Superconductivity and Observation of Ordered Structures in Deintercalated Li$_x$NbO$_2$

M. Fendorf, M.A. Rzeznik, and A.M. Stacy

April 1995

To be presented at the Microscopy Society of America, Kansas City, MO, August 13–17, 1995, and to be published in the Proceedings
Superconductivity and Observation of Ordered Structures in Deintercalated Li$_x$NbO$_2$

M. Fendorf, M.A. Rzeznik†, and A.M. Stacy†

Materials Sciences Division
National Center for Electron Microscopy
Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

†University of California
Dept. of Chemistry
Berkeley, CA 94720

Microscopy Society of America
Kansas City, MO., 8/13-8/17/95

This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy under Contract No. DB-AC03-76SF00098.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
SUPERCONDUCTIVITY AND OBSERVATION OF ORDERED STRUCTURES IN DEINTERCALATED Li\textsubscript{x}NbO\textsubscript{2}

M. Fendorf, M.A. Rzeznik†, and A.M. Stacy†

National Center for Electron Microscopy, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley CA 94720
†Department of Chemistry, University of California, Berkeley, CA 94720

The prevalence of layered structures among the copper oxide superconductors has led us to search for new oxide superconductors with anisotropic structures to evaluate the relationship between structural anisotropy and superconductivity. Because of its layered structure,\(^1\) we identified the dichalcogenide LiNbO\(_2\) as a promising candidate for further study. The Nb oxidation state can be readily altered by deintercalation of Li, and we have reported magnetic measurements showing that the resulting Li\(_x\)NbO\(_2\) (x<1) is a superconductor with transition temperature \(T_c=5.5\)K.\(^2\) Interestingly it is the Meissner fraction rather than \(T_c\), which changes as \(x\) is varied in this compound. This suggests that as a result of deintercalation, the material separates into two distinct phases, one superconducting and one non-superconducting, although powder x-ray diffraction shows no clear evidence of differences between LiNbO\(_2\) and deintercalated material. This type of behavior is often associated with the transition to the superconducting state as the composition is varied in transition metal oxides.\(^3\)

Since x-ray diffraction was unable to distinguish the two phases revealed by magnetic measurement, in the present study we use transmission electron microscopy (TEM) to examine Li\(_x\)NbO\(_2\) materials. Because electrons are much more strongly scattered by a solid than are x-rays, electron diffraction will be better able to identify subtle changes in the crystal structure produced during deintercalation. TEM specimens were prepared by crushing the starting powders, suspending the finer particles in dry hexane, and then dispersing on a copper mesh grid with holey carbon film.\(^4\) Except where otherwise indicated, all TEM work was performed using a room-temperature specimen holder. Diffraction patterns were obtained using an accelerating voltage of 100kV, while high-resolution imaging was carried out at 200kV and 800kV.

For material that was not deintercalated (hence \(x=1\)), selected area diffraction (SAD) patterns taken along the [001] axis show 6-fold symmetry and the expected lattice parameter \(a_0=2.9\)\(\AA\) (Fig. 1). In some areas, this sample yielded SAD patterns with extra reflections (also with 6-fold symmetry) corresponding to an extremely large lattice parameter (\(a=41\)\(\AA\)), as shown in Fig. 2. In deintercalated materials with \(x\) ranging from 0.8 down to 0.65, two additional types of extra reflections were observed. The most prevalent of these corresponds to a tripling of the unit cell along \(<110>\) directions (yielding \(a=\sqrt{3}a_0\)), (Fig. 3) and less frequently, a doubling along \(<100>\) (yielding \(a=2a_0\)) also appeared (Fig. 4). Corresponding images of the "perfect" structure and the \(2a_0\) structure are presented in Figs. 5 and 6. Preliminary results with samples cooled to 98K indicate that the 41A reflections disappear, the tripling along \(<110>\) and doubling along \(<100>\) remain stable, and no additional reflections appear at this temperature. (NOTE: All diffraction patterns are shown with the same scale.)

The occurrence of the extra reflections in these diffraction patterns can be explained either by the presence of charge density waves in Li\(_x\)NbO\(_2\), or by ordering of Li-vacancies after deintercalation. Creation and subsequent ordering of oxygen vacancies can be ruled out because neutron diffraction indicates that deintercalated material is fully stoichiometric in oxygen (i.e., oxygen site occupation does not change upon deintercalation).\(^5\) Furthermore, significant changes in niobium occupation would be detected by x-ray diffraction. Of the remaining two possibilities, Li-vacancy ordering is much more probable, since charge density waves are not expected to be stable in a sample at room temperature.\(^6\) The fact that no additional periodicities seem to develop in a cooled sample tends to support this hypothesis. The large periodicity found in some areas of the LiNbO\(_2\) sample can possibly be explained by small deviations from exact stoichiometry (\(x\) slightly less than 1), possibly beam-induced, with ordering of the small number of corresponding Li vacancies present in this case.

In summary, we have observed the appearance of extra reflections in [001] diffraction patterns obtained from deintercalated Li\(_x\)NbO\(_2\) materials, and attribute this to the ordering of vacancies created as Li is removed from the host structure. The ordering of Li, apparently with two preferred periodicities, may be related to the phase separation revealed by magnetic measurement. Due to its sensitivity to scattering from light elements and ability to provide structural information from very small areas, transmission electron microscopy is proving to be an important tool in the study of the Li\(_x\)NbO\(_2\) system.\(^7\)

References
7. This study was carried out using facilities at Lawrence Berkeley Laboratory, funded by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
FIG. 1. -- [001] SAD pattern from stoichiometric LiNbO$_2$, showing 6-fold symmetry and $a_0=2.9\text{Å}$.
FIG. 2. -- [001] pattern from another LiNbO$_2$ particle, illustrating extra reflections with $d=41\text{Å}$.
FIG. 3. -- [001] pattern from deintercalated Li$_x$NbO$_2$ showing tripling along $<110>$ directions; here $x=0.65$.
FIG. 4. -- [001] Li$_{0.65}$NbO$_2$ pattern showing doubling along $<100>$ as well as tripling along $<110>$.
FIG. 5. -- High-resolution TEM image of "perfect", stoichiometric LiNbO$_2$ structure.
FIG. 6. -- High-resolution image from Li$_{0.8}$NbO$_2$, showing $2a_0$ structure in central area of figure.