This system will be undergoing maintenance April 18th between 9:00AM and 12:00PM CDT.

Tailorable, Visible Light Emission From Silicon Nanocrystals

PDF Version Also Available for Download.

Description

J. P. Wilcoxon and G. A. Samara Crystalline, size-selected Si nanocrystals in the size range 1.8-10 nm grown in inverse micellar cages exhibit highly structured optical absorption and photoluminescence (PL) across the visible range of the spectrum. The most intense PL for the smallest nanocrystals produced This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, … continued below

Physical Description

10 p.

Creation Information

Samara, G. A. & Wilcoxon, J. P. July 20, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 29 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

J. P. Wilcoxon and G. A. Samara Crystalline, size-selected Si nanocrystals in the size range 1.8-10 nm grown in inverse micellar cages exhibit highly structured optical absorption and photoluminescence (PL) across the visible range of the spectrum. The most intense PL for the smallest nanocrystals produced This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. to induce a useful level of visible photoluminescence (PL) from silicon (Si). The approaches understood. Visible PL has been observed from Si nanocrystals, or quantum dots, produced by a variety of techniques including aerosols,2 colloids,3 and ion implantation.4 However, all of The optical absorption spectra of our nanocrystals are much richer in spectral features spectrum of bulk Si where the spectral features reflect the details of the band structure shown in nanocrystals estimated to have a Si core diameter of 1-2 nm. These measured quantum those in the spectrum of bulk Si in Fig. 1 are striking indicating that nanocrystals of this size 8-Room temperature PL results on an HPLC size-selected, purified 2 nm nanocrystals but blue shifted by -0.4 eV due to quantum confinement. Excitation at 245 nm yields the PL shows the PL spectrum for a similar sample excited at 490 nm (2.53 eV) trapped excitons at the surface of Si nanocrystals. The excitons are obtained for dimer bonds 1.8- 10 nm. These nanocrystals retain bulk-like optical absorption and an indirect bandgap Figure 1. The absorption spectrum of d = 2 nm Si nanocrystals compared to that of bulk7 Si. Figure 2. The extinction and PL (excitation at 490 nm) spectra ford= 8-10 nm Si nanocrystals.

Physical Description

10 p.

Notes

OSTI as DE00009475

Medium: P; Size: 10 pages

Source

  • Journal Name: Applied Physics Letters; Other Information: Submitted to Applied Physics Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 20, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Jan. 5, 2021, 1:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 29

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Samara, G. A. & Wilcoxon, J. P. Tailorable, Visible Light Emission From Silicon Nanocrystals, article, July 20, 1999; Albuquerque, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc794812/: accessed April 18, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen