
I

A Lower Bound for the QRQW PRAM

Philip D. MacKenzie*

May 2, 1995

Abstract

The queue-read, queue-write (QRQW) parallel random access machine (PRAM) model is a
shared memory model which allows concurrent reading and writing with a time cost propor-
tional to the contention. This is designed to model currently available parallel machines more
accurately than either the CRCW PRAM or EREW PRAM models. Many algorithmic results
have been developed for the QRQW PRAM. However, the only lower bound results have been
fairly simple reductions from lower bounds for other models, such as the EREW PRAM or the
“few-write” CREW PRAM.

Here we present a lower bound specific to the QRQW PRAM. This lower bound is on the
problem of Linear Approximate Compaction (LAC), whose input consists of at most m marked
items in an array of size n7 and whose output consists of the m marked items in an array of
size O(m). There is an O (m expected time randomized algorithm for LAC on the QRQW
PRAM. We prove a lower bound of O(log log log n) expected time for any randomized algorithm
for LAC. This bound applies regardless of the number of processors and memory cells of the
QRQW PRAM. The previous best lower bound was Q(log* n) time, taken from the known lower
bound for LAC on the CRCW PRAM.

1 Introduction
The PRAM model of computation has been the most widely used model for the design and analysis
of parallel algorithms. The PRAM is a model of parallel computation in which processors com-
municate by performing synchronous unit time reads and writes to shared memory. For the most
part, it has been assumed that contention for reading and writing to memory locations should be
handled either by the 44exclusive” rule (there can be no concurrent access to a memory location)
or by the “concurrent” rule (concurrent accesses are allowed and can be processed in unit time).
In the case of the concurrent rule, different conflict resolution protocols exist to handle concurrent
writes.

As argued in Gibbons, Matias, and Ramachandran [5], neither the exclusive or concurrent rules
accurately model current parallel architectures. They propose the “queue” rule as a more realistic
alternative. In the queue rule, concurrent accesses are allowed, but take time proportional to the
number of concurrent accesses. The machines which have contention properties well-approximated
by the queue rule include the CRAY T3D, IBM SP2, Intel Paragaon, Thinking Machines CM-5
(data network), and others. We refer the interested reader to [5] for a more complete list of machines
and measurements which justify their approximation by the queue rule.

‘This work was performed at Sandia National Laboratories and was supported by the U.S. Department of Energy
under contract DE-AC04-76DPD0789. Address: Sandia National Laboratories, Albuquerque, NM 87185-1110. Email:
philmac@cs.sandia.gov

1 T

mailto:philmac@cs.sandia.gov

n

DISC LA1 M ER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

The model proposed in [5] is the QRQW PRAM model. In that paper and in [4], they explore
this model, developing many deterministic and randomized algorithms for standard problems. They
also are able to give two lower bounds for the QRQW PRAM. One is for computing the OR of n
bits. They show using a reduction from the lower bound for computing the OR function on the
“few-write” CREW PRAM model in Dietzfelbinger, Kutylowski, and Reischuk [2] that computing
the OR function on the QRQW PRAM requires R(1og n/ log log n) time. (This provides a separation
between the QRQW and CRCW PRAM.) The other lower bound is for broadcasting a bit to n
processors. They show using a reduction from the lower bound on broadcasting a bit on an EREW
PRAM model in Beame, Kik, and Kutylowski [l] that broadcasting a bit on the QRQW PRAM
requires R(1ogn) time. They extend this to an R(1ogn) lower bound on the expected time for
any randomized algorithm to broadcast a bit. A corollary to this is that Load Balancing requires
R(1og n) expected time, assuming one processor has load n, and the other processors have no load

Another problem considered in [5] is that of linear approximate compaction (LAC). In the LAC
problem, an array of size n with at most m marked elements is given, and the marked elements must
be moved into an array of size O(m) . LAC was a major part of the automatic processor allocation
routines given in [5] for many general types of algorithms, and consequently, time improvements
in LAC would result in time improvements for many algorithms. A randomized algorithm solving
LAC in O (m expected time is given in [5], but no lower bound is given. Thus the only lower
bound known for this problem was the fl(log* n) expected time lower bound for LAC on the CRCW
PRAM given in MacKenzie [6]. In this paper we give an R(loglog1og n) expected time lower bound.
This is the first lower bound specifically designed for the QRQW PRAM.

