Structure Within Thin Epoxy Films Revealed By Solvent Swelling: A Neutron Reflectivity Study

H. Yim, M. Kent, W. F. McNamara
Dept. 1832, Sandia National Laboratories, Albuquerque, NM.

R. Ivkov, S. Satija
National Institute of Standards and Technology, Gaithersburg, MD.

J. Majewski
LANCSE, Los Alamos National Laboratories, Los Alamos, NM.

ABSTRACT

Structure within thin epoxy films is investigated by neutron reflectivity (NR) as a function of resin/crosslinker composition and cure temperature. Variation in the crosslink density normal to the substrate surface is examined by swelling the films with the good solvent d-nitrobenzene (d-NB). The principle observation is a large excess of d-NB near the air surface. This is not a wetting layer, but rather indicates a lower crosslink density in the near-surface region. This effect is due to preferential segregation of the crosslinker to the air surface, driven by the lower surface energy of the crosslinker relative to the epoxide oligomers. The magnitude of the effect is a function of composition and cure temperature. Exclusion of d-NB from the region immediately adjacent to the substrate surface is also observed, possibly indicating a tightly bound layer of epoxy. Regarding swelling in the bulk of the films, the behavior is non-symmetric with departure from the stoichiometric ratio. The films deficient in curing agent show greater equilibrium swelling and faster swelling kinetics than the films with an excess of curing agent.

This work was supported by the U.S. Department of Energy under contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
INTRODUCTION

Due to a variety of factors, the structure and properties of polymer films can be different near interfaces compared to the bulk. At a substrate surface, polymer mobility is generally restricted due to adsorption of segments, restricted conformations, segment layering, alignment of chains, and decreased free volume. Small molecule probe diffusion appears to be less affected, with some studies showing a slightly reduced mobility within a polymer film near a substrate surface and others showing little or no reduction in mobility. At the air surface of a glassy polymer film, mobility is typically increased relative to the bulk. In multicomponent systems, preferential segregation can occur at either interface due to both enthalpic and entropic effects. Similar considerations also drive segregation of chain ends to interfaces. Kinetic effects have been shown to be important in the resulting structure of spin-cast films of glassy polymers.

Structure near a substrate surface is important for stress transfer, mechanical properties, fracture mechanisms, and diffusion of penetrants, among others. Structure at the air surface can impact surface reconstruction, surface free energy, wettability, and reactivity. In addition, structural gradients at air interfaces can impact the interfacial strength that develops when contacted with a second polymer. This is particularly important in technological applications involving thermosets such as multilayer paint films, and manufacturing processes involving multiple adhesives and encapsulants which come into contact.

Our focus is the structure within highly crosslinked, two component epoxy films. In such systems, preferential segregation of either component to an interface strongly effects the structure by altering the local stoichiometry and, therefore, the crosslink density. Variation in stoichiometry can affect not just the average crosslink density but also the distribution of cycles and dangling ends. Several workers have reported evidence of gradients in crosslink density at substrate surfaces in such systems, in some cases extending to ~1000 Å from the substrate surface. In addition to segregation at interfaces, unreacted monomer can segregate from high molecular weight gel fractions during cure leading to heterogeneity within the bulk of the film. In such systems, the rate of the crosslinking reaction(s) and the rate of segregation can be in competition. With a rapidly cured system, segregation will be minimized, whereas equilibrium interfacial concentration profiles and segregation in the bulk are expected for very slowly curing systems. Thus, cure rate is an important aspect explored in this work.
We examine variations in crosslink density within thin (600-1200 Å) epoxy films on silicon substrates by solvent swelling. The method is based on the fact that equilibrium volume fraction of a swelling solvent is strongly dependent upon the local crosslink density. We examine the volume fraction profile of the good solvent nitrobenzene through the epoxy films by neutron reflection. Isotopic substitution is used to provide contrast between the epoxy matrix and the swelling solvent. Swelling is an important method that has been employed for many years to determine the average crosslink density in macroscopic bulk samples. Variation in local swelling has been used to examine the degree of structural heterogeneity within the bulk of crosslinked samples by neutron scattering. Wu et al examined the swelling of a bulk epoxy sample crosslinked with a linear diamine. Their data are consistent with a heterogeneous distribution of crosslinks. However, the absence of any peaks in the scattering data indicates the absence of a well-defined correlation length in the heterogeneous network structure. In particular, their data are not consistent with the presence of well-defined nodules as have been reported in some systems.

