Applications and development of high pressure PEM systems

PDF Version Also Available for Download.

Description

Many portable fuel cell applications require high pressure hydrogen, oxygen, or both. High pressure PEM systems that were originally designed and developed primarily for aerospace applications are being redesigned for use in portable applications. Historically, applications can be broken into weight sensitive and weight insensitive cell stack designs. Variants of the weight sensitive designs have been considered to refill oxygen bottles for space suits, to provide oxygen for space shuttle, to provide oxygen and/or reboost propellants to the space station, and to recharge oxygen bottles for commercial aviation. A long operating history has been generated for weight insensitive designs that ... continued below

Physical Description

851 Kilobytes pages

Creation Information

Leonida, A; Militsky, F; Myers, B & Weisberg, A H June 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Many portable fuel cell applications require high pressure hydrogen, oxygen, or both. High pressure PEM systems that were originally designed and developed primarily for aerospace applications are being redesigned for use in portable applications. Historically, applications can be broken into weight sensitive and weight insensitive cell stack designs. Variants of the weight sensitive designs have been considered to refill oxygen bottles for space suits, to provide oxygen for space shuttle, to provide oxygen and/or reboost propellants to the space station, and to recharge oxygen bottles for commercial aviation. A long operating history has been generated for weight insensitive designs that serve as oxygen generators for submarines. Exciting future vehicle concepts and portable applications are enabled by carefully designing lightweight stacks which do not require additional pressure containment. These include high altitude long endurance solar rechargeable aircraft and airships, water refuelable spacecraft, and a variety of field portable systems. High pressure electrolyzers can refill compressed hydrogen storage tanks for fuel cell powered vehicles or portable fuel cells. Hamilton Standard has demonstrated many high pressure PEM water electrolyzer designs for a variety of applications. Electrolyzers with operational pressures up to 3000 psi (20.7 MPa) are currently used for US Navy submarine oxygen generators. An aerospace version has been demonstrated in the Integrated Propulsion Test Article (IPTA) program. Electrolyzers with operational pressures up to 6000 psi (41.4 MPa) have also been demonstrated in the High Pressure Oxygen Recharge System (HPORS). Onboard oxygen generator systems (OBOGS) that generate up to 2000 psi (13.8 MPa) oxygen and refill breathable oxygen tanks for commercial aviation have been designed and successfully demonstrated. Other hardware applications that require high pressure PEM devices are related to these proven applications.

Physical Description

851 Kilobytes pages

Source

  • Portable Fuel Cells Conference, Lucerne (CH), 06/21/1999--06/24/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-134539
  • Report No.: YN0100000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 9866
  • Archival Resource Key: ark:/67531/metadc794808

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • May 6, 2016, 2:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Leonida, A; Militsky, F; Myers, B & Weisberg, A H. Applications and development of high pressure PEM systems, article, June 1, 1999; California. (digital.library.unt.edu/ark:/67531/metadc794808/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.