FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

PDF Version Also Available for Download.

Description

The main objective of this research project is the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Mullite will be employed as the inner (base) layer and the composition of the film will be continuously changed to a layer of pure alumina, which will function as the actual protective coating of the component. Chemical vapor deposition reactions ... continued below

Physical Description

23 pages

Creation Information

Creator: Unknown. March 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The main objective of this research project is the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Mullite will be employed as the inner (base) layer and the composition of the film will be continuously changed to a layer of pure alumina, which will function as the actual protective coating of the component. Chemical vapor deposition reactions of silica, alumina, and aluminosilicates (mullite) through hydrolysis of aluminum and silicon chlorides in the presence of CO{sub 2} and H{sub 2} will be employed to deposit compositionally graded films of mullite and alumina. Our studies will include the kinetic investigation of the silica, alumina, and aluminosilicate deposition processes, characterization of the composition, microstructure, surface morphology, and mechanical behavior of the prepared films, and modeling of the various deposition processes. During this reporting period, the construction and development of the chemical vapor deposition system was completed, and experiments were conducted on the deposition of alumina, silica, and aluminosilicates (such as mullite) from mixtures of AlCl{sub 3} and CH{sub 3}SiCl{sub 3} in CO{sub 2} and H{sub 2}. Work was mainly done on the investigation of the effects of the reaction temperature on the deposition kinetics. It was found that the temperature had a positive effect on the single oxides deposition rates and the codeposition rate. The apparent activation energy values extracted from the deposition rate vs. temperature curves in the high temperature region were similar for the three deposition processes, having a value around 20 kcal/mol. The codeposition rates were higher, by a more than a factor of 2 in some cases, than the sum of the deposition rates of the two oxides in the independent experiments at the same operating conditions, and this result led to the conclusion that there should exist additional surface reaction steps in the codeposition process, that lead to solid formation and involve both silicon-containing and aluminum-containing species. The elemental analysis (EDXA) of films deposited from MTS-AlCl{sub 3}-CO{sub 2}- H2 mixtures showed that silicon oxide was the main component, and comparison of the deposition rates of SiO{sub 2} and Al{sub 2}O{sub 3} during codeposition with those seen in single species deposition experiments at the same conditions revealed that the codeposition process was characterized by a dramatic enhancement of the deposition of SiO{sub 2} and an equally dramatic reduction in the rate of Al{sub 2}O{sub 3} deposition. Since the enhanced codeposition rate was caused by increased silicon oxide deposition, it was concluded that the main deposition product of the additional surface reaction steps in codeposition must be silicon oxide. A comprehensive investigation of the effects of the other operating parameters on the kinetics of the codeposition process will be carried out in the next reporting period.

Physical Description

23 pages

Notes

OSTI as DE00008823

Source

  • Other Information: PBD: 1 Mar 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DE--FG22-96PC96208--03
  • Grant Number: FG22-96PC96208
  • DOI: 10.2172/8823 | External Link
  • Office of Scientific & Technical Information Report Number: 8823
  • Archival Resource Key: ark:/67531/metadc794842

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 1998

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 15, 2016, 1:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION, report, March 1, 1998; Morgantown, West Virginia. (digital.library.unt.edu/ark:/67531/metadc794842/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.