Following a description of the experimental details, the results are presented in two sections. The first deals with the equilibrium swelling as a function of stoichiometry and cure temperature. In the second section we examine the swelling as a function of time prior to attaining equilibrium.

EXPERIMENTAL

Materials
Research grade EPON 828 epoxy resin was obtained from Shell Chemical Co. The resin was cured with an aliphatic polyethertriamine (T403, Huntsman Chemical). Both resin and crosslinker were used as received. The chemical structures of the amine and epoxide monomers are shown in Figure 1. If these monomers combine exclusively through epoxide-amine addition reactions, about 46 amine parts per hundred epoxide parts by weight (phr – parts per hundred resin) are required for complete cure. This is consistent with experimental measurements of the maximum glass transition temperature and the minimum swelling ratio. In order to prepare uniform thin films by spin coating onto silicon wafers, it was necessary to pre-cure the mixture to increase the molecular weight prior to spin coating. This was accomplished by heating the resin and crosslinker mixtures at 60 °C for 70 minutes. The mixtures were then dissolved in toluene for spin coating. Three solutions with different concentrations of T403 (36, 46, and 56 phr) were prepared. An aliquot of each solution was deposited onto a silicon wafer using
a glass pipet and then spun off at 3000 rpm using a Headway photoresist spinner. The silicon wafers used as substrates in this study were polished 2-inch diameter single crystals (111) obtained from Semiconductor Processing Co. The wafers were cleaned using the “RCA” process: a sulfuric acid/hydrogen peroxide clean, followed by etching in an HF solution, and then the regrowth of silicon oxide with ammonium hydroxide/hydrogen peroxide solution. Two films were prepared for each mixture to examine the effect of curing temperature. One set of three samples (36, 46, and 56 phr) was cured at 50 °C for 48 hrs (CURE A), while the second set of samples was cured at 80 °C for 1 hr and then 120 °C for 2 hours (CURE B). Our goal was to achieve full cure with each condition. A previous study of this system indicates that full cure is achieved at 50 °C in roughly 24 hours for the 36 phr composition. However, no data are currently available for the 46 phr and 56 phr compositions, and we now suspect that the 46 phr films may not be fully cured with CURE A. We will return to this point later in the Results and Discussion Section. Following cure, the samples were dessicated until the reflectivity measurements were performed.

Methods The surface tensions of the liquid epoxy resin, crosslinker, and resin/crosslinker mixtures were measured by the Wilhelmy plate technique using a sand-blasted platinum plate and a Q11 force transducer from Hottinger Baldwin Measurements.
Neutron reflectivity (NR) measurements were performed on the NG7 reflectometer (NIST). A fixed wavelength of 4.74 Å was used. The intensity of reflected neutrons is measured as a function of momentum transfer \(q = 4\pi \sin \theta / \lambda \). Such reflectivity curves are very sensitive to the 1-dimensional profile of the neutron scattering density (SLD) normal to the plane of the substrate. The neutron SLD is a function of the density and atomic composition. The calculated SLD values of the materials used in this work are shown in Table 1. During the measurements, the samples were maintained at room temperature in a sealed aluminum chamber. The reflectivity of the as-prepared samples was first measured with desiccant in the chamber. The desiccant was then removed and the chamber was saturated with \(d \)-nitrobenzene (\(d \)-NB), a good solvent for both the resin and the crosslinker. Since the surface tension of \(d \)-NB (~48 dyne/cm) is higher than that of the mixtures of epoxy resin and T403 (~33-35 dyne/cm), a wetting layer of \(d \)-NB does not form on the surface of the epoxy film. This was important since the neutron beam was directed onto the interface from the air side. Equilibrium saturation of \(d \)-NB in the film was confirmed by measuring the reflectivity with time until the reflectivity curve did not change.

