The Correlation of Coupled Heat and Mass Transfer Experimental Data for Vertical Falling Film Absorption

PDF Version Also Available for Download.

Description

Absorption chillers are gaining global acceptance as quality comfort cooling systems. These machines are the central chilling plants and the supply for cotnfort cooling for many large commercial buildings. Virtually all absorption chillers use lithium bromide (LiBr) and water as the absorption fluids. Water is the refrigerant. Research has shown LiBr to he one of the best absorption working fluids because it has a high affinity for water, releases water vapor at relatively low temperatures, and has a boiling point much higher than that of water. The heart of the chiller is the absorber, where a process of simultaneous heat ... continued below

Physical Description

11 pages

Creation Information

Keyhani, M. & Miller, W.A. November 14, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 55 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Absorption chillers are gaining global acceptance as quality comfort cooling systems. These machines are the central chilling plants and the supply for cotnfort cooling for many large commercial buildings. Virtually all absorption chillers use lithium bromide (LiBr) and water as the absorption fluids. Water is the refrigerant. Research has shown LiBr to he one of the best absorption working fluids because it has a high affinity for water, releases water vapor at relatively low temperatures, and has a boiling point much higher than that of water. The heart of the chiller is the absorber, where a process of simultaneous heat and mass transfer occurs as the refrigerant water vapor is absorbed into a falling film of aqueous LiBr. The more water vapor absorbed into the falling film, the larger the chiller�s capacity for supporting comfort cooling. Improving the performance of the absorber leads directly to efficiency gains for the chiller. The design of an absorber is very empirical and requires experimental data. Yet design data and correlations are sparse in the open literature. The experimental data available to date have been derived at LiBr concentrations ranging from 0.30 to 0.60 mass fraction. No literature data are readily available for the design operating conditions of 0.62 and 0.64 mass fraction of LiBr and absorber pressures of 0.7 and 1.0 kPa.

Physical Description

11 pages

Source

  • International Mechanical Engineering Congress and Exposition, Nashville, TN, November 14-19, 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00009289
  • Report No.: ORNL/CP-103983
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 9289
  • Archival Resource Key: ark:/67531/metadc794734

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 14, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • June 9, 2016, 9:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 55

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Keyhani, M. & Miller, W.A. The Correlation of Coupled Heat and Mass Transfer Experimental Data for Vertical Falling Film Absorption, article, November 14, 1999; (digital.library.unt.edu/ark:/67531/metadc794734/: accessed July 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.