all safety design bases. A limited number of lead test assemblies that have not completed representative testing may be placed in nonlimiting core regions.

4.2.2 Control Rod Assemblies

The reactor core shall contain 193 cruciform shaped control rod assemblies. The control material shall be [boron carbide, hafnium metal] as approved by the NRC.

4.3 Fuel Storage

4.3.1 Criticality

4.3.1.1 The spent fuel storage racks are designed and shall be maintained with:

a. Fuel assemblies having a maximum [k-infinity of 1.31] in the normal reactor core configuration at cold conditions [average U-235 enrichment of 4.5 weight percent];

b. \(k_{eff} \leq 0.95 \) if fully flooded with unborated water, which includes an allowance for uncertainties as described in [Section 9.1 of the FSAR];

(continued)
4.3 Fuel Storage (continued)

[d. A nominal fuel assembly center to center storage spacing of [6.26] inches, within a neutron poison material between storage spaces, in the [high density storage racks] in the spent fuel storage pool and in the upper containment pool.]

4.3.1.2 The new fuel storage racks are designed and shall be maintained with:

a. Fuel assemblies having a maximum [k-infinity of [1.31]] in the normal reactor core configuration at cold conditions [average U-235 enrichment of [4.5] weight percent];

b. \(k_{\text{eff}} \leq 0.95 \) if fully flooded with unborated water, which includes an allowance for uncertainties as described in [Section 9.1 of the FSAR];

c. \(k_{\text{eff}} \leq 0.98 \) if moderated by aqueous foam, which includes an allowance for uncertainties as described in [Section 9.1 of the FSAR]; and

d. A nominal [6.26] inch center to center distance between fuel assemblies placed in storage racks.

4.3.2 Drainage

The spent fuel storage pool is designed and shall be maintained to prevent inadvertent draining of the pool below elevation [202 ft 5.25 inches].

4.3.3 Capacity

4.3.3.1 The spent fuel storage pool is designed and shall be maintained with a storage capacity limited to no more than [2324] fuel assemblies.
4.0 DESIGN FEATURES

4.3 Fuel Storage (continued)

4.3.3 Capacity

4.3.3.2 No more than [800] fuel assemblies may be stored in the upper containment pool.
5.0 ADMINISTRATIVE CONTROLS

5.1 Responsibility

5.1.1 The [Plant Superintendent] shall be responsible for overall unit operation and shall delegate in writing the succession to this responsibility during his absence.

The [Plant Superintendent] or his designee shall approve, prior to implementation, each proposed test, experiment or modification to systems or equipment that affect nuclear safety.

5.1.2 The [Shift Supervisor (SS)] shall be responsible for the control room command function. During any absence of the [SS] from the control room while the unit is in MODE 1, 2, or 3, an individual with an active Senior Reactor Operator (SRO) license shall be designated to assume the control room command function. During any absence of the [SS] from the control room while the unit is in MODE 4 or 5, an individual with an active SRO license or Reactor Operator license shall be designated to assume the control room command function.
5.0 ADMINISTRATIVE CONTROLS

5.2 Organization

5.2.1 Onsite and Offsite Organizations

Onsite and offsite organizations shall be established for unit operation and corporate management, respectively. The onsite and offsite organizations shall include the positions for activities affecting safety of the nuclear power plant.

a. Lines of authority, responsibility, and communication shall be defined and established throughout highest management levels, intermediate levels, and all operating organization positions. These relationships shall be documented and updated, as appropriate, in organization charts, functional descriptions of departmental responsibilities and relationships, and job descriptions for key personnel positions, or in equivalent forms of documentation. These requirements shall be documented in the [FSAR];

b. The [Plant Superintendents] shall be responsible for overall safe operation of the plant and shall have control over those onsite activities necessary for safe operation and maintenance of the plant;

c. The [specified corporate executive position] shall have corporate responsibility for overall plant nuclear safety and shall take any measures needed to ensure acceptable performance of the staff in operating, maintaining, and providing technical support to the plant to ensure nuclear safety; and

d. The individuals who train the operating staff, carry out health physics, or perform quality assurance functions may report to the appropriate onsite manager; however, these individuals shall have sufficient organizational freedom to ensure their independence from operating pressures.