The SLD profiles cannot be obtained by direct inversion of the reflectivity data, but rather are obtained from a fitting procedure. This involves approximating the model profiles by a series of slabs of constant concentration, and then calculating the reflectivity from the stack of layers using the optical matrix method. The effects of roughness and finite interface width are included by dividing each interface into a number of small slabs to form a smooth gradient. Both the interface width and the functional form of the gradient can be varied. The resolution, \(\Delta q / q \) where \(\Delta q \) is the standard deviation of a Gaussian function, was fixed at 0.1. Best fit parameters were determined by the minimization of \(\chi^2 = \sum ((R_{\text{exp}} - R_{\text{calc}})^2 / \sigma_{\text{std}}^2) / (N_{\text{pts}} - N_{\text{param}}) \) using the Marquardt algorithm.

49. RESULTS AND DISCUSSION

Equilibrated films

Reflectivity from a 46 phr sample (CURE A) as-prepared and after swelling to equilibrium with \(d \)-NB is shown in Figure 2a. With the low temperature cure, we expect that equilibrium composition profiles at the interfaces are approached prior to crosslinking. The reflectivity for the as-prepared sample shows strong oscillations which persist to the highest values of \(q \) examined. This indicates that the epoxy film is quite smooth. The curve through the data for the as-prepared sample corresponds to the best-
fit using a simple single layer profile for the epoxy film shown by the solid line in Figure 2b. The SLD is consistent with that calculated from the atomic composition and the density given in Table 1. The roughness at the air surface corresponds to \(\sigma = 16 \, \text{Å} \), where \(\sigma \) is defined as the root mean square (rms) value of the height with respect to the average height of the surface. This simple model is entirely adequate to describe the data for the as-prepared sample. Similar profiles were also adequate for the as-prepared 36 phr and 56 phr samples. In each case, the reflectivity data could be described using a single-step profile with roughness at the air surface comparable to that for the 46 phr sample.

In Figure 2a, the 46 phr sample swollen with d-NB shows a large increase in reflectivity relative to the data for the as-prepared sample. The increase is due to adsorption of d-NB (\(\text{SLD}_{d-NB} = 0.0555 \times 10^4 \, \text{Å}^{-2} \)). The best-fit SLD profile for the d-NB swollen sample is also shown in Figure 2b. The thickness and SLD of the swelled film have both increased substantially relative to that of the as-prepared film. More importantly, in contrast with the results for the as-prepared sample, the reflectivity for the swelled sample is not consistent with a single layer profile, but rather increased SLD is required at the air surface. This indicates a lower crosslink density in the region near the air surface. This effect is due to preferential segregation of the polyetheramine crosslinker to the air surface. Segregation of T403 to the air surface is expected based on the surface tensions of the resin (47.8 mN/m) and the crosslinker (33.5 mN/m). The surface tensions for the 36, 46 and 56 phr mixtures were measured to be 36.7, 35.2, 34.0 mN/m, respectively. The fact that the surface tensions of the mixtures are close to the value for pure T403 verifies that the surface is rich in T403. Segregation of low surface energy components to the air surface has been studied extensively in other systems.14-17