To prove the lower bound, we use the Random Adversary Technique, first developed in MacKen-
zie [6], combined with QRQW PRAM specific ideas which to our knowledge have not been used
before. Specifically, we use the Random Adversary to restrict the inputs so as to force the time
required for memory accesses to be either more than the desired lower bound or as high as the total
possible contention. In this way, we are able to charge the algorithm for the amount of information
it tries to transmit at a given read or write step.

We feel that even though the lower bound we prove does not seem to be tight, the ideas used
should be useful for proving other lower bounds on the QRQW PRAM, and thus furthering our
understanding of the role of contention in parallel computation.

In Section 2 we give explicit definitions of the models and problems we study. In Section 3, we
review the Random Adversary technique. In Section 4, we give the general form of the QRQW
PRAM lower bound. In Section 5 we give an application of this general lower bound to the problem
of Linear Approximate Compaction.

[41.

2 Definitions
Our definition for the QRQW PRAM is taken from [5].

Consider a single step of a PRAM, consisting of a read substep, a compute substep, and a write
substep. The maximum contention of the step is the maximum, over all memory cells x of the
number of processors reading x or the number of processors writing x.

The QRQW PRAM model consists of a number of processors, each with its own private memory,
communicating by reading and writing to locations in a shared memory. Processors execute steps
synchronously. Each step consists of the following three substeps:

1. Read substep: Each processor i eads ~i shared memory locations, where the locations are
known at the beginning of the substep.

2

2. Compute substep: Each processor i performs e; RAM operations involving only its private

3. Write substep: Each processor i writes to w; shared memory locations, where the locations

Concurrent reads and writes to the same location are permitted in a step. In the case of multiple
writes to a location IC, an arbitrary write to IC succeeds in writing the value present in 2 at the end
of the step.

If a QRQW PRAM step has maximum contention k, and if m = max;{r;, cis wk} for this step,
then the time cost of the step is max{m, k}. The time of a QRQW PRAM algorithm is the sum of
the time costs for its steps. The work: of a QRQW PRAM algorithm is its processor-time product.

Our lower bound proof does not need to consider ci , so local computations are “free” for any
algorithm. We will assume that there are separate steps for reading and writing. This could only
increase the time of an algorithm by a factor of 2, and thus our asymptotic lower bounds will still
hold in the general case.

state and private memory.

and values written are known at the beginning of the substep.

We give a formal definition of the LAC problem here.

Linear Approximate Compaction Given an array of n cells with at most h containing one item
each and all others being empty, insert the items into an array of size O(h) .

3 Random Adversary Technique

The Random Adversary Technique allows one to prove a lower bound on the time required for
a parallel randomized algorithm to solve a given problem. The first step of the technique is to
decide on an input distribution for the problem. By Yao’s Theorem (see below), a lower bound
on deterministic algorithms over this distribution provides the same lower bound for randomized
algorithms.

The next step is to create a Random Adversary that proceeds through the given deterministic
algorithm step by step, fixing some of the inputs in order to ensure some desired properties. (As
shown below, this entails filling in the details of a procedure called REFINE.) Note that the Random
Adversary is similar to a standard deterministic adversary in most parallel lower bound proofs.
However, unlike deterministic adversaries that can fix inputs arbitrarily, the Random Adversary
must fix inputs according to the chosen input distribution, i.e., using the procedure RANDOMSET,
as described below. Also, depending on how RANDOMSET fixes the inputs, the desired properties
might not hold. Therefore, it is possible that the Random Adversary might have to make repeated
calls to RANDOMSET to ensure the desired properties.

The final step is to show that these desired properties (such as knowledge about the inputs still
being widely dispersed among the processors, and that the number of inputs left unset is still large)
hold with some given probability.

In the rest of this section we formalize this method.

3.1 Definitions
Let P be a problem and I the set of inputs to P. Let Q be the set of possible values to which each
input could be set. Define a purtial input map to be a function f from I to {{*} U Q}. Here ‘*’ will
denote a “blank” or “unset” input. A partial input map is an input map if no inputs are mapped
to ‘*’. Let f* denote the partial input map which maps every input to ‘*’. A partial input map f‘
is called a refinement of a partial input map f if for all i E I, and q E &, f(i) = q implies f‘(i) = q.
(We denote this by f’ 5 f.)