5.2.2 Unit Staff

The unit staff organization shall include the following:

a. A non-licensed operator shall be assigned to each reactor containing fuel and an additional non-licensed operator
5.2 Organization (continued)

5.2.2 Unit Staff shall be assigned for each control room from which a reactor is operating in MODES 1, 2, or 3.

Two unit sites with both units shutdown or defueled require a total of three non-licensed operators for the two units.

b. At least one licensed Reactor Operator (RO) shall be present in the control room when fuel is in the reactor. In addition, while the unit is in MODE 1, 2, or 3, at least one licensed Senior Reactor Operator (SRO) shall be present in the control room.

c. Shift crew composition may be less than the minimum requirement of 10 CFR 50.54(m)(2)(i) and 5.2.2.a and 5.2.2.g for a period of time not be exceed 2 hours in order to accommodate unexpected absence of on-duty shift crew members provided immediate action is taken to restore the shift crew composition to within the minimum requirements.

d. A [Health Physics Technician] shall be on site when fuel is in the reactor. The position may be vacant for not more than 2 hours, in order to provide for unexpected absence, provided immediate action is taken to fill the required position.

e. Administrative procedures shall be developed and implemented to limit the working hours of unit staff who perform safety related functions (e.g., licensed SROs, licensed ROs, health physicists, auxiliary operators, and key maintenance personnel).

Adequate shift coverage shall be maintained without routine heavy use of overtime. The objective shall be to have operating personnel work an [8 or 12] hour day, nominal 40 hour week, while the unit is operating. However, in the event that unforeseen problems require substantial amounts of overtime to be used, or during extended periods of shutdown for refueling, major maintenance, or major plant modification, on a temporary basis the following guidelines shall be followed:

(continued)
5.2 Organization

5.2.2 Unit Staff (continued)

1. An individual should not be permitted to work more than 16 hours straight, excluding shift turnover time;

2. An individual should not be permitted to work more than 16 hours in any 24 hour period, nor more than 24 hours in any 48 hour period, nor more than 72 hours in any 7 day period, all excluding shift turnover time;

3. A break of at least 8 hours should be allowed between work periods, including shift turnover time;

4. Except during extended shutdown periods, the use of overtime should be considered on an individual basis and not for the entire staff on a shift.

Any deviation from the above guidelines shall be authorized in advance by the [Plant Superintendent] or his designee, in accordance with approved administrative procedures, or by higher levels of management, in accordance with established procedures and with documentation of the basis for granting the deviation.

Controls shall be included in the procedures such that individual overtime shall be reviewed monthly by the [Plant Superintendent] or his designee to ensure that excessive hours have not been assigned. Routine deviation from the above guidelines is not authorized.

OR

The amount of overtime worked by unit staff members performing safety related functions shall be limited and controlled in accordance with the NRC Policy Statement on working hours (Generic Letter 82-12).

f. The [Operations Manager or Assistant Operations Manager] shall hold an SRO license.

g. The Shift Technical Advisor (STA) shall provide advisory technical support to the Shift Supervisor (SS) in the areas of thermal hydraulics, reactor engineering, and plant analysis with regard to the safe operation of the unit. In addition, the STA shall meet the qualifications specified by the Commission Policy Statement on Engineering Expertise on Shift.
Reviewer's Note: Minimum qualifications for members of the unit staff shall be specified by use of an overall qualification statement referencing an ANSI Standard acceptable to the NRC staff or by specifying individual position qualifications. Generally, the first method is preferable; however, the second method is adaptable to those unit staffs requiring special qualification statements because of unique organizational structures.

5.3.1 Each member of the unit staff shall meet or exceed the minimum qualifications of [Regulatory Guide 1.8, Revision 2, 1987, or more recent revisions, or ANSI Standard acceptable to the NRC staff]. The staff not covered by [Regulatory Guide 1.8] shall meet or exceed the minimum qualifications of [Regulations, Regulatory Guides, or ANSI Standards acceptable to NRC staff].
5.4 Procedures

5.4.1 Written procedures shall be established, implemented, and maintained covering the following activities:

a. The applicable procedures recommended in Regulatory Guide 1.33, Revision 2, Appendix A, February 1978;

b. The emergency operating procedures required to implement the requirements of NUREG-0737 and to NUREG-0737, Supplement 1, as stated in [Generic Letter 82-33];

c. Quality assurance for effluent and environmental monitoring;

d. Fire Protection Program implementation; and

e. All programs specified in Specification 5.5.
5.0 ADMINISTRATIVE CONTROLS

5.5 Programs and Manuals

The following programs shall be established, implemented, and maintained.