Figure 3a compares NR data from 36, 46, and 56 phr films with CURE A after swelling to equilibrium with d-NB. The SLD profiles are shown in Figure 3b. Note that the form of the reflectivity curve is different for each film. These data reveal several important differences in the structure of the epoxy films. For the 36 phr film the reflectivity curve shows very high reflectivity at low \(q \) (0.01 Å\(^{-1} < q < 0.04 \, \text{Å}^{-1} \)). Without any detailed analysis, the enhanced reflectivity at low \(q \) for the 36 phr film is a clear indication of much greater absorption of d-NB near the air surface. The magnitude of this effect for the three compositions occurs in the following order: 36 phr >> 46 phr > 56 phr. This trend can be understood by considering the composition perturbation near the air surface to consist of two layers: an excess of T403 immediately at the surface followed by a layer which we will refer to as the “near-surface” layer which is depleted of T403. This is illustrated in Figure 4. A 36 phr film would be deficient in T403 if resin
and crosslinker were uniformly distributed. Strong segregation of T403 to the air surface leaves the near-surface region even further depleted of T403. This leads to a highly imperfect network and a high degree of swelling over a relatively large length scale. With the 46 phr sample, preferential segregation of T403 also leads to a depletion of T403 in the near-surface region, however the composition will be much closer to the stoichiometric ratio and thus the network is not nearly as imperfect. With the 56 phr sample, T403 would be in excess if resin and crosslinker were uniformly distributed. Depending upon the degree of preferential segregation of T403, the composition in the near-surface layer may actually approach the stoichiometric ratio. Thus, the surface region swells the least in this case, due primarily to the excess T403 immediately at the surface.

From Figure 3b we note that a thin region of low SLD is detected near the silicon oxide surface for the 36 and 56 phr films. The length scale of this region is roughly 10 Å, much smaller than that of the layer of excess d-NB at the air surface. This indicates exclusion of d-NB from the region immediately adjacent to the substrate surface, apparently due to strong binding between epoxy and the native silicon oxide. The effect on the NR data is weaker than that of the excess d-NB layer at the air surface but is still very significant for the 36 phr sample. The effect of the depletion layer on the reflectivity is much more subtle for the 56 phr sample. The reflectivity for the 46 phr film is insensitive to the presence or absence of a depletion layer of this magnitude, so a determination cannot be made in that case.

Finally, we note that the amount of d-NB in the bulk of the film is much higher for the 36 phr sample than for the other two compositions, indicating a lower crosslink density for the 36 phr composition. We also note that the roughness of the air surface for the 56 phr sample after swelling is much greater than that of the others. We will return to this point later in the discussion.

Figure 5a compares NR data from 36, 46, and 56 phr films with CURE B after swelling to equilibrium with d-NB. The best-fit SLD profiles are shown in Figure 5b. With the elevated temperature cure, it is expected that crosslinking occurs before the equilibrium composition profiles at the interfaces are approached. Indeed, the reflectivity curves in Figure 5a show two distinct differences from those of the films cured at room temperature. First, the reflectivity over the q range $0.01 \text{ Å}^{-1} < q < 0.04 \text{ Å}^{-1}$ for the 36 phr sample is comparable to that for the other samples. The very high reflectivity observed for that q range for the 36 phr sample with CURE A is not observed with CURE B. Thus, preferential segregation of T403 occurs to a much lesser extent with CURE B. This is likely due to a competition between the rates of reaction and segregation. The degree of
excess d-NB in the near-surface region for the three compositions with CURE B occurs in the following order: 36 phr ≥ 46 phr > 56 phr. Second, for the 46 phr film the Kiessig fringes are much stronger with CURE B than with CURE A. The magnitude of the Kiessig fringes is determined by the SLD of the film relative to that of the substrate and air. Strong fringes result if the SLD is intermediate between that of silicon and air, or is substantially greater than the SLD of silicon: In the case of the 46 phr film with CURE B, strong fringes result because the SLD is intermediate between that of silicon and air, as shown in Figure 5b. The Keissig fringes are weak for CURE A because the SLD is comparable to that of silicon. Thus, CURE B results in a much lower equilibrium concentration of d-NB within the 46 phr film than CURE A, indicating that with CURE B the network is more highly crosslinked or has fewer defects.

We note that again a significant depletion of d-NB is observed at the substrate surface for the 36 phr and 56 phr samples with CURE B. The magnitude of this effect is substantially greater for CURE B than for CURE A for these samples. The reason for this is not clear. Such a layer is not required in the data for the 46 phr sample with CURE B as the data for this composition are again insensitive to this effect.

