Adaptive capture of expert knowledge

PDF Version Also Available for Download.

Description

A method is introduced that can directly acquire knowledge-engineered, rule-based logic in an adaptive network. This adaptive representation of the rule system can then replace the rule system in simulated intelligent agents and thereby permit further performance-based adaptation of the rule system. The approach described provides both weight-fitting network adaptation and potentially powerful rule mutation and selection mechanisms. Nonlinear terms are generated implicitly in the mutation process through the emergent interaction of multiple linear terms. By this method it is possible to acquire nonlinear relations that exist in the training data without addition of hidden layers or imposition of explicit ... continued below

Physical Description

23 p.

Creation Information

Barrett, C.L.; Jones, R.D. & Hand, Un Kyong May 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A method is introduced that can directly acquire knowledge-engineered, rule-based logic in an adaptive network. This adaptive representation of the rule system can then replace the rule system in simulated intelligent agents and thereby permit further performance-based adaptation of the rule system. The approach described provides both weight-fitting network adaptation and potentially powerful rule mutation and selection mechanisms. Nonlinear terms are generated implicitly in the mutation process through the emergent interaction of multiple linear terms. By this method it is possible to acquire nonlinear relations that exist in the training data without addition of hidden layers or imposition of explicit nonlinear terms in the network. We smoothed and captured a set of expert rules with an adaptive network. The motivation for this was to (1) realize a speed advantage over traditional rule-based simulations; (2) have variability in the intelligent objects not possible by rule-based systems but provided by adaptive systems: and (3) maintain the understandability of rule-based simulations. A set of binary rules was smoothed and converted into a simple set of arithmetic statements, where continuous, non-binary rules are permitted. A neural network, called the expert network, was developed to capture this rule set, which it was able to do with zero error. The expert network is also capable of learning a nonmonotonic term without a hidden layer. The trained network in feedforward operation is fast running, compact, and traceable to the rule base.

Physical Description

23 p.

Notes

OSTI as DE95012054

Source

  • Other Information: PBD: [1995]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95012054
  • Report No.: LA-UR--95-1391
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/93561 | External Link
  • Office of Scientific & Technical Information Report Number: 93561
  • Archival Resource Key: ark:/67531/metadc794596

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Feb. 29, 2016, 12:59 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Barrett, C.L.; Jones, R.D. & Hand, Un Kyong. Adaptive capture of expert knowledge, report, May 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc794596/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.