5.5.1 Offsite Dose Calculation Manual (ODCM)

a. The ODCM shall contain the methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring alarm and trip setpoints, and in the conduct of the radiological environmental monitoring program; and

b. The ODCM shall also contain the radioactive effluent controls and radiological environmental monitoring activities and descriptions of the information that should be included in the Annual Radiological Environmental Operating, and Radioactive Effluent Release Reports required by Specification [5.6.2] and Specification [5.6.3].

Licensee initiated changes to the ODCM:

a. Shall be documented and records of reviews performed shall be retained. This documentation shall contain:

1. sufficient information to support the change(s) together with the appropriate analyses or evaluations justifying the change(s), and

2. a determination that the change(s) maintain the levels of radioactive effluent control required by 10 CFR 20.1302, 40 CFR 190, 10 CFR 50.36a, and 10 CFR 50, Appendix I, and not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations;

b. Shall become effective after review and acceptance by the [onsite review function] and the approval of the [Plant Superintendent]; and

c. Shall be submitted to the NRC in the form of a complete, legible copy of the entire ODCM as a part of, or concurrent with, the Radioactive Effluent Release Report for the period of the report in which any change in the ODCM was made.

(continued)
5.5 Programs and Manuals

5.5.1 Offsite Dose Calculation Manual (ODCM) (continued)

Each change shall be identified by markings in the margin of the affected pages, clearly indicating the area of the page that was changed, and shall indicate the date (i.e., month and year) the change was implemented.

5.5.2 Primary Coolant Sources Outside Containment

This program provides controls to minimize leakage from those portions of systems outside containment that could contain highly radioactive fluids during a serious transient or accident to levels as low as practicable. The systems include: Low Pressure Core Spray, High Pressure Core Spray, Residual Heat Removal, Reactor Core Isolation Cooling, hydrogen recombiner, process sampling, and Standby Gas Treatment. The program shall include the following:

a. Preventive maintenance and periodic visual inspection requirements; and
b. Integrated leak test requirements for each system at refueling cycle intervals or less.

5.5.3 Post Accident Sampling

This program provides controls that ensure the capability to obtain and analyze reactor coolant, radioactive gases, and particulates in plant gaseous effluents and containment atmosphere samples under accident conditions. The program shall include the following:

a. Training of personnel;
b. Procedures for sampling and analysis; and
c. Provisions for maintenance of sampling and analysis equipment.

5.5.4 Radioactive Effluent Controls Program

This program conforms to 10 CFR 50.36a for the control of radioactive effluents and for maintaining the doses to members of

(continued)
Radioactive Effluent Controls Program (continued)

The public from radioactive effluents as low as reasonably achievable. The program shall be contained in the ODCM, shall be implemented by procedures, and shall include remedial actions to be taken whenever the program limits are exceeded. The program shall include the following elements:

a. Limitations on the functional capability of radioactive liquid and gaseous monitoring instrumentation including surveillance tests and setpoint determination in accordance with the methodology in the ODCM;

b. Limitations on the concentrations of radioactive material released in liquid effluents to unrestricted areas, conforming to 10 CFR 20, Appendix B, Table 2, Column 2;

c. Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM;

d. Limitations on the annual and quarterly doses or dose commitment to a member of the public from radioactive materials in liquid effluents released from each unit to unrestricted areas, conforming to 10 CFR 50, Appendix I;

e. Determination of cumulative and projected dose contributions from radioactive effluents for the current calendar quarter and current calendar year in accordance with the methodology and parameters in the ODCM at least every 31 days;

f. Limitations on the functional capability and use of the liquid and gaseous effluent treatment systems to ensure that appropriate portions of these systems are used to reduce releases of radioactivity when the projected doses in a period of 31 days would exceed 2% of the guidelines for the annual dose or dose commitment, conforming to 10 CFR 50, Appendix I;

g. Limitations on the dose rate resulting from radioactive material released in gaseous effluents to areas beyond the site boundary conforming to the dose associated with 10 CFR 20, Appendix B, Table 2, Column 1;

h. Limitations on the annual and quarterly air doses resulting from noble gases released in gaseous effluents from each

(continued)
5.5 Programs and Manuals

5.5.4 Radioactive Effluent Controls Program (continued)

unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I;

i. Limitations on the annual and quarterly doses to a member of the public from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives > 8 days in gaseous effluents released from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I; and

j. Limitations on the annual dose or dose commitment to any member of the public due to releases of radioactivity and to radiation from uranium fuel cycle sources, conforming to 40 CFR 190.