The degree of swelling occurring within the bulk of the films is examined in Figure 6. This plot shows the volume fraction of d-NB as a function of T403 concentration for the equilibrated samples, where only the SLD of the central region of the film was used in the calculation. Interestingly, there is a large variation in the degree of swelling with cure temperature for the 46 phr epoxy films, whereas only a very small variation with cure temperature is observed for the 36 phr and 56 phr films. The lower volume fraction d-NB for the 46 phr sample with CURE B indicates a network which has achieved a higher crosslink density than is obtained with CURE A. The most likely explanation is that the epoxide-amine reaction does not go to completion in 48 hrs at 50 °C for the 46 phr composition, but does go to completion for the 36 phr and 56 phr samples. The available kinetic data indicate only that the reaction goes to completion in roughly 24 hrs at 50 °C for 36 phr. Indeed, measurements on bulk samples with 46 phr have shown that heating to 80 °C following CURE A results in an increase in the glass transition temperature. The fact that the central portions of the 36 phr and 56 phr films are not strongly affected by cure temperature argues against an explanation based on the competition between the rates of reaction and segregation. Further experiments on the extent of cure are underway to resolve this.

As shown in Figure 6, the swelling ratios of the epoxy films with off-stoichiometric compositions are not symmetric, regardless of curing conditions. Rather, a higher swelling ratio results for the 36 phr film than for the 56 phr film for both curing
conditions. This is consistent with the results of bulk swelling experiments for the same epoxy/crosslinker system reported by Morgan et al. They concluded that a more rapid increase in the molecular weight between crosslinks \((M_c)\) with deviation from the stoichiometric composition occurs on the excess epoxide side relative to the excess T403 side. A similar conclusion has been reported by others. This can be understood by considering the functionality of the resin and crosslinker and the network structures. As the fraction of T403 decreases below the stoichiometric ratio, unreacted epoxide groups are present and form dangling chain ends. The size and number of defects in the network become larger as the number of unreacted epoxide groups increases. As the amount of T403 decreases to 23.7 phr, \(M_c\) increases to infinity. On the T403-rich side, all epoxide groups are reacted completely and unreacted amine groups are present. However, the effect of unreacted amine groups on the network structure is not as dramatic because each amine group has two reactive protons. If it is assumed that all primary amines react with epoxide groups prior to the onset of secondary amine-epoxide reactions, ring and branched network structures form even up to 94.7 phr.

Figure 7 shows film thicknesses for the as-prepared and d-NB swelled samples as a function of T403 concentration. The thickness is determined from the spacing of the fringes in the reflectivity curves and is thus determined independently of the d-NB volume fraction. The trends are consistent with the volume fraction data shown in Figure 6. The 46 phr film with CURE B shows a much smaller increase in film thickness upon swelling compared to that with CURE A. The 36 and 56 phr film thicknesses show a large increase upon swelling for both cure conditions. The swelled thickness of the 56 phr films are nearly independent of cure temperature, whereas for the 36 phr films a greater increase in thickness with swelling occurs with CURE A than with CURE B. The difference for the 36 phr film is due to the much greater excess swelling in the near-surface region for CURE A. Such a trend does not appear in Figure 6 because only the bulk of the film, and not the near-surface region, was used in the d-NB volume fraction calculations.

Kinetics of swelling

Since the equilibration time (> 24 hrs) was much greater than the measurement time (4 hrs), certain aspects of the kinetics could be examined by monitoring the reflectivity as a function of time. The phenomena governing these rather long time processes are not clear. Diffusion of d-NB through the films is not the controlling process, as diffusion of a good solvent through the ultrathin films takes place on a time scale which is short compared to the measurement time. Indeed, no gradients in d-NB
through the bulk of the films were detected even at the shorter exposure times examined (~6 hrs). Apparently, the time for solvent to equilibrate within the film is short compared to the time for plasticizing or softening of the network. Thus, this study probes the relaxation of the network when subjected to a swelling pressure, rather than the rate of adsorption and diffusion of d-NB.