3

t

3.2 Yao’s Theorem

The following theorem shows that a lower bound on the average case time of a deterministic
algorithm over random inputs implies the same lower bound bound for the expected time of any
randomized algorithm over a worst case input.

Theorem 3.1 (Yao[7]) Let TI be the expected running time for a randomized algorithm solving
problem P over all possible inputs, where the expected time is taken over the random choices made
by the algorithm. Let T2 be the average running time over the distribution 2) of inputs, minimized
over all possible deterministic algorithms to solve P. Then TI 2 T2.

(A nice proof of this theorem is given in Fich, Meyer auf der Heide, Ragde, and Wigderson [3].)
This theorem greatly simplify the problem of proving randomized lower bounds, as it converts

the original problem to one where randomness only comes into play through the input distribution,
and this can be set as one wishes. It is of course necessary to choose a distribution that will be
difficult for any deterministic algorithm. Note that the input distribution cannot place all the
probability on one input (i.e. a “worst case” input), since then a simple deterministic algorithm
which checks for this input and outputs the precomputed answer will succeed with probability 1.

3.3 Randomset Procedure

We will assume the distribution chosen is 2). Function RANDOMSET can be used to randomly
generate an input map one input at a time. It is called with a partial input map f obtained through
calls to RANDOMSET, and a set S of elements which are mapped to ‘ * 9 . The elements in S are
then randomly set one by one according to the distribution D9 conditional on f .

Function RANDOMSET(f, S)
For each i E S

Set f (i) according to the conditional distribution of i given that
the input is drawn from 2) and is a refinement of f

Return f
End RANDOMSET

Claim 3.1 Assuming f generated solely by calls to RANDOMSET, then f will be generated ac-
cording to the distribution 2).

Proof: Straightforward.

3.4 REFINE and GENERATE
Say f is t-good if it satisifes certain properties, which will be defined with respect to the time t ,
the problem P, and the input distribution 2). (It will be the case that for t‘ 2 t, i f f is t-good, then
f is t’-good.) Say T 5 n is the time that we are trying to show is a lower bound for solving the
problem P. Let A be an algorithm which alledgely solves problem P over the input distribution D
in time T .

Given this algorithm A, we create a procedure REFINE which tells the Random Adversary how
to fix the inputs at each step. Formally, REFINE(t,f) takes a time t and a partial input map f
and returns a pair (f ‘ , x) consists of a new partial input map f‘ that is a refinement of f and a
lower bound x on the time of the next step. We need to prove that the procedure REFINE has
two important properties, the first of which is concerned with preservation of ‘%goodness”.

4

Lemma 3.1 I f t < T and REFINE is called with parameters (t , f) , where f is t-good, then with
probability at least 1 - n-2 REFINE will return a pair (f ' , ~) where either t + x 2 T or f ' is
(t + x)-good.

The second property is that REFINE is unbiased. Consider the function GENERATE defined
below that starts with the partial input map f o = f * ? and calls REFINE until t 2 T to generate a
sequence of partial input maps f o = f * 2 f ' , 2 2 fT 2 f where (f t , , x) = REFINE(ti-1, f t , - ,) ,
t; = ti-1 +z, f t , is a refinement of ft,-l, and f is an input map generated according to the conditional
distribution over 27 from the set of refinements of fT. Then we need to prove the following lemma.
Lemma 3.2 The input map f returned by GENERATE is generated according to the distribution
27.
In the REFINE procedure we construct in this paper, all inputs are set by calls to RANDOMSET.
Consequently, by Claim 3.1, Lemma 3.2 will always hold.

Function GENERATE
Let f o = f *
Let f = fo
Let t = 0
While t 5 T Do

If for some p , f (p) = '*' Then
Let (f , x) = REFINE(t, f)

Else
Let z = T - t

t = min{t + z, T }
ft = f

Let P = {pl f (p) = '*'}
Return RANDOMSET(f , P)

End GENERATE

For concreteness, we say the partial input map f t at any time t is simply the partial input map
at the end of the last completed QRQW PRAM step.
Lemma 3.3 With probability at least 1 - n-l, for any t < T , the partial input map f t is t-good.
Proof: Let Zt be a binary random variable which is equal to 1 if f t is t-good. Then the probability
that f t is not t-good can be bounded by

t
C p r (z t = Q I Zt-l = I , . . ., = 1).
i=l

By Lemma 3.1, this is at most Tn-2 5 n-l. 0

specify
In summary, to fill in the Random Adversary framework for a specific problem P, we must

1. an input distribution 27,

2. a definition for t-good,

3. a function REFINE,

4. a time T , and

5. a proof for Lemma 3.1.