5.5.5 Component Cyclic or Transient Limit

This program provides controls to track the FSAR, Section [], cyclic and transient occurrences to ensure that components are maintained within the design limits.

5.5.6 Pre-Stressed Concrete Containment Tendon Surveillance Program

This program provides controls for monitoring any tendon degradation in pre-stressed concrete containments, including effectiveness of its corrosion protection medium, to ensure containment structural integrity. The program shall include baseline measurements prior to initial operations. The Tendon Surveillance Program, inspection frequencies, and acceptance criteria shall be in accordance with [Regulatory Guide 1.35, Revision 3, 1989].

The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the Tendon Surveillance Program inspection frequencies.

5.5.7 Inservice Testing Program

This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 components including applicable supports. The program shall include the following:

(continued)
Inservice Testing Program (continued)

a. Testing frequencies specified in Section XI of the ASME Boiler and Pressure Vessel Code and applicable Addenda as follows:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Required Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly</td>
<td>At least once per 7 days</td>
</tr>
<tr>
<td>Monthly</td>
<td>At least once per 31 days</td>
</tr>
<tr>
<td>Quarterly or every 3 months</td>
<td>At least once per 92 days</td>
</tr>
<tr>
<td>Semiannually or every 6 months</td>
<td>At least once per 184 days</td>
</tr>
<tr>
<td>Every 9 months</td>
<td>At least once per 276 days</td>
</tr>
<tr>
<td>Yearly or annually</td>
<td>At least once per 366 days</td>
</tr>
<tr>
<td>Biennially or every 2 years</td>
<td>At least once per 731 days</td>
</tr>
</tbody>
</table>

b. The provisions of SR 3.0.2 are applicable to the above required Frequencies for performing inservice testing activities;

c. The provisions of SR 3.0.3 are applicable to inservice testing activities; and

d. Nothing in the ASME Boiler and Pressure Vessel Code shall be construed to supersede the requirements of any TS.

Ventilation Filter Testing Program (VFTP)

A program shall be established to implement the following required testing of Engineered Safety Feature (ESF) filter ventilation systems at the frequencies specified in [Regulatory Guide], and in accordance with [Regulatory Guide 1.52, Revision 2; ASME N510-1989; and AG-1].

a. Demonstrate for each of the ESF systems that an inplace test of the high efficiency particulate air (HEPA) filters shows a penetration and system bypass < [0.05]% when tested in
5.5 Programs and Manuals

5.5.8 Ventilation Filter Testing Program (VFTP) (continued)

accordance with [Regulatory Guide 1.52, Revision 2, and ASME N510-1989] at the system flowrate specified below [± 10%]:

<table>
<thead>
<tr>
<th>ESF Ventilation System</th>
<th>Flowrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Demonstrate for each of the ESF systems that an inplace test of the charcoal adsorber shows a penetration and system bypass < [0.05]% when tested in accordance with [Regulatory Guide 1.52, Revision 2, and ASME N510-1989] at the system flowrate specified below [± 10%]:

<table>
<thead>
<tr>
<th>ESF Ventilation System</th>
<th>Flowrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. Demonstrate for each of the ESF systems that a laboratory test of a sample of the charcoal adsorber, when obtained as described in [Regulatory Guide 1.52, Revision 2], shows the methyl iodide penetration less than the value specified below when tested in accordance with [ASTM D3803-1989] at a temperature of ≤ [30°C] and greater than or equal to the relative humidity specified below:

<table>
<thead>
<tr>
<th>ESF Ventilation System</th>
<th>Penetration</th>
<th>RH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reviewer's Note: Allowable penetration = [100% - methyl iodide efficiency for charcoal credited in staff safety evaluation]/(safety factor).