Figure 8 shows the relative change in film thickness ($\Delta Z/Z_{dry}$) versus time (t) for each sample. Several general trends are observed. First, the initial rates of swelling for 36 phr films are much greater than those for the 46 and 56 phr films. This can be understood in terms of the more imperfect network structures of T403-deficient compositions relative to resin-deficient compositions discussed earlier. Second, the initial rate of swelling is much greater for the 46 phr film cured at low temperature than for the 46 phr film cured at elevated temperature (low time data for 36 phr and 56 phr are insufficient to draw conclusions). This can again be explained by a more rapid relaxation under swelling pressure for a more imperfect network structure.

Figures 9a-9c show SLD profiles as a function of time exposed to saturated d-NB for the 36 phr, 46 phr and 56 phr films, respectively, with CURE B. As shown in Figure 9a, the 36 phr film shows a large increase in film thickness at relatively low exposure times (12 hrs) due to swelling of the bulk of the film. Data at sufficiently low times were not obtained to resolve the initial penetration of d-NB into the film. In fact, no gradients in d-NB were observed through the bulk of the films. The reflectivity data would be quite sensitive to such an effect if it were present. As time proceeds further, only a small increase in film thickness occurs, mainly due to increased swelling near the air surface. The 46 phr and 56 phr films in Figure 9b and 9c show a distinctly different swelling behavior than the 36 phr film. For the 46 phr and 56 phr films, swelling is initially detected in the near-surface region, followed by gradual swelling of the center of the film. For the 46 phr film, the roughness of the air surface of the 46 phr film decreases from 12 Å to 3 Å upon swelling. The magnitude of the swelling at the air surface increases with time while the roughness at the air surface remains low. The 56 phr film shows a similar swelling behavior as for the 46 phr film during an initial period. However, between 36 and 46 hours, the roughness at the air surface of the 56 phr film becomes suddenly greater, and the interface between the near-surface layer and the center of the film becomes sharper. We suggest that swelling stresses cause scission of some network strands at weak points for the 56 phr films leading to roughening at the air surface. Nevertheless, an apparent steady state appears to be approached at long times (68 hrs). The very clear difference in swelling behavior between the 36 phr film and the 56 phr films revealed in Figure 9 is again
attributed to the more imperfect network structures of T403-deficient compositions relative to resin-deficient compositions.

CONCLUSIONS

NR from epoxy films swelled with d-NB reveals variations in SLD at both the air surface and at the silicon substrate surface. Excess swelling of d-NB at the air surface is observed for all the films. This is due to preferential segregation of the crosslinker to the air surface. The degree of excess swelling at the air surface depends on both the composition and the cure temperature. This can be explained by a competition between the rates of reaction and segregation. To our knowledge, this effect has not been previously reported, and may have important implications for multilayer paint films and other applications where thermosetting films are deposited and cured sequentially. A thin (~ 10 Å) layer depleted of d-NB at the substrate surface was also required to fit the NR data for the 36 and 56 phr films. For the 46 phr film, the sensitivity to this feature is very low, such that a clear determination about the presence of this layer cannot be made. The depletion of d-NB may be due to strong binding between the epoxy and the substrate. The effect is greater for films cured at elevated temperature than for films cured at room temperature. Large length-scale variations in crosslink density such as have been reported at interfaces of epoxy with aluminum were not observed at the silicon oxide surface. Asymmetry in the network structure with departure from stoichiometric composition is observed from the equilibrium degree of swelling as well as from the relative rates. This is consistent with reports for bulk samples.
ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy under contract CE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.
REFERENCES

46. Certain trade names and company products are identified in order to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best for the purpose.

49. The roughness of the air surface is indicated in the SLD plots by an increased interfacial width. However, the roughness is more likely an in-plane effect which cannot be represented in the depth profile plots.

50. E. D. Reedy, Sandia National Laboratories, unpublished data

Table 1. Calculated neutron scattering length densities of the materials used in this study.