5

4 The Lower Bound
4.1 QRQW PRAM definitions
Let A be any deterministic algorithm for the QRQW PRAM. Let f be any input map. Trace@, 0, f)
is defined to be the tuple < p >. Trace(p, t , f) (for t > 0) is defined to be the tuple < p , XI, . . . , Xt >
in which X j is a set of (cell, contents) pairs (if any) for each cell read in a QRQW PRAM step
ending at time j , if any, and X j is the null symbol otherwise. Similarly, Trace(c, 0, f) is defined to
be the tuple < e , XO >, where XO is the initial value in cell c . Trace(c,t, f) (for t > 0) is defined to
be the tuple < c , XO, . . . , Xi > in which X j is the contents of the cell at time j .

For the following, assume that w is either a processor or cell. Let g be any partial input map.
Define States(v,t,g) to be the set {Trace(v,t, f) : f is an input that refines g}. Define Know(v,t,g)
as the minimum set of inputs such that for any input maps f1 and f2 that refine g and have
fl(q) = fz(q) for all q E Know(v,t,g), Trace(w,t,fl) is the same as Trace(w,t,fZ). (Intuitively,
w is not dependent on inputs outside Know(w,t,g), since these could not affect its trace, and v is
dependent on every input inside Know(w, t , g) by the fact that it is the minimum set of inputs which
could affect its trace.) Let Af€F'roc(i,t,g) contain each processor p in which i E Know(p,t,g). Let
AffCell(i,t,g) contain each cell c in which i E Know(c,t,g).

4.2 General Lower Bound
Before we prove a lower bound on Load Balancing, we will prove a general lower bound on the
amount of information which can be transferred between processors given a general random input.

Assume 111 = n (i.e., the number of inputs is n). Without loss of generality, assume n is large
enough so that our analysis holds. Assume the set of possible values for inputs Q = (~ 1 , . . . , ~ 1 ~ 1) .
Let K = IQI. We will use an input distribution with the property that given a partial input map
which fixes any set of at most Tnb inputs, the probability that an unfixed input is assigned value
wj (1 5 j 5 K) is at least q 2 (log .)-I.

We define the following values for i 2 0: k; = KZ2' , and r; = in f .
If T 2 log log log n and K 5 2-i' then the following is easily proved.

Fact 4.1 ICT 5 and TT 5 Tn?.

A partial input map f is called t-good if the following conditions are satisfied.

1. For each processor or cell w, IStates(v, t , f) l 5 ICt.

2. For each processor or cell w, lKnow(w,t, f) l 5 kt.

3. For each input i, IAffProc(i,t,f)l 5 kt and IAffCell(i,t,f)l 5 kt.
4. f maps at least n - rt inputs to '*'.
We now describe algorithm REFINE which is called with a time t and a partial input map f ,

and which returns a pair (f ' , x) consisting of a partial input map f' which is a random refinement
of f , and a lower bound x on the time of the step taken. Note that x is the true time of the step
if t 4- x < T . The random refinement is based on the action of algorithm A on the step.

The intuition behind this REFINE procedure is the following. First, in lines (3) through (8),
we force some processor that possibly accesses many cells in this step to actually access those cells.
Since each state of a processor has a reasonably high probability, we can force this without fixing
the inputs of too many processors. This gives the lower bound RWCount on the time of the step.

6

Next, in lines (10) through (21), we force some cell that is possibly accessed by many processors, to
actually be accessed by those processors, or at least log log n of them if there are more than log log n
that could access the cell for some input map. Since each state of a processor has a reasonably large
probability9 we can force many processors to actually access a cell without needing to consider too
many cells (i.e., without fixing the inputs that affect processors that possibly write to those cells)
Thus REFINE forces the time required for the step to correspond to the “amount of information
exchanged” in the step, without fixing too many inputs.