5.5 Programs and Manuals

5.5.8 Ventilation Filter Testing Program (VFTP) (continued)

d. Demonstrate for each of the ESF systems that the pressure drop across the combined HEPA filters, the prefilters, and the charcoal adsorbers is less than the value specified below when tested in accordance with [Regulatory Guide 1.52, Revision 2, and ASME N510-1989] at the system flowrate specified below [± 10%]:

<table>
<thead>
<tr>
<th>ESF Ventilation System</th>
<th>Delta P</th>
<th>Flowrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e. Demonstrate that the heaters for each of the ESF systems dissipate the value specified below [± 10%] when tested in accordance with [ASME N510-1989]:

<table>
<thead>
<tr>
<th>ESF Ventilation System</th>
<th>Wattage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the VFTP test frequencies.

5.5.9 Explosive Gas and Storage Tank Radioactivity Monitoring Program

This program provides controls for potentially explosive gas mixtures contained in the [Waste Gas Holdup System], [the quantity of radioactivity contained in gas storage tanks or fed into the offgas treatment system, and the quantity of radioactivity contained in unprotected outdoor liquid storage tanks]. The gaseous radioactivity quantities shall be determined following the methodology in [Branch Technical Position (BTP) ETSB 11-5, "Postulated Radioactive Release due to Waste Gas System Leak or Failure"]. The liquid radwaste quantities shall be determined in accordance with [Standard Review Plan, Section 15.7.3, "Postulated Radioactive Release due to Tank Failures"].
5.5 Programs and Manuals

5.5.9 Explosive Gas and Storage Tank Radioactivity Monitoring Program (continued)

The program shall include:

a. The limits for concentrations of hydrogen and oxygen in the Waste Gas Holdup System and a surveillance program to ensure the limits are maintained. Such limits shall be appropriate to the system's design criteria (i.e., whether or not the system is designed to withstand a hydrogen explosion);

b. A surveillance program to ensure that the quantity of radioactivity contained in each gas storage tank and fed into the offgas treatment system is less than the amount that would result in a whole body exposure of ≥ 0.5 rem to any individual in an unrestricted area, in the event of an uncontrolled release of the tanks' contents; and

c. A surveillance program to ensure that the quantity of radioactivity contained in all outdoor liquid radwaste tanks that are not surrounded by liners, dikes, or walls, capable of holding the tanks' contents and that do not have tank overflows and surrounding area drains connected to the Liquid Radwaste Treatment System is less than the amount that would result in concentrations less than the limits of 10 CFR 20, Appendix B, Table 2, Column 2, at the nearest potable water supply and the nearest surface water supply in an unrestricted area, in the event of an uncontrolled release of the tanks' contents.

The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the Explosive Gas and Storage Tank Radioactivity Monitoring Program surveillance frequencies.

5.5.10 Diesel Fuel Oil Testing Program

A diesel fuel oil testing program to implement required testing of both new fuel oil and stored fuel oil shall be established. The program shall include sampling and testing requirements, and acceptance criteria, all in accordance with applicable ASTM Standards. The purpose of the program is to establish the following:
5.5 Programs and Manuals

5.5.10 Diesel Fuel Oil Testing Program (continued)

a. Acceptability of new fuel oil for use prior to addition to storage tanks by determining that the fuel oil has:
 1. an API gravity or an absolute specific gravity within limits,
 2. a flash point and kinematic viscosity within limits for ASTM 2D fuel oil,
 3. a clear and bright appearance with proper color;

b. Other properties for ASTM 2D fuel oil are within limits within 31 days following sampling and addition to storage tanks; and

c. Total particulate concentration of the fuel oil is \(\leq 10 \text{ mg/l} \) when tested every 31 days in accordance with ASTM D-2276, Method A-2 or A-3.

5.5.11 Technical Specifications (TS) Bases Control Program

This program provides a means for processing changes to the Bases of these Technical Specifications.

a. Changes to the Bases of the TS shall be made under appropriate administrative controls and reviews.

b. Licensees may make changes to Bases without prior NRC approval provided the changes do not involve either of the following:
 1. a change in the TS incorporated in the license; or
 2. a change to the updated FSAR or Bases that involves an unreviewed safety question as defined in 10 CFR 50.59.

c. The Bases Control Program shall contain provisions to ensure that the Bases are maintained consistent with the FSAR.

d. Proposed changes that meet the criteria of 5.5.11b above shall be reviewed and approved by the NRC prior to implementation. Changes to the Bases implemented without
5.5.11 Technical Specifications (TS) Bases Control Program (continued)

Prior NRC approval shall be provided to the NRC on a frequency consistent with 10 CFR 50.71(e).