<table>
<thead>
<tr>
<th>Material</th>
<th>Scattering length density (b/V (10^{-4} \text{ Å}^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-NB</td>
<td>0.0555</td>
</tr>
<tr>
<td>EPON 828</td>
<td>0.0152</td>
</tr>
<tr>
<td>T403</td>
<td>0.0030</td>
</tr>
<tr>
<td>36 phr mixture</td>
<td>0.0117</td>
</tr>
<tr>
<td>46 phr mixture</td>
<td>0.0112</td>
</tr>
<tr>
<td>56 phr mixture</td>
<td>0.0107</td>
</tr>
<tr>
<td>silicon</td>
<td>0.0207</td>
</tr>
<tr>
<td>silicon oxide</td>
<td>0.0300</td>
</tr>
</tbody>
</table>
Figure Caption

Figure 1. Chemical structure of DGEBA epoxy resin and T403 polyethertriamine curing agent.

Figure 2. (a) Neutron reflectivity data from a 46 phr sample (CURE A) as-prepared (D) and after swelling to equilibrium with d-NB (E). The curves through the data correspond to best fits using model scattering length density profiles. (b) Best-fit scattering length density profiles corresponding to the curves through the data in Figure 2a for: as-prepared (---), after swelling (- - -).

Figure 3. (a) Neutron reflectivity data from 36 phr (D), 46 phr (E), and 56 phr samples (CURE A) after swelling to equilibrium with d-NB. The curves through the data correspond to best fits using model scattering length density profiles. (b) Best-fit scattering length density profiles corresponding to the curves through the data in Figure 4a for: 36 phr (---), 46 phr (- - -), and 56 phr (---) samples. The inset shows the magnification of depletion layer of d-NB at the substrate surface.

Figure 4. Qualitative illustration of the composition perturbation near the air surface. Strong segregation of the crosslinker to the air surface likely leads to a deletion of crosslinker in the near surface region.

Figure 5. (a) Neutron reflectivity data from 36 phr (D), 46 phr (E), and 56 phr samples (CURE B) after swelling to equilibrium with d-NB. The curves through the data correspond to best fits using model scattering length density profiles. (b) Best-fit scattering length density profiles corresponding to the curves through the data in Figure 5a for: 36 phr (---), 46 phr (- - -), and 56 phr (---) samples. The inset shows the magnification of depletion layer of d-NB at the substrate surface.

Figure 6. The volume fractions of d-NB as a function of T403 concentration for CURE A (●) and CURE B (▲). Note that the volume fraction is determined only from the scattering length density of the bulk of the film.

Figure 7. The film thickness as a function of T403 concentration for: as-prepared (D) and after swelling (●) with CURE A; as-prepared (E) and after swelling (▲) with CURE B.
Figure 8. The relative change in film thickness ($\Delta z/z_{dn}$) versus time (t) for 36 phr (), 46 phr (), and 56 phr () samples with CURE A; and 36 phr (), 46 phr (), and 56 phr () samples with CURE B.

Figure 9. The scattering length density profiles for (a) 36 phr as-prepared (), 12 hrs (), 20 hrs (), and 27 hrs (); (b) 46 phr as prepared (), 14.5 hrs (), 29.5 hrs (), 39.5 hrs (), and 51 hrs (); (c) 56 phr samples as-prepared (), 6 hrs (), 21 hrs (), 36 hrs (), 46 hrs (), and 67.5 hrs () with CURE B as a function of time. The insets for (a) and (b) show enlargements of the near surface region.
Diglycidyl ether of bisphenol A
(SHELL EPON 828)

Polyether triamine curing agent
(Huntsman T403)
distance from silicon oxide surface (Å)

b/V (10^{-4}/Å^2)
distance from silicon oxide surface

air

bulk epoxy

near-surface layer

surface excess

T403 concentration
volume fraction of d-nitrobenzene

T403 concentration (phr)
distance from silicon oxide surface (Å)
distance from silicon oxide surface (Å)

b/V (10^{-4} Å^2)