We define MaxCell(t,g) as the cell with the maximum possible contention at time t for any
input map which refines g. We define MaxRWC(c,t,g) as the maximum possible contention at c
at time t for any input map which refines g. We define MaxProc(t,g) as the processor with the
maximum possible number of reads or writes at time t for any input map which refines g. We define
MaxRWP(p,t,g) as the maximum possible number of reads or writes p makes at time t for any
input map which refines g. Let ACCESS(c, t, g) be the set of processors that read from or write to
cell c at time t for any input map which refines g.

Function REFINE(t, f)
Let g = f
Let Done = FALSE
While not Done

Let p = MaxProc(t, g)
Let RWCount = MaxRWP(p, t , g)
Let g = RANDOMSET(Know(p, t,g),g)
If p accesses RWCount cells

Let Done = TRUE
Let Done = FALSE
While not Done

Let c = MaxCell(t,g)
Let W = ACCESS(c,t,g)
Choose a set W‘ C W such that

IW’I = min{IWI,rntst210g4 ”}
Let B = min{MaxRWC(c,t,g),loglog n}
Let Count = 0
For each p E W‘

9

Let g = RANDOMSET(Know(p,t, g),g)
If p accesses c

Let Count = Count + 1
If Count 2 B

Let Done = TRUE
Let f ‘ = g
Return (f ’ , max{ Count , RWCount)

End REFINE

Lemma 4.1 If f is t-good and REFINE(t,f) returns (f ’ , ~) ~ then either t + z 2 T or (I) For
each processor or cell v,)States(v, t + x, f‘)l _< kt+x, (2) For each processor or cell v, IKnow(v, t +
x,f’)l 5 kt+x7 and (3) For each input i where f’(i) = ‘*’7 IAflProc(i,t + x,f’)l 5 ICt+a: and
I A f l W i , t + 2, f’)l 5 k + Z .

7

Proof: If line (21) of REFINE is executed with B = loglog n, then x 2 loglog n, and t + 5 2 T .
Otherwise, one can see that the time of the step will be 2, and we obtain the bounds below.

The bounds we show below follow from the fact that for x 2 1, 1 + x 5 2". It is possible to
have x = 0, and it is easy to check that our bounds hold in that case also.

We analyze this by read step, then write step. For the read step, processor v reads one of
at most kt sets of at most x cells at step t, each one being in one of at most kt states. Thus

The inputs that affect processor v are the mt that originally affect it plus the mt that affect
- mt+x.

An input affects all the processors it originally affects, plus all the processors that read from

For the write step, cell v is written to by at most x processors, and thus it could either be
in the state it was originally or in one of the kt states of the processors that write to it. Thus

The inputs that affect a cell v are the at most mt that originally affect it plus the mt that affect
each of the at most x processors that possibly write to it. Thus IKnow(v, t -+ x, f ') l 5 mt + x m t 5

An input affects all the cells it originally affects, plus the xkt cells possibly written to by each

We say that REFINE(t, f) is successfuE if it calls RANDOMSET with at most nf inputs.

x+l < K2W") IStates(v, t + 3, f ') l 5 kt - = kt+x.

each of the xk t possible cells it reads. Thus IKnow(v,t + x, f')l 5 mt + xktmt 5 K

the cells that it affects. Thus IAffProc(v,t + x, f')l 5 st + xst 5 K

IStates(v,t + x, f ') l 5 kt + xkt 5 K2

K 2 w 4 -

processor that it affects. Thus IAffCell(v,t + x, f ') l 5 st t xktst 5 K

22(tt") -

22(tt") -
- S t + x .

2 (t t r) - - &+x.

- mt+x.

22 t t x) = S t + x .

Lemma 4.2 I f f is t-good and REFINE(t, f) is successful and returns (f ' , x), then either t + x 2 T
or f ' is (t f x)-good.

Proof: This follows from Lemma 4.1, the definition of successful, and the definition of t-good. 0

Lemma 4.3 I f f is t-good then REFINE(t, f) is successful with probability at least 1 - n-2

Proof: Consider the While loop at lines (3) through (8). Since the probability of a processor being
in any state is at least q 6 > - 2-l0gan? the probability of this executing more than f i times is
at most

(1 - 2-log'")fi 5 n-3.

Then since at Know(p,t,g) 5 logn, the probability of more than G l o g n inputs being set is at
most nW3.

Now consider the While loop at lines (10) through (21). We argue that the probability of not
finishing at one of the first 6 iterations of this loop is at most n-'.