5.5.12 Safety Function Determination Program (SFDP)

This program ensures loss of safety function is detected and appropriate actions taken. Upon entry into LCO 3.0.6, an evaluation shall be made to determine if loss of safety function exists. Additionally, other appropriate limitations and remedial or compensatory actions may be identified to be taken as a result of the support system inoperability and corresponding exception to entering supported system Condition and Required Actions. This program implements the requirements of LCO 3.0.6. The SFDP shall contain the following:

a. Provisions for cross division checks to ensure a loss of the capability to perform the safety function assumed in the accident analysis does not go undetected;

b. Provisions for ensuring the plant is maintained in a safe condition if a loss of function condition exists;

c. Provisions to ensure that an inoperable supported system's Completion Time is not inappropriately extended as a result of multiple support system inoperabilities; and

d. Other appropriate limitations and remedial or compensatory actions.

A loss of safety function exists when, assuming no concurrent single failure, a safety function assumed in the accident analysis cannot be performed. For the purpose of this program, a loss of safety function may exist when a support system is inoperable, and:

a. A required system redundant to system(s) supported by the inoperable support system is also inoperable; or

b. A required system redundant to system(s) in turn supported by the inoperable supported system is also inoperable; or

(continued)
5.5.12 Safety Function Determination Program (SFDP) (continued)

c. A required system redundant to support system(s) for the supported systems (a) and (b) above is also inoperable.

The SFDP identifies where a loss of safety function exists. If a loss of safety function is determined to exist by this program, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered.
5.0 ADMINISTRATIVE CONTROLS

5.6 Reporting Requirements

The following reports shall be submitted in accordance with 10 CFR 50.4.

5.6.1 Occupational Radiation Exposure Report

A tabulation on an annual basis of the number of station, utility, and other personnel (including contractors) receiving exposures > 100 mrem/yr and their associated man rem exposure according to work and job functions (e.g., reactor operations and surveillance, inservice inspection, routine maintenance, special maintenance [describe maintenance], waste processing, and refueling). This tabulation supplements the requirements of 10 CFR 20.2206. The dose assignments to various duty functions may be estimated based on pocket dosimeter, thermoluminescent dosimeter (TLD), or film badge measurements. Small exposures totalling < 20% of the individual total dose need not be accounted for. In the aggregate, at least 80% of the total whole body dose received from external sources should be assigned to specific major work functions. The report shall be submitted by April 30 of each year. [The initial report shall be submitted by April 30 of the year following initial criticality.]

5.6.2 Annual Radiological Environmental Operating Report

The Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted by May 15 of each year. The report shall include summaries, interpretations, and analyses of trends of the results of the radiological environmental monitoring program for the reporting period. The material provided shall be consistent with the objectives outlined in the Offsite Dose Calculation Manual (continued)
5.6 Reporting Requirements

5.6.2 Annual Radiological Environmental Operating Report (continued)

(ODCM), and in 10 CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C.

The Annual Radiological Environmental Operating Report shall include the results of analyses of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the table and figures in the ODCM, as well as summarized and tabulated results of these analyses and measurements [in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979]. [The report shall identify the TLD results that represent collocated dosimeters in relation to the NRC TLD program and the exposure period associated with each result.] In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted in a supplementary report as soon as possible.

5.6.3 Radioactive Effluent Release Report

A single submittal may be made for a multiple unit station. The submittal should combine sections common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit.

The Radioactive Effluent Release Report covering the operation of the unit shall be submitted in accordance with 10 CFR 50.36a. The report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit. The material provided shall be consistent with the objectives outlined in the ODCM and Process Control Program and in conformance with 10 CFR 50.36a and 10 CFR 50, Appendix I, Section IV.B.1.

5.6.4 Monthly Operating Reports

Routine reports of operating statistics and shutdown experience[,] including documentation of all challenges to the safety/relief
5.6 Reporting Requirements

5.6.4 Monthly Operating Reports (continued)

valves,] shall be submitted on a monthly basis no later than the 15th of each month following the calendar month covered by the report.

