A molecular ruler based on plasmon coupling of single gold andsilver nanoparticles

PDF Version Also Available for Download.

Description

Molecular rulers based on Foerster Resonance Energy Transfer (FRET) that report conformational changes and intramolecular distances of single biomolecules have helped to understand important biological processes. However, these rulers suffer from low and fluctuating signal intensities from single dyes and limited observation time due to photobleaching. The plasmon resonance in noble metal particles has been suggested as an alternative probe to overcome the limitations of organic fluorophores and the coupling of plasmons in nearby particles has been exploited to detect particle aggregation by a distinct color change in bulk experiments. Here we demonstrate that plasmon coupling can be used to ... continued below

Creation Information

Sonnichsen, Carsten; Reinhard, Bjorn M.; Liphardt, Jan & Alivisatos, A. Paul May 22, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 99 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Molecular rulers based on Foerster Resonance Energy Transfer (FRET) that report conformational changes and intramolecular distances of single biomolecules have helped to understand important biological processes. However, these rulers suffer from low and fluctuating signal intensities from single dyes and limited observation time due to photobleaching. The plasmon resonance in noble metal particles has been suggested as an alternative probe to overcome the limitations of organic fluorophores and the coupling of plasmons in nearby particles has been exploited to detect particle aggregation by a distinct color change in bulk experiments. Here we demonstrate that plasmon coupling can be used to monitor distances between single pairs of gold and silver nanoparticles. We use this effect to follow the directed assembly of gold and silver nanoparticle dimers in real time and to study the time dynamics of single DNA hybridization events. These ''plasmon rulers'' allowed us to continuously monitor separations of up to 70 nm for more than 3000 seconds. Single molecule in vitro studies of biological processes previously inaccessible with fluorescence based molecular rulers are enabled with plasmon rulers with extended time and distance range.

Source

  • Journal Name: Nature Biotechnology; Journal Volume: 23; Journal Issue: 6; Related Information: Journal Publication Date: 06/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBID--2572
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 862316
  • Archival Resource Key: ark:/67531/metadc794759

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 22, 2005

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 1, 2016, 8:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 99

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sonnichsen, Carsten; Reinhard, Bjorn M.; Liphardt, Jan & Alivisatos, A. Paul. A molecular ruler based on plasmon coupling of single gold andsilver nanoparticles, article, May 22, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc794759/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.