First we show that if for one of the first fi iterations of the loop, IW'I = k $ $ O g 4 ", then the
probability of not finishing on that iteration is less than n-3. Since each processor is affected by
at most bt inputs, and each input affects at most bt processors, we can find a set of processors
W" C W' of size 2I0gQn whose states are independent. Also, we use the fact that the probability
of being in any state is at least 2-log3 n. By a Chernoff bound, the probability that fewer than
log log n processors in W" write to c is at most T L - ~ .

Each of the f i cells that we consider is written to by at most k,221094 " processors. Each of these
processors is affected by bt inputs and each input affects at most bt processors. Thus there is
a set C of at least ") 2 nt cells which are written to by processors whose states

s

2

Assuming IW'I < k,22l09 Q " for the first f i iterations, we first find independent iterations.

H

8

are independent. For each cell c E C , there is at least one input map g' such that a set W"
of B processors write to c . Since the processors in W" are affected by a total of at most Bkt
inputs, the minimum probability of fixing inputs so that all these processors write to c is at least
4 131ct > 2-log3 n. (Note that since W' = W , we actually will fix inputs affecting all the processors
in W< and hence W".)

Thus the probability of not finishing in any of the first +iterations is less than (1-2-log' n)n' 5
nw3.

Note that if we do finish in the first f i iterations, we set at most f i k$ log4
In total, REFINE(t, f) fails with probability at most nd3 + nv3 5 n-2. 0

2

P < - n? inputs.

Lemma 4.4 If t < T and REFINE is called with parameters (t? f), where f is t-good, then with
probability at least 1 - n-2 REFINE will return a pair (f ' , x) where either t + x 2. T or the partial
input map f ' is (t + %)-good.

Proof: This follows from Lemma 4.3 and Lemma 4.2. 0

Corollary 4.1 With probability at least 1 - n-'? for any processor or cell v, and any time t 5 T ,
IKnow(v,t, f t) l 5 kT 5 e; f o r any unset input i and any time t 5 T, IAgProc(i,t, f t) l 5 k~ 5
z/logn, IAfSCeEJ(i,t, ft)l 5 k~ 5 .\/%gn; and the number of inputs set by RANDOMSET is at most
rT 5 Tn?.

5 Linear Approximate Compaction

Let M = loglogn. Let 2) be an input distribution that consists of an array of n cells, with E items
located at uniformly random cells in the array. (In other words, Q = {v1,v2} where input i is v1
if cell i in the input array contains an item, otherwise input i is 02. Note that this distribution
satisfies the property we required above.) Without loss of generality we assume each item is tagged
with the cell it originally occupies. Say the enhanced EACproblem (ELAC) is for each nonempty
cell in the input array to contain a pointer to the location in the output array where its item was
inserted.

Claim 5.1 Given an algorithm for the L A C problem on a QRQ W P R A M that uses expected time
t , there exists an algorithm for the ELAC problem on a QRQW P R A M that uses expected time
t + l .

Proof: One can simply run the algorithm solving the LAC problem, and then assign one processor
per output cell to read the tag of the item inserted there and write that location into the original
cell containing the item. 0

Lemma 5.1 A deterministic algorithm which solves the ELACproblem on a QRQW PRAM re-
quires cR(1og log log n) expected time.

Proof: Consider a deterministic algorithm that alledgedly solves the ELAC problem in expected
time t < T. Let C be the constant such that the algorithm places the items into an array of
size $$ 5 t, for large n. From Corollary 4.1, with probability 1 - n-l, for any processor or cell
v , IKnow(v, t , f t)[5 kt 5 for any unset input i IAffCell(i,t, ft)l 5 kt 5 .\/%gn; and the
number of inputs set by RANDOMSET is at most T n t 5 ;. For now, we assume these conditions
hold.

9

‘ I

Consider an input cell c whose input has not been fixed by the Random Adversary. Consider
the contents of c (the pointer to the location in the output array) assuming that the input map f
which was refined from ft assigned items to all inputs in Know(c, t , ft). Do this for all input cells
whose inputs have not been fixed. This defines a potential pointer map F . Then F is a function
with a domain of size at least and a range of size at most g. By a simple counting argument, we
can find

Let S be one of the disjoint pairs of input cells that we have just found. Each c E S has
Know(c,t,f$) 5 lct 5 .\/%gn, and thus at most 2- inputs affect the contents of these cells.
Each of these inputs i has AffCell(i, t , ft) 5 bt 5 w, so at most 2 log n cells are affected by
the same inputs that affect the cells in S. Thus from the disjoint pairs of input cells which are
mapped by F to the same output cell, we can find a subset of B = pairs whose cell contents
are completely independent. Number these pairs from 1 to B.