5.6.5 CORE OPERATING LIMITS REPORT (COLR)

a. Core operating limits shall be established prior to each reload cycle, or prior to any remaining portion of a reload cycle, and shall be documented in the COLR for the following:

The individual specifications that address core operating limits must be referenced here.

b. The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:

Identify the Topical Report(s) by number, title, date, and NRC staff approval document, or identify the staff Safety Evaluation Report for a plant specific methodology by NRC letter and date.

c. The core operating limits shall be determined such that all applicable limits (e.g., fuel thermal mechanical limits, core thermal hydraulic limits, Emergency Core Cooling Systems (ECCS) limits, nuclear limits such as SDM, transient analysis limits, and accident analysis limits) of the safety analysis are met.

d. The COLR, including any midcycle revisions or supplements, shall be provided upon issuance for each reload cycle to the NRC.

5.6.6 Reactor Coolant System (RCS) PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR)

a. RCS pressure and temperature limits for heatup, cooldown, low temperature operation, criticality, and hydrostatic testing as well as heatup and cooldown rates shall be established and documented in the PTLR for the following:
5.6 Reporting Requirements

5.6.6 Reactor Coolant System (RCS) PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR) (continued)

[The individual specifications that address RCS pressure and temperature limits must be referenced here.]

b. The analytical methods used to determine the RCS pressure and temperature limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents: [Identify the NRC staff approval document by date.]

c. The PTLR shall be provided to the NRC upon issuance for each reactor vessel fluence period and for any revision or supplement thereto.

Reviewer's Notes: The methodology for the calculation of the P-T limits for NRC approval should include the following provisions:

1. The methodology shall describe how the neutron fluence is calculated (reference new Regulatory Guide when issued).

2. The Reactor Vessel Material Surveillance Program shall comply with Appendix H to 10 CFR 50. The reactor vessel material irradiation surveillance specimen removal schedule shall be provided, along with how the specimen examinations shall be used to update the PTLR curves.

3. Low Temperature Overpressure Protection (LTOP) System lift setting limits for the Power Operated Relief Valves (PORVs), developed using NRC-approved methodologies may be included in the PTLR.

4. The adjusted reference temperature (ART) for each reactor beltlime material shall be calculated, accounting for radiation embrittlement, in accordance with Regulatory Guide 1.99, Revision 2.

5. The limiting ART shall be incorporated into the calculation of the pressure and temperature limit curves in accordance with NUREG-0800 Standard Review Plan 5.3.2, Pressure-Temperature Limits.

(continued)
5.6 Reporting Requirements

5.6.6 Reactor Coolant System (RCS) PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR) (continued)

6. The minimum temperature requirements of Appendix G to 10 CFR Part 50 shall be incorporated into the pressure and temperature limit curves.

7. Licensees who have removed two or more capsules should compare for each surveillance material the measured increase in reference temperature (RT_{NDT}) to the predicted increase in RT_{NDT}; where the predicted increase in RT_{NDT} is based on the mean shift in RT_{NDT} plus the two standard deviation value ($2\sigma_r$) specified in Regulatory Guide 1.99, Revision 2. If the measured value exceeds the predicted value (increase in $RT_{NDT} + 2\sigma_r$), the licensee should provide a supplement to the PTLR to demonstrate how the results affect the approved methodology.

5.6.7 EDG Failure Reports

If an individual emergency diesel generator (EDG) experiences four or more valid failures in the last 25 demands, these failures and any nonvalid failures experienced by that EDG in that time period shall be reported within 30 days. Reports on EDG failures shall include the information recommended in Regulatory Guide 1.9, Revision 3, Regulatory Position C.5, or existing Regulatory Guide 1.108 reporting requirement.

5.6.8 PAM Report

When a Special Report is required by Condition B or G of LCO 3.3.[3.1], "Post Accident Monitoring (PAM) Instrumentation," a report shall be submitted within the following 14 days. The report shall outline the preplanned alternate method of monitoring, the cause of the inoperability, and the plans and schedule for restoring the instrumentation channels of the Function to OPERABLE status.

5.6.9 Tendon Surveillance Report

Any abnormal degradation of the containment structure detected during the tests required by the Pre-Stressed Concrete (continued)
5.6 Reporting Requirements

5.6.9 Tendon Surveillance Report (continued)

Containment Tendon Surveillance Program shall be reported to the NRC within 30 days. The report shall include a description of the tendon condition, the condition of the concrete (especially at tendon anchorages), the inspection procedures, the tolerances on cracking, and the corrective action taken.

