Flavor Structure of Warped Extra Dimension Models

PDF Version Also Available for Download.

Description

We recently showed, in hep-ph/0406101, that warped extra dimensional models with bulk custodial symmetry and few TeV KK masses lead to striking signals at B-factories. In this paper, using a spurion analysis, we systematically study the flavor structure of models that belong to the above class. In particular we find that the profiles of the zero modes, which are similar in all these models, essentially control the underlying flavor structure. This implies that our results are robust and model independent in this class of models. We discuss in detail the origin of the signals in B-physics. We also briefly study ... continued below

Creation Information

Agashe, Kaustubh; Perez, Gilad & Soni, Amarjit August 10, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We recently showed, in hep-ph/0406101, that warped extra dimensional models with bulk custodial symmetry and few TeV KK masses lead to striking signals at B-factories. In this paper, using a spurion analysis, we systematically study the flavor structure of models that belong to the above class. In particular we find that the profiles of the zero modes, which are similar in all these models, essentially control the underlying flavor structure. This implies that our results are robust and model independent in this class of models. We discuss in detail the origin of the signals in B-physics. We also briefly study other NP signatures that arise in rare K decays (K {yields} {pi}{nu}{nu}), in rare top decays [t {yields} c{gamma}(Z, gluon)] and the possibility of CP asymmetries in D{sup 0} decays to CP eigenstates such as K{sub s}{pi}{sup 0} and others. Finally we demonstrate that with light KK masses, {approx} 3 TeV, the above class of models with anarchic 5D Yukawas has a ''CP problem'' since contributions to the neutron electric dipole moment are roughly 20 times larger than the current experimental bound. Using AdS/CFT correspondence, these extra-dimensional models are dual to a purely 4D strongly coupled conformal Higgs sector thus enhancing their appeal.

Source

  • Journal Name: Physical Review D; Journal Volume: 71; Journal Issue: 1; Related Information: Journal Publication Date: 01/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--55325
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 861504
  • Archival Resource Key: ark:/67531/metadc794653

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 10, 2004

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 1, 2016, 8:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Agashe, Kaustubh; Perez, Gilad & Soni, Amarjit. Flavor Structure of Warped Extra Dimension Models, article, August 10, 2004; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc794653/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.