Claim 5.2 With very high probability, at least one pair from B uses the same pointers as F .

disjoint pairs of input cells, each of which point to the same output cells.

ProoE We can see that the probability of both cells in one of these pairs using the pointers from
F is at least the probability that f assigns items to all inputs in Know(c, t , ft) for each c in the
pair. Even conditioned on any values of inputs from the other B - 1 pairs and the inputs fixed
by the Random Adversary, the probability of this event is at least (2 7 n) - 2 G 0 (Note that the

number of inputs we are conditioning on is at most e + i n ; log loglog n 5 -.)
The probability that this does not happen for any of the B pairs is at most

for sufficiently large n Thus, with very high probability, at least one pair of input cells will be
mapped to the same output cell. [7

By Claim 5.2, with very high probability the mapping provided by the algorithm at this point
will not be a valid solution to ELAC. This is assuming that the conditions implied by Corollary 4.1
hold, but these hold with high probability. Thus with high probability, the mapping provided by
the algorithm at this point will not be a valid solution to ELAC. Then since T = R(logloglogn),
this proves the lemma. 0

Corollary 5.1 A deterministic aZgorithm which solves the LACproblem on a QRQW PRAM re-
quires R(loglog1og n) time.

Proof: From Claim 5.1, given a deterministic algorithm that solves the LAC problem in t‘ =
o(loglog1og n) steps, we could solve the ELAC problem in t’ + 1 = o(loglog1ogn) steps, which is
impossible by Lemma 5.1. 0

Theorem 5.1 Solving the LAC problem on a Randomized QRQ W PRAM requires R(log1og log n)
expected time.

Proof: Assume there is a randomized algorithm that solves LAC on the QRQW PRAM in expected
time t. Then by Yao’s Theorem, for the distribution 2, given above, there is a deterministic
algorithm which solves LAC over that distribution in expected time t. Then by Corollary 5.1,
t = R(loglog1ogn).

10

6 Conclusions
In this paper we have presented some new ideas for proving lower bounds on the QRQW PRAM, and
shown how these ideas lead to an improved lower bound for Linear Approximate Compaction. The
lower bounds we obtain pertain to randomized algorithms, which in many cases (and in particular
for the case of LAC) seem to be very useful.

There is still a large gap between the lower and upper bounds for LAC. Unfortunately, the
technique we use does not seem able to completely bridge this gap. The reason is that computing
LAC for the input distribution we give requires only O(log1og n,) expected time, even on an EREW
PRAM. (This can be done by performing deterministic LAC in groups of polylogarithmic size, and
noting that with high probability, no group contains too many marked inputs.) We leave open the
problem of reducing this gap.

References
[I] P. Beame, M. Kik, and M. Kutylowski. Information broadcasting by exclusive-read prams.

Para. Process. Lett., 4:159-169, 1994.

[2] M. Dietzfelbinger, M. Kutylowski, and R. Reischuk. Exact lower time bounds for computing
boolean functions on CREW PRAMS. J . Comput. System Sci., 48:231-254, 1994.

[3] F. E. Fich, F. Meyer auf der Heide, P. Ragde, and A. Wigderson. One, two, three . . .infinity:
Lower bounds for parallel computation. In Proc. 17th Symp. on Theory of Computing, pages
48-58,1985.

[4] P. B. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention parallel algorithms.
In Proc. 6th ACM Symp. on Para. Alg. and Arch., pages 236-247, 1994.

[5] P. B. Gibbons, Y. Matias, and V. Ramachandran. The qrqw pram: Accounting for contention
in parallel algorithms. In 5th ACM-SIAM Symp. on Disc. AEg., pages 638-648, 1994.

[6] P. D. MacKenzie. Load balancing requires sl(log* n) expected time. In 3rd ACM-SIAM Symp.
on Disc. Alg., pages 94-99, 1992. submitted to SIAM Journal on Computing.

[7] A. Yao. Probabilistic computations: Towards a unified measure of complexity. In Proc. 18th
Symp. on Found. of Comp. Sci., pages 222-227,1977.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