Reviewer's Note: These reports may be required covering inspection, test, and maintenance activities. These reports are determined on an individual basis for each unit and their preparation and submittal are designated in the Technical Specifications.
5.0 ADMINISTRATIVE CONTROLS

[5.7 High Radiation Area]

5.7 Pursuant to 10 CFR 20, paragraph 20.1601(c), in lieu of the requirements of 10 CFR 20.1601, each high radiation area, as defined in 10 CFR 20, in which the intensity of radiation is > 100 mrem/hr but < 1000 mrem/hr, shall be barricaded and conspicuously posted as a high radiation area and entrance thereto shall be controlled by requiring issuance of a Radiation Work Permit (RWP). Individuals qualified in radiation protection procedures (e.g., [Health Physics Technicians]) or personnel continuously escorted by such individuals may be exempt from the RWP issuance requirement during the performance of their assigned duties in high radiation areas with exposure rates ≤ 1000 mrem/hr, provided they are otherwise following plant radiation protection procedures for entry into such high radiation areas.

Any individual or group of individuals permitted to enter such areas shall be provided with or accompanied by one or more of the following:

a. A radiation monitoring device that continuously indicates the radiation dose rate in the area.

b. A radiation monitoring device that continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate levels in the area have been established and personnel are aware of them.

c. An individual qualified in radiation protection procedures with a radiation dose rate monitoring device, who is responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the [Radiation Protection Manager] in the RWP.

5.7.2 In addition to the requirements of Specification 5.7.1, areas with radiation levels ≥ 1000 mrem/hr shall be provided with locked or continuously guarded doors to prevent unauthorized entry and the keys shall be maintained under the administrative control of the Shift Foreman on duty or health physics supervision. Doors shall remain locked except during periods of access by personnel...
5.7.2 (continued)

under an approved RWP that shall specify the dose rate levels in the immediate work areas and the maximum allowable stay times for individuals in those areas. In lieu of the stay time specification of the RWP, direct or remote (such as closed circuit TV cameras) continuous surveillance may be made by personnel qualified in radiation protection procedures to provide positive exposure control over the activities being performed within the area.

5.7.3 For individual high radiation areas with radiation levels of > 1000 mrem/hr, accessible to personnel, that are located within large areas such as reactor containment, where no enclosure exists for purposes of locking, or that cannot be continuously guarded, and where no enclosure can be reasonably constructed around the individual area, that individual area shall be barricaded and conspicuously posted, and a flashing light shall be activated as a warning device.
BIBLIOGRAPHIC DATA SHEET

1. **REPORT NUMBER**
 NUREG 1434
 Vol. 1, Rev. 1

2. **TITLE AND SUBTITLE**
 Standard Technical Specifications
 General Electric Plants, BWR/6
 Specifications

3. **DATE REPORT PUBLISHED**
 April 1995

4. **FIN OR GRANT NUMBER**
 NUREG 1434
 Vol. 1, Rev. 1

5. **AUTHOR(S)**
 (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address; if contractor, provide name and mailing address.)
 Division of Project Support
 Office of Nuclear Reactor Regulation
 U.S. Nuclear Regulatory Commission
 Washington, D.C. 20555 - 0001

6. **TYPE OF REPORT**
 (If NRC, type “Same as above”; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address.)
 Same as above

7. **PERIOD COVERED (Inclusive Dates)**

8. **PERFORMING ORGANIZATION — NAME AND ADDRESS**
 Technical Specifications
 General Electric
 BWR/6

9. **SPONSORING ORGANIZATION — NAME AND ADDRESS**
 (If NRC, type “Same as above”; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address.)
 Same as above

10. **SUPPLEMENTARY NOTES**

11. **ABSTRACT**
 (200 words or less)
 This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/6 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1 - 3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4 - 3.10 of the improved STS.

12. **KEY WORDS/DESCRIPTIONS**
 (List words or phrases that will assist researchers in locating the report.)
 Technical Specifications
 General Electric
 BWR/6

13. **AVAILABILITY STATEMENT**
 Unlimited

14. **SECURITY CLASSIFICATION**
 Unclassified

15. **NUMBER OF PAGES**

16. **